	Outline
Numerical Matrix Analysis Notes #4 Matrix Norms, the Singular Value Decomposition	 Student Learning Targets, and Objectives SLOs: Matrix Norms, and the Singular Value Decomposition Introduction: Matrix Norms Recap
Peter Blomgren <pre></pre>	 Inequalities General Matrix Norms The Singular Value Decomposition Many Names One Powerful Tool! Examples for 2 × 2 Matrices More Details, and Examples Revisited The SVD of a Matrix: Formal Definition Spheres and Hyper-ellipses Homework
Peter Blomgren (blomgren@sdsu.edu) 4. Matrix Norms, the SVD - (1/32)	Peter Blomgren (blomgren@sdsu.edu) 4. Matrix Norms, the SVD - (2/32)
Student Learning Targets, and Objectives SLOs: Matrix Norms, and the Singular Value Decomposition	The SVD of a Matrix: Formal Definition General Matrix Norms
Student Learning Targets, and Objectives SLOs: Matrix Norms, and the Singular Value Decomposition Student Learning Targets, and Objectives	Introduction: Matrix Norms Recap The Singular Value Decomposition Inequalities The SVD of a Matrix: Formal Definition General Matrix Norms
Student Learning Targets, and Objectives Student Learning Targets, and Objectives Target Matrix Norms Objective Special Cases: 1- and ∞-norms Objective Hölder, and Cauchy-Bunyakovsky-Schwarz inequality Objective Special Case: 2-norm of rank-1 matrices Objective Frobenius (Hilber-Schmidt) norm Target The Singular Value Decomposition (the SVD) Objective In the first pass: the SVD as a concept, and geometrical interpretation Objective Fundamental language and concepts: ● principal semi-axes ● Singular values (σ_k , Σ) ● Left singular vectors (\vec{u}_k), U) ● Right singular vectors (\vec{v}_k), V)	Introduction: Matrix Norms The SVD of a Matrix: Formal DefinitionRecap Incoduction: ConstructionLast TimeOrthogonal Vectors, Matrices and Norms:The Adjoint / Hermitian Conjugate of a Matrix, A^* The Inner Product of Two Vectors, $\langle \vec{x}, \vec{y} \rangle = \vec{x}^* \vec{y}$ Orthogonal, $\langle \vec{x}, \vec{y} \rangle = 0$, and Orthonormal, $\ \vec{x}\ = 1$, VectorsOrthogonal and Orthonormal Sets — Linear Independence; Basis for \mathbb{C}^m Unitary Matrices $Q^*Q = I$ Vector Norms, $\ \cdot\ _p$ (<i>p</i> -norms), weighted <i>p</i> -normsInduced Matrix Norms

— (3/32)

