

— (3/24)

— (4/24)

Higher Order Equations Beam-Bending Revisited Building a Linear System Boundary Conditions — Physical Implementation Boundary Conditions — Numerical	Higher Order Equations Beam-Bending Revisited Building a Linear System Boundary Conditions — Physical Implementation Boundary Conditions — Numerical
Bending Beams with Finite Differences — BCs	Second-Order Finite Difference Approximations
In order to exhaust the discussion of boundary conditions, we assume the beam is fixed at the point $x = 0$: y(0) = 0 no deflection (BC-1) y'(0) = 0 zero slope (BC-2) and we further assume that at $x = L$ the beam is completely free (unsupported): y''(L) = 0 no bending moment (BC-3) y'''(L) = 0 no shear force (BC-4)	We use the Central Difference Approximations , with truncation error $\mathcal{O}(h^2)$ $\begin{array}{l} y_n'' \approx [y_{n+1} - 2y_n + y_{n-1}]/h^2 \\ y_n''' \approx [y_{n+2} - 2y_{n+1} + 2y_{n-1} - y_{n-2}]/2h^3 \\ y_n'''' \approx [y_{n+2} - 4y_{n+1} + 6y_n - 4y_{n-1} + y_{n-2}]/h^4 \end{array}$ Since $y_0 = 0$ is specified (BC-1), we need the equations for $n = 1, 2, \ldots, N$ where $x_n = n(L - 0)/N$, and $y(x_n) = y_n$. We use a central difference for (BC-2) and introduce one external (ghost) node x_{-1} : $y'(0) = y_0' = \frac{y_1 - y_{-1}}{2h} = 0$, (BC-2) _{num}
Peter Blomgren, (blomgren.peter@gmail.com) Higher Order Equations — (5/24)	Peter Blomgren, (blomgren.peter@gmail.com) Higher Order Equations
Higher Order EquationsBeam-Bending RevisitedBuilding a Linear SystemBoundary Conditions — PhysicalImplementationBoundary Conditions — Numerical	Higher Order Equations Beam-Bending Revisited Building a Linear System Boundary Conditions — Physical Implementation Boundary Conditions — Numerical
Pushing Forward	Derivatives of the Area Moment of Inertia
We note that $(BC-2)_{num}$ gives $y_{-1} = y_1$ we will use this fact later The numerical versions of (BC-3) and (BC-4) are $y_N'' = \frac{y_{N-1} - 2y_N + y_{N+1}}{h^2} = 0$ (BC-3) _{num} $y_N''' = \frac{-y_{N-2} + 2y_{N-1} - 2y_{N+1} + y_{N+2}}{2h^3} = 0$ (BC-4) _{num} (BC-3) _{num} gives $y_{N+1} = 2y_N - y_{N-1}$ (BC-4) gives $y_{N+2} = y_{N-2} - 4y_{N-1} + 4y_{N-2}$	We also need the first and second derivatives of the area moment of inertia $I(x)$ at nodes $n = 1, 2,, N$: $I'_{n} = \frac{I_{n+1} - I_{n-1}}{2h} \qquad n = 1, 2,, N - 1$ $I'_{N} = \frac{3I_{N} - 4I_{N-1} + I_{N-2}}{2h} \qquad \text{one-sided}$ $I''_{n} = \frac{I_{n+1} - 2I_{n} + I_{n-1}}{h^{2}} \qquad n = 1, 2,, N - 1$ $I''_{N} = \frac{2I_{N} - 5I_{N-1} + 4I_{N-2} - I_{N-3}}{h^{2}} \qquad \text{one-sided}$ Since there are no additional equations for $I(x)$ we are forced to use one-sided differences at the boundaries. (All the above finite differences are second order)
Peter Blomgren (blomgren peter@gmail.com) Higher Order Equations — (7/24)	Peter Blomgren (blomgren peter@gmail.com) Higher Order Equations — (8/24)

Higher Order Equations Building a Linear System... Implementation...

