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Student Learning Targets, and Objectives SLOs: Linear Algebra Review, Part II

Student Learning Targets, and Objectives

Target Vectors

Objective Euclidean Inner Product: the Dot Product — Bilinearity
Objective Orthogonality and Orthonormality
Objective Linear Indepenence, Basis
Objective Projections
Objective Vector Norms

Target Matrices

Objective Symmetric and Hermitian Matrices
Objective Inverses and Hermitian Transposes for Matrix Products
Objective Unitary Matrices
Objective Matrix Norms

Target Actions

Objective Projections
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Introduction
Fundamental Concepts

Next...
Recap

Previously...

A quick review / crash course in basic linear algebra:

• Vectors: Transpose, Addition & Subtraction

• Matrix-Vector Product

• Vandermonde Matrix ... and Linear Least Squares Problems

• Matrix-Matrix Product

• Transpose of a Matrix (AT )

• Range and Nullspace of a Matrix A

• Rank of a Matrix Am×n

• Inverse of a Matrix A
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Transpose (Adjoint) / Hermitian
Inner Products, Matrix Properties, Orthogonality
Unitary Matrices, Vector Norms, Matrix Norms

Now... ...More Fundamental Concepts

The Transpose (Adjoint) a.k.a Hermitian (Transpose, or
Conjugate) of a matrix A ∈ C

m×n...

For a scalar z ∈ C, z = a + bi , the complex conjugate z , or z∗ is
obtained by negating the imaginary part, i.e. z∗ = a− bi .

Note that if z ∈ R, then z∗ = z .

For a matrix A ∈ C
m×n, the Hermitian Conjugate A∗ ∈ C

n×m is
the matrix

A =







a11 a12

a21 a22

a31 a32

a41 a42







⇒ A∗ =

[
a∗11 a∗21 a∗31 a∗41

a∗12 a∗22 a∗32 a∗42

]
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The Hermitian Conjugate

If A = A∗, the matrix A is said to be Hermitian.

Note that a Hermitian matrix must be square.

In the case that A is real-valued, i.e. A ∈ R
m×n, then

A = A∗ = AT (the Hermitian conjugate equals the transpose).

If A = AT , the matrix A is said to be Symmetric.

Our book (Trefethen-Bau) tends to state results and theorems
in terms of complex vectors and matrices, and hence use the
Hermitian conjugate, i.e. ~x∗ is a row-vector.

The advantage of this approach is that we are able to state
the most general results.

Note: There are some differences in regards to properties over R
n and C

n ; those gory details are explored in

[Math 524]
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The Inner Product of Two Vectors a.k.a the dot product

The Euclidean inner product, denoted 〈~x , ~y〉, of two column
vectors ~x , ~y ∈ C

m is defined

〈~x , ~y〉 = ~x∗~y =
m∑

i=1

x∗i yi

note that the inner product is a scalar quantity.

The Euclidean length, ‖~x‖, of ~x ∈ C
m is defined

‖~x‖ =
√

〈~x , ~x〉 =
√
~x∗~x =

√
√
√
√

m∑

i=1

|xi |2
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Inner Product: Geometrical Interpretation

The inner product can also be written

〈~x , ~y〉 = ~x∗~y = ‖~x‖ · ‖~y‖ · cos(α)

where α is the angle between ~x and ~y
x

y

alpha
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Inner Product: Properties Bi-Linearity

The inner product is bilinear, i.e. it is linear in each argument
separately:

(1) (~x1 + ~x2)∗ ~y = ~x∗1 ~y + ~x∗2 ~y

(2) ~x∗ (~y1 + ~y2) = ~x∗ ~y1 + ~x∗ ~y2

(3) (α~x)∗(β~y) = α∗β ~x∗ ~y

where ~x , ~x1, ~x2, ~y , ~y1, ~y2 ∈ C
m, and α, β ∈ C.

Compare: Bilinearity of the matrix-vector product. The Euclidean inner product is really
“just” a particular application/interpretation of the matrix-vector product.

Peter Blomgren 〈blomgren@sdsu.edu〉 3. Orthogonal Vectors, Matrices and Norms — (9/29)



Introduction
Fundamental Concepts

Next...

Transpose (Adjoint) / Hermitian
Inner Products, Matrix Properties, Orthogonality
Unitary Matrices, Vector Norms, Matrix Norms

Associated Matrix Properties

For any two matrices A and B , of compatible dimensions, i.e.

A ∈ C
m×n, and B ∈ C

n×k the following holds

(AB)∗ = B∗A∗

If the matrices A and B are square, and invertible, the following
holds

(AB)−1 = B−1A−1

When necessary, we use the notation A−∗ for (A∗)−1 ≡ (A−1)∗.