Introduction: Matrix Norms Recap The Singular Value Decomposition Inequalities The SVD of a Matrix: Formal Definition General Matrix Norms	Introduction: Matrix Norms Recap The Singular Value Decomposition Inequalities The SVD of a Matrix: Formal Definition General Matrix Norms
Inequalities: Hölder and Cauchy-Bunyakovsky-Schwarz 1 of 2	Inequalities: Hölder and Cauchy-Bunyakovsky-Schwarz 2 of 2
Last time we noted that the 1-norm and ∞ -norm of a matrix simplify to the maximal column- and row-sum, respectively, <i>i.e.</i> for $A \in \mathbb{C}^{m \times n}$	However, we can usually find useful bounds on vector- and matrix-norms, using the Hölder inequality : $ \vec{x}^*\vec{y} \leq \ \vec{x}\ _p \ \vec{y}\ _q, \frac{1}{p} + \frac{1}{q} = 1.$
$\ A\ _{1} = \max_{1 \le j \le n} \ \vec{a}_{j}\ _{1}$ $\ A\ _{\infty} = \max_{1 \le i \le m} \ \vec{a}_{i}^{*}\ _{1}$	In the special case $p = q = 2$, the inequality is known as the Cauchy-Schwarz, or Cauchy-Bunyakovsky-Schwarz inequality $ \vec{x}^*\vec{y} \leq \vec{x} _2 \vec{y} _2.$
For other <i>p</i> -norms, $1 \le p \le \infty$, the matrix-norms do not reduce to simple direct-computable expressions like the ones above.	Augustin-Louis Cauchy, 21 August 1789 – 23 May 1857. (French) ⇒ proof for sums (1821). Viktor Yakovlevich Bunyakovsky, 16 December 1804 – 12 December 1889. (Russian, Cauchy's graduate student) ⇒ proof for integrals (1859). Karl Hermann Amandus Schwarz, 25 January 1843 – 30 November 1921. (German) ⇒ Modern proof (1888). Otto Ludwig Hölder, 22 December 1859 – 29 August 1937
Peter Blomgren (blomgren@sdsu.edu) 4. Matrix Norms, the SVD (5/32)	Peter Blomgren (blomgren@sdsu.edu) 4. Matrix Norms, the SVD - (6/32)
Introduction: Matrix Norms Recap The Singular Value Decomposition Inequalities The SVD of a Matrix: Formal Definition General Matrix Norms	Introduction: Matrix Norms Recap The Singular Value Decomposition Inequalities The SVD of a Matrix: Formal Definition
Example: 2-norm of a Rank-1 Matrix $A = \vec{u}\vec{v}^*$ 1 of 2	Example: 2-norm of a Rank-1 Matrix $A = \vec{u}\vec{v}^*$ 2 of 2
Rank-1 matrices formed by an outer product $\vec{u}\vec{v}^*$ show up in many numerical schemes: $\vec{u}\vec{v}^* = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_m \end{bmatrix} \begin{bmatrix} v_1^* & v_2^* & \cdots & v_n^* \end{bmatrix} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_m \end{bmatrix} \vec{v}^* = \begin{bmatrix} u_1\vec{v}^* \\ u_2\vec{v}^* \\ \vdots \\ u_m\vec{v}^* \end{bmatrix}$	Since $\vec{v} \in \mathbb{C}^n$, the inequality $\ A\ _2 = \sup_{\vec{x} \in \mathbb{C}^n - \{\vec{0}\}} \frac{\ A\vec{x}\ _2}{\ \vec{x}\ _2} \le \ \vec{u}\ _2 \ \vec{v}\ _2$
Now, for any $\vec{x} \in \mathbb{C}^n$, we get $\ A\vec{x}\ _2 = \ \vec{u}\vec{v}^*\vec{x}\ _2 = \ \vec{u}\ _2 \ \vec{v}^*\vec{x}\ \le \ \vec{u}\ _2 \ \vec{v}\ _2 \ \vec{x}\ _2$ Hence, $\ A\vec{x}\ _2 \le \ \vec{v}\ _2 \le \ \vec{v}\ _2$	is actually an equality. Let $\vec{x} = \vec{v}$: $\ A\vec{v}\ _2 = \ \vec{u}\vec{v}^*\vec{v}\ _2 = \ \vec{u}\ _2 \ \vec{v}^*\vec{v}\ = \ \vec{u}\ _2 \ \vec{v}\ _2^2$
$ A _{2} = \sup_{\vec{x} \in \mathbb{C}^{n} - \{\vec{0}\}} \frac{ \vec{x} _{2}}{ \vec{x} _{2}} \leq u _{2} v _{2}$ Peter Blomgren (blomgren@sdsu.edu) 4. Matrix Norms, the SVD - (7/32)	Peter Blomgren (blomgren@sdsu.edu) 4. Matrix Norms, the SVD — (8/32)

SAN DIEGO

- (11/32)

— (12/32)

Peter Blomgren (blomgren@sdsu.edu) 4. Matrix Norms, the SVD

Introduction: Matrix Norms The Singular Value Decomposition The SVD of a Matrix: Formal Definition Many Names... One Powerful Tool! Examples for 2×2 Matrices More Details, and Examples Revisited