Putting it all Together, $n = 2, \ldots, N - 2$

The general linear equation at node n is

Peter Blomgren, blomgren.peter@gmail.com

$$E \cdot I_{n} \left[\frac{y_{n+2} - 4y_{n+1} + 6y_{n} - 4y_{n-1} + y_{n-2}}{h^{4}} \right] + 2E \cdot I_{n}' \left[\frac{y_{n+2} - 2y_{n+1} + 2y_{n-1} - y_{n-2}}{2h^{3}} \right] + E \cdot I_{n}'' \left[\frac{y_{n+1} - 2y_{n} + y_{n-1}}{h^{2}} \right] = p_{n}$$

Note that $E \cdot I_n$, $E \cdot I'_n$, $E \cdot I''_n$, and p_n can be pre-computed as they do not depend on the solution y.

Higher Order Equations

Higher Order Equations Building a Linear System... Implementation... General Equation — Interior Nodes **Special Node**, n = 1Special Node, n = (N - 1)Special Node, n = N

At node n = 1

$$E \cdot I_1 \left[\frac{y_3 - 4y_2 + 6y_1 - 4y_0 + y_{-1}}{h^4} \right] + 2E \cdot I_1' \left[\frac{y_3 - 2y_2 + 2y_0 - y_{-1}}{2h^3} \right] + E \cdot I_1'' \left[\frac{y_2 - 2y_1 + y_0}{h^2} \right] = p_1$$

Now we use $(BC-1)_{num} y_0 = 0$ and $(BC-2)_{num} y_{-1} = y_1$:

Peter Blomgren, blomgren.peter@gmail.com

$$E \cdot I_1 \left[\frac{y_3 - 4y_2 + 7y_1}{h^4} \right] + 2E \cdot I_1' \left[\frac{y_3 - 2y_2 - y_1}{2h^3} \right] + E \cdot I_1'' \left[\frac{y_2 - 2y_1}{h^2} \right] = p_1$$

Peter Blomgren, <code>{blomgren.peter@gmail.com}</code>	Higher Order Equations	— (9/24)	Peter Blomgren, \langle	$\langle \texttt{blomgren.peter@gmail.com} \rangle$	Higher Order Equations	— (10/24)
Higher Order Equations Building a Linear System Implementation	General Equation — Interior Nodes Special Node, $n = 1$ Special Node , $n = (N - 1)$ Special Node, $n = N$			Higher Order Equations Building a Linear System Implementation	General Equation — Interior Nodes Special Node, $n = 1$ Special Node, $n = (N - 1)$ Special Node, $n = N$	
At node $n = (N - 1)$			At node $n = N$			
$E \cdot I_{N-1} \left[\frac{\mathbf{y}_{N+1} - 4y_N + 6}{+2E \cdot I_{N-1}'} \left[\frac{\mathbf{y}_{N+1} - 4y_N}{+2E \cdot I_{N-1}'} \right] \right]$ $+ E \cdot I_{N-1}' \left[\frac{\mathbf{y}_N - 2y_N}{+2N} \right]$ Now we use (BC-3)'_{num} = y_{N+1} $E \cdot I_{N-1} \left[\frac{2\mathbf{y}_N - \mathbf{y}_{N-1} - 4y_N}{+2E \cdot I_{N-1}'} \right] \left[\frac{2\mathbf{y}_N - \mathbf{y}_{N-1}}{+2N} \right]$	$\frac{\left[\frac{y_{N-1} - 4y_{N-2} + y_{N-3}}{h^4}\right]}{h^4} + \frac{2y_N + 2y_{N-2} - y_{N-3}}{2h^3} + \frac{1-1 + y_{N-2}}{h^2} = p_{N-1} + \frac{2y_N - y_{N-1}}{h^4} + \frac{6y_{N-1} - 4y_{N-2} + y_{N-3}}{h^4} + \frac{1 - 2y_N + 2y_{N-2} - y_{N-3}}{2h^3} + \frac{1 + y_{N-2}}{2h^3} = p_{N-1}$		E · I _N - Now we use (B (B	$I_{N}\left[\frac{\mathbf{y}_{N+2}-4\mathbf{y}_{N+1}+1}{2E \cdot I_{N}'}\right] \left[\frac{\mathbf{y}_{N+2}-2}{h^{2}}\right]$ $+E \cdot I_{N}''\left[\frac{\mathbf{y}_{N+1}-2\mathbf{y}}{h^{2}}\right]$ $= 2C-3)'_{num} \qquad \mathbf{y}_{N+1} = 3C-4)'_{num} \qquad \mathbf{y}_{N+2} = 3C-4)'_{num}$	$\frac{6y_{N} - 4y_{N-1} + y_{N-2}}{h^{4}} + \frac{y_{N+1} + 2y_{N-1} - y_{N-2}}{2h^{3}} + \frac{y_{N+1} + 2y_{N-1} - y_{N-2}}{2h^{3}} = p_{N}$ $= 2y_{N} - y_{N-1}$ $= y_{N-2} - 4y_{N-1} + 4y_{N}$	