Question: What is (AB)−∗ (when well-defined)?
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Orthogonal and Orthonormal Vectors

Two vectors are orthogonal if and only if 〈~x , ~y〉 = ~x∗~y = 0,

0 =
~x∗~y

‖~x‖ · ‖~y‖ = cos(α) ⇔ α = π/2 + k · π, k ∈ Z.

A set of non-zero vectors S is orthogonal if its elements are
pairwise orthogonal, i.e.

∀ ~x , ~y ∈ S , ~x 6= ~y ⇒ ~x∗~y = 0

A set of vectors S is orthonormal if it is orthogonal, and ∀~x ∈ S ,
‖~x‖ = 1, i.e. all vectors are unit-vectors.
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Linear Independence of Orthogonal Set

Theorem (Linear Independence)

The vectors in an orthogonal set S are linearly independent.

Proof (Linear Independence of Orthogonal Vectors).

If the vectors in S are not independent, then ∃~vk ∈ S : ~vk 6= ~0, so that

~vk =
∑

i 6=k

ci~vi .

Since ~vk 6= 0, 〈~vk , ~vk〉 > 0, now we use the bi-linearity property of inner
products, and the orthogonality of S :

0 < 〈~vk , ~vk〉 =

〈

~vk ,
∑

i 6=k

ci~vi

〉

=
∑

i 6=k

ci 〈~vk , ~vi 〉
︸ ︷︷ ︸

0, ∀i 6=k

= 0.

This contradicts the assumption that the vectors are linearly dependent,
hence proving the theorem.
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Corollary: Basis for Cm

Corollary

If an orthogonal set S ⊆ C
m contains m vectors, then it is a basis

for Cm.

We can write any vector ~v ∈ C
m as a unique linear combination

~v =

m∑

i=1

ai~si , where ai = 〈~si , ~v 〉
‖~si‖2 .

The computation of ai~si is a projection of ~v onto the direction ~si .

We can use this in order to decompose arbitrary vectors into orthogonal
components...
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Orthogonal Vector Components 1 of 3

Suppose we have an orthonormal set of vectors {~q1, ~q2, . . . , ~qn},
~qi ∈ C

m, n ≤ m.

Now, for any vector ~v ∈ C
m, the vector

~r = ~v −
n∑

i=1

〈 ~qi , ~v 〉~qi

is orthogonal to {~q1, ~q2, . . . , ~qn}:

〈 ~qk , ~r 〉 = 〈 ~qk , ~v 〉 −
n∑

i=1

〈 ~qi , ~v 〉〈 ~qk , ~qi 〉
︸ ︷︷ ︸

〈 ~qk , ~v 〉 〈 ~qk , ~qk 〉
︸ ︷︷ ︸

1

= 0.
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Orthogonal Vector Components 2 of 3

We see that by applying this procedure, we have decomposed the
vector ~v into (n + 1) orthogonal components:

~v = ~r +
n∑

i=1

〈 ~qi , ~v 〉~qi

If {~qi} is a basis for Cm, then n = m and ~r = ~0, i.e.

~v
!
=

n∑

i=1

〈 ~qi , ~v 〉~qi =
n∑

i=1

(~q ∗
i ~v)~qi =

n∑

i=1

~qi (~q
∗
i ~v) =

n∑

i=1

(~qi~q
∗
i )~v
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Orthogonal Vector Components 3 of 3

~v =
n∑

i=1

〈 ~qi , ~v 〉~qi =
n∑

i=1

(~q ∗
i ~v)~qi =

n∑

i=1

~qi (~q
∗
i ~v) =

n∑

i=1

(~qi~q
∗
i )~v

In the expression

n∑

i=1

(~q ∗
i ~v)~qi we view ~v as a linear combination of the

vectors ~qi , with coefficients (~q ∗
i ~v); whereas in the mathematically

equivalent expression
n∑

i=1

(~qi~q
∗
i )~v , we view ~v as a sum of orthogonal

projections onto the various directions ~qi .

We will return to the issue of projection matrices of the formed by other
products, ~qi~q

∗
i soon.
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Unitary Matrices

A square matrix Q ∈ C
m×m is unitary (in the real case

“orthogonal”) if

Q∗ = Q−1 ⇔ Q∗Q = I

In terms of the columns, ~qi of Q this looks like








—— ~q ∗
1 ——

—— ~q ∗
2 ——
...

—— ~q ∗
m ——













| | || | |
~q1 ~q2 · · · ~qm
| | || | |




 =








1
1

. . .

1








We have ~q ∗
i ~qj = δij , the Kronecker delta, equal to 1 if and only if

i = j , and 0 otherwise.
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Multiplication by a Unitary Matrix

Since the norms of the columns of a unitary matrix are 1,
multiplication by a unitary matrix preserves the Euclidean norm,
and inner product in the following sense:

For a unitary Q:

(1) 〈Q~x , Q~y 〉 = (Q~x)∗(Q~y) = ~x∗Q∗Q
︸︷︷︸

I

~y = ~x∗~y = 〈 ~x , ~y 〉

(2) ‖Q~x‖ = ‖~x‖

The invariance of inner products mean that angles between vectors
are preserved.