Hits on scholar.google.com

Figure: The many names, faces, and close relatives of the Singular Value Decomposition... Number of hits for "Proper.Orthogonal.Decomposition", "Empirical.Orthogonal.(Function|Functions)", "Karhunen.Loeve", "Canonical.Correlation.Analysis", "Singular.Value.Decomposition", "Principal.Component.Analysis"

 Peter Blomgren (blomgren@sdsu.edu)
 4. Matrix Norms, the SVD
 -- (15/32)
 Peter Blomgren (blomgren@sdsu.edu)

 Introduction: Matrix Norms
 Many Names... One Powerful Tool!
 Introduction: Matrix Norms

 The Singular Value Decomposition
 Examples for 2 × 2 Matrices
 The SVD of a Matrix: Formal Definition

 The SVD of a Matrix: Formal Definition
 Ware Decomposited
 The SVD of a Matrix: Formal Definition

Ê

SAN DIEG

· (17/32)

The Singular Value Decomposition

For $A \in \mathbb{R}^{m \times n}$, if rank(A) = r, then exactly r of the lengths σ_i will be non-zero. In particular, if $m \ge n$, at most n of them will be non-zero.

Before we take this discussion further, let's look at some examples of the SVD of some (2×2) matrices.

Keep in mind that computing the SVD of a matrix *A* answers the question:

"What are the principal semi-axes of the hyper-ellipse generated when *A* operates on the unit sphere?"

In some sense, this constitutes to most complete information you can extract from a matrix.

Many Names... One Powerful Tool! Examples for 2×2 Matrices More Details, and Examples Revisited

The Singular Value Decomposition

In our first look at the SVD, we will **not** consider **how to** compute the SVD, but will focus on the meaning of the SVD; — especially its geometric interpretation.

The motivating geometric fact:

The image of the unit sphere under any $(m \times n)$ matrix, *A*, is a hyper-ellipse.

The hyper-ellipse in \mathbb{R}^m is the surface we get when stretching the unit sphere by some factors $\sigma_1, \sigma_2, \ldots, \sigma_m$ in some orthogonal directions $\vec{u_1}, \vec{u_2}, \ldots, \vec{u_m}$.

We take $\vec{u_i}$ to be unit vectors, *i.e.* $\|\vec{u_i}\|_2 = 1$, thus the vectors $\{\sigma_i \vec{u_i}\}$ are the **principal semi-axes** of the hyper-ellipse.

4. Matrix Norms, the SVD

Examples for 2×2 Matrices

Many Names... One Powerful Tool!

More Details, and Examples Revisited

For now, let's sweep the matrix V^* under the carpet, and note that the SVD has identified the directions of stretching (\vec{u}_1, \vec{u}_2) and the amount of stretching $(\sigma_1, \sigma_2) = (2, 1)$.

Ê

— (16/32)

Introduction: Matrix Norms The Singular Value Decomposition The SVD of a Matrix: Formal Definition Many Names... One Powerful Tool! Examples for 2 × 2 Matrices More Details, and Examples Revisited

The Reduced and Full SVDs

We can now drop the simplifying assumption that rank(A) = n.

If A is rank-deficient, *i.e.* rank(A) = r < n, the full SVD is still appropriate; however, we only get r left singular vectors \vec{u}_k from the geometry of the hyper-ellipse.

In order to construct U, we add (n - r) additional arbitrary orthonormal columns. In addition V will need (n - r) additional arbitrary orthonormal columns. The matrix Σ will have r positive diagonal entries, with the remaining (n - r) equal to zero. Spheres and Hyper-ellipses Homework

The SVD of a Matrix: Formal Definition

Definition (Singular Value Decomposition)

Let *m* and *n* be arbitrary integers. Given $A \in \mathbb{C}^{m \times n}$, a Singular Value Decomposition of *A* is a factorization

 $A = U\Sigma V^*$

where

U	\in	$\mathbb{C}^{m \times m}$	is unitary
V	\in	$\mathbb{C}^{n \times n}$	is unitary
Σ	\in	$\mathbb{R}^{m \times n}$	is diagona

The diagonal entries of Σ are non-negative, and ordered in decreasing order, *i.e.* $\sigma_1 \ge \sigma_2 \ge \ldots \sigma_p \ge 0$, where $p = \min(m, n)$.