— (11/24)

— (12/24)

Higher Order Equations

Higher Order Equations Building a Linear System Implementation	General Equation — Interior Nodes Special Node, $n = 1$ Special Node, $n = (N - 1)$ Special Node, $n = N$		Higher Order Equations Building a Linear System Implementation	Code Numerical Results, Uniform Load, $I(x) \equiv 1$ Numerical Results, Bending with Variable B	eam Width
At node $n = N$		Implementatic	n — Code		I/VI
$E \cdot I_{N} \left[\frac{\mathbf{y}_{N-2} - 4\mathbf{y}_{N-1} + 4\mathbf{y}_{N} - 4(2\mathbf{y}_{N})}{+ 2E \cdot I_{N}' \left[\frac{\mathbf{y}_{N-2} - 4\mathbf{y}_{N-1} + 4\mathbf{y}_{N} - 4\mathbf{y}_{N} + 4\mathbf{y}_{N} - 4\mathbf{y}_{N} + E \cdot I_{N}'' \left[\frac{(2\mathbf{y}_{N} - \mathbf{y}_{N-1}) - 2\mathbf{y}_{N} + 4\mathbf{y}_{N} - 4\mathbf{y}_{N} 4\mathbf$	$\frac{-\mathbf{y}_{N-1} + 6y_N - 4y_{N-1} + y_{N-2}}{h^4} + \frac{-2(2\mathbf{y}_N - \mathbf{y}_{N-1}) + 2y_{N-1} - y_{N-2}}{2h^3} + \frac{y_{N-1}}{2h^3} = p_N$ $2E \cdot I'_N \left[\frac{0}{2h^3}\right] + E \cdot I''_N \left[\frac{0}{h^2}\right] = p_N$	Code: Bea % Beam length L = 1; % These bound % in the equance a = 0; ya = b = L; y_mond % Define the N = 64; h = (b-a)/(1) x = (a:h:b). % Young's Mag global E E = 1;	<pre>m-Bending h dary conditions are expl ations 0; y_slope_a = 0 ent_b = 0; y_shear_b = 0 grid f-1); '; dulus</pre>	Segmer icitly OR implicitly enforced ;; ;;	nt #1
Peter Blomgren, {blomgren.peter@gmail.com}	Higher Order Equations — (13	13/24) Peter Blomg	ren, <blomgren.peter@gmail.com></blomgren.peter@gmail.com>	Higher Order Equations	— (14/24)
Higher Order Equations Building a Linear System Implementation	Code Numerical Results, Uniform Load, $I(x) \equiv 1$ Numerical Results, Bending with Variable Beam Width	th	Higher Order Equations Building a Linear System Implementation n — Code	Code Numerical Results, Uniform Load, $I(x) \equiv 1$ Numerical Results, Bending with Variable B	eam Width
<pre>Code: Beam-Bending function EI = EI(x) global E EI = E * (10*ones(size(x))-x/2); endfunction</pre>	Segment #2	Code: Bea EI_curvature EI_curvature	<pre>m-Bending = zeros(size(x)); =(2:(N-1)) = (EI_value() 2*EI_value()</pre>	Segmer ((2:(N-1))+1)) - \ (((2:(N-1)))) + EI_value((((2:(N-	nt #3