In the real case, multiplication by an orthogonal matrix
corresponds to a rigid rotation (if det(Q) = 1) or a combined
rotation – reflection (if det(Q) = −1) of the vector space.
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Vector Norms

Norms give us the essential notion of size and distance in a vector
space — these are our tools for measuring the quality of
approximations and convergence in our algorithms.

Definition (Norm)

A norm is a function ‖ · ‖ : C
m → R that assigns a real-valued

(length) to each vector. A norm must satisfy the following three
conditions for all vectors ~x , ~y ∈ C

m, and scalars α ∈ C,

(1) ‖~x‖ ≥ 0, and ‖~x‖ = 0 only if ~x = 0

(2) ‖~x + ~y‖ ≤ ‖~x‖ + ‖~y‖
(3) ‖α~x‖ = |α| ‖~x‖

(2) is known as the “triangle inequality.”
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The p-norms 1 of 3

The p-norms (sometimes referred to as the ℓp-norms),
parametrized by p are defined by

‖~x‖p =

[
m∑

i=1

|xi |p
]1/p

As an illustration, the unit sphere ‖~x‖p = 1, ~x ∈ R
2 is illustrated

for some common (and uncommon) p-norms, on the following
slides.

2-norm the standard Euclidean length function.

1-norm sometimes referred to as the Manhattan/taxicab-distance.

0-norm counts the number of non-zero elements in a vector.
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The p-norms 2 of 3

Some commonly used p-norms
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‖~x‖1 =
m∑

i=1

|xi |, ‖~x‖2 =

[
m∑

i=1

|xi |2
]1/2

, ‖~x‖∞ = max
i=1...m

|xi |
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The p-norms 3 of 3

Some exotic p-{norms,non-norms}
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‖~x‖4 =

[
m∑

i=1

|xi |4
]1/4

, ‖~x‖1/2 =

[
m∑

i=1

|xi |1/2

]2

, ‖~x‖1/4 =

[
m∑

i=1

|xi |1/4

]4

Note: when p < 1 the “norms” are not convex; which means the triangle
inequality will not hold; and strictly speaking these are not norms...

∃ Movie.
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Weighted p-norms 1 of 3

The weighted p-norms ‖ · ‖W ,p are derived from the p-norms:

‖~x‖W ,p = ‖W ~x‖p

where W is e.g. a diagonal matrix, in which the ith diagonal entry
is the weight wi 6= 0:

‖~x‖W ,p =

[
m∑

i=1

|wixi |p
]1/p
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Weighted p-norms 2 of 3
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Figure: Visualization of the unit-sphere for the weighted 1-, 2- and
∞-norms, where W = diag(2, 1).

The concept of weighted p-norms can be generalized to arbitrary
non-singular weight matrices W .
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Weighted p-norms 3 of 3
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Figure: Visualization of the unit-sphere for the weighted 1-, 2- and

∞-norms, where W =

[
2 1
1 2

]

.

∃ Movie.
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Matrix Norms — Induced by Vector Norms

Given a vector norms ‖ · ‖(m) and ‖ · ‖(n) on the domain and range
of A ∈ C

m×n, the induced matrix norm ‖A‖(m,n) is

‖A‖(m,n) = sup
~x∈Cn−{~0}

[‖A~x‖(m)

‖~x‖(n)

]

In any sane application, both ‖ · ‖(m) and ‖ · ‖(n) will be of the
same type, i.e. the p-norms (with the same p).

Due to the linearity of norms — the third norm-condition — it is
sufficient to maximize the matrix norm over ~x ∈ C

n : ‖~x‖ = 1...

Most of the time the norms with p = 2 are used. Indeed, if
nothing else is specified, this is usually implied.
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Illustration: Matrix Norms

A =

[
1 2

1/3 2

]

,
λ(A) = {2.45743, 0.54257} eigenvalues

σ(A) = {2.98523, 0.44664} singular values
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‖A‖1 = 4 ‖A‖2 ≈ 2.9852 ‖A‖∞ = 3
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Special Cases: Matrix p-norms

If D is a diagonal matrix, then

‖D‖p = max
1≤i≤m

|di |.

The 1-norm of a matrix is the maximal column-abs-sum:

‖A‖1 = max
1≤j≤n

‖~aj‖1

The ∞-norm of a matrix is the maximal row-abs-sum:

‖A‖∞ = max
1≤i≤m

‖~a∗i ‖1
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Next Time

• Additional discussion on norms:

• Inequalities, General matrix norms, The Frobenius norm,
Bounds on norms of products of matrices.

• The Singular Value Decomposition (SVD).
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