Note:	We do	o not	require	m > n.	rank(A)) = r <	$\min(m, n)$).
					,	/ _	N 1	

Peter Blomgren (blomgren@sdsu.edu) 4. Matrix Norms,	the SVD — (27/32)	Peter Blomgren $\langle \texttt{blomgren@sdsu.edu} \rangle$	4. Matrix Norms, the SVD	— (28/32)
Introduction: Matrix Norms The Singular Value Decomposition The SVD of a Matrix: Formal Definition	r-ellipses	Introduction: Matrix Norms The Singular Value Decomposition The SVD of a Matrix: Formal Definition	Spheres and Hyper-ellipses Homework	
Spheres and Hyper-ellipses		Next Time: More on the SVD		
 Clearly[®] if A has a SVD, <i>i.e.</i> A = UΣV*, then A is sphere into a hyper-ellipse: V* preserves the sphere, since multiplication preserves the 2-norm. (Multiplication by V* is a reflection). 	must map the unit by a unitary matrix a rotation + possibly a	We save the proof that indeed ev lecture. We also discuss the connection be familiar?) eigenvalue decompositi	ery matrix A has a SVD t etween the SVD and (the on.	for next
\bullet Multiplication by Σ stretches the sphere into with the basis.	a hyper-ellipse aligned	Further we make connections bether angle, and null-space of <i>A</i> etc	ween the SVD and the ra 	ınk,
 Multiplication by the unitary U preserves all between vectors; hence the shape of the hyper-ell rotated and reflected). 	2-norms, and angles ipse is preserved (albeit	It takes some time to digest the S	SVD	
If we can show that every matrix A has a SVD, th image of the unit sphere under any linear map is a something we stated boldly on slide 15.	en it follows that the hyper-ellipse;	We will return to the computatio developed a toolbox of numerical	n of the SVD later, when algorithms.	ı we have
[@] clearly = "Are you lost yet?" ☺	Son Diffeo Start UNIVESTY			SAD DIGO STATE UNIVERSITY

— (29/32)

SAN DIEGO

SAN DIEGO

The Singular Value Decomposition The SVD of a Matrix: Formal Definition	Spheres and Hyper-ellipses Homework	The SVD of a Matrix: Formal Definition		
Homework #2	Due Date in Canvas/Gradescope	Homework AI-Policy Spring 2024		
Figure out how to get your favorite piec or Python) to compute the SVD, and vi	e of mathematical software (<i>e.g.</i> Matlab,	AI-era Policies — SPRING 2024		
Use your software (NOT "hand calculat	to solve (pp.30–31) —	AI-3 Documented: Students can use AI in any manner for this		
• tb-4.1, and tb-4.3		documentation for all AI use.		
Hints:To get started in matlab, try help svd, ar	nd help plot.	This applies to ALL MATH-543 WORK during the SPRING 2024 semester.		
 In Python, you likely want to import numpy 		The goal is to leverage existing tools and resources to generate HIGH QUALITY SOLUTIONS to all assessments.		
 and then use numpy.linalg.svd There are several plotting libraries for python matplotlib is matlabesque 		You MUST document what tools you use and HOW they were used (including prompts); AND how results were VALIDATED.		
 Seaborn, Plotly, Bokeh, Al- and there also fairly convenier Make sum singles leak like singles and all 	tair, and Pygal are other possibilities; nt plotting in pandas.	BE PREPARED to DISCUSS homework solutions and Al-strategies. Par- ticipation in the in-class discussions will be an essential component of the grade for each assessment.		
• Make sure circles look like circles, and eli		Sol D	Diego State Niversity	
Peter Blomgren $\langle \texttt{blomgren@sdsu.edu} \rangle$	4. Matrix Norms, the SVD — (31/32)	Peter Blomgren (blomgren@sdsu.edu) 4. Matrix Norms, the SVD (32	2/32)	