 Peter Blomgren, (blomgren.peter@gmail.com)
 Higher Order Equations

Building a Linear System Implementation	Code Numerical Results, Uniform Load, $I(x) \equiv 1$ Numerical Results, Bending with Variable Beam Width	Higher Order Equations Building a Linear System Implementation	Code Numerical Results, Uniform Load, $I(x) \equiv 1$ Numerical Results, Bending with Variable Beam Width
Implementation — Code	IV/VII	Implementation — Code	V/VI
<pre>Code: Beam-Bending % node 1 row 2 in the matrix % coefficients for "y_3" A(2,4) = (EI_value(2)/h^4 + 2*EI_ % coefficients for "y_2" A(2,3) = (-4*EI_value(2)/h^4 + \</pre>	<pre>Segment #4 slope(2)/(2*h^3)); L_curvature(2)/h^2); slope(2)/(2*h^3) + \</pre>	<pre>Code: Beam-Bending % nodes 2 to N-2 rows 3 to N-2 if for k = 3:(N-2) % coefficients for y_{n+2} A(k,k+2) = EI_value(k)/h^4 + 2*EI_ % coefficients for y_{n+1} A(k,k+1) = -4*EI_value(k)/h^4 -4*E EI_curvature(k)/h^2; % coefficients for y_{n} A(k,k) = 6*EI_value(k)/h^4 -2*EI_c % coefficients for y_{n-1} A(k,k-1) = -4*EI_value(k)/h^4 +4*E EI_curvature(k)/h^2; % coefficients for y_{n-2} A(k,k-2) = EI_value(k)/h^4 - 2*EI_ % right-hand-side rhs(k) = p(x(k)); end</pre>	<pre>Segment #5 n the matrix slope(k)/(2*h^3); I_slope(k)/(2*h^3) + \ urvature(k)/h^2; I_slope(k)/(2*h^3) + \ slope(k)/(2*h^3);</pre>
Peter Blomgren, $\langle \texttt{blomgren.peter@gmail.com} \rangle$	Higher Order Equations — (17/24)	Peter Blomgren, $\langle \texttt{blomgren.peter@gmail.com} \rangle$	Higher Order Equations — (18/24)
Higher Order Equations Building a Linear System Implementation	Code Numerical Results, Uniform Load, $l(x)\equiv 1$ Numerical Results, Bending with Variable Beam Width	Higher Order Equations Building a Linear System Implementation	Code Numerical Results, Uniform Load, $l(x) \equiv 1$ Numerical Results, Bending with Variable Beam Width
Higher Order Equations Building a Linear System Implementation	Code Numerical Results, Uniform Load, $l(x) \equiv 1$ Numerical Results, Bending with Variable Beam Width VI/VII	Higher Order Equations Building a Linear System Implementation	Code Numerical Results, Uniform Load, $l(x) \equiv 1$ Numerical Results, Bending with Variable Beam Width VII/VI
$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	Code Numerical Results, Uniform Load, $f(x) \equiv 1$ Numerical Results, Bending with Variable Beam Width V//VII Segment #6 :_curvature(N-1)/h^2; 2*EI_slope(N-1)/(2*h^3) + \ 4*EI_slope(N-1)/(2*h^3) + \ :I_slope(N-1)/(2*h^3);	Higher Order Equations Building a Linear System Implementation Implementation — Code Code: Beam-Bending % node N % y_{N} A(N,N) = 2*EI_value(N)/h^4; % y_{N-1} A(N,N-1) = -4*EI_value(N)/h^4; % y_{N-2} A(N,N-2) = 2*EI_value(N)/h^4; % y_{N-2} A(N,N-2) = 2*EI_value(N)/h^4; % right-hand-side rhs(N) = p(x(N)); % solve for the deflection y = A)rhs:	Code Numerical Results, Bending with Variable Beam Width VII/ Segment #7

Peter Blomgren, blomgren.peter@gmail.com