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Gratuitous “Al”

Student Learning Targets, and Objectives

Google Bard, 2004-02-01: create an image of a nerdy mathematician preparing slides

for a lecture on computational matrix algebra

Target The Singular Value Decomposition

Objective Existence and Uniqueness statements
Objective Impact: “diagonalizability”

Target The SVD < Matrix Properties
Objective rank, range, null-space, norms
Objective relation to eigenvalues, determinant
Objective Linearly Optimal Low Rank Approximations

& =

“Sup, bruh?!? | invert giant matrices
by hand. What'’s your superpower?!?"”
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Recap Vector and Matrix Norm Inequalities

Missing Proof

Last Time

Recap

Vector and Matrix Norm Inequalities
Missing Proof

e Holder and Cauchy-[Bunyakovsky]-Schwarz inequalities:

1 1

H S
< Vlp 1Wle, S+ =1 [V < V]2 Wl

e Bounds on the norms of matrix products
[AB] < [[All Bl

e General matrix norms: The Frobenius norm ||A||2 = > |a;;|2.
e A geometrical introduction to the SVD.
e The reduced vs. the full SVD.
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The Theorem

Existence and Uniqueness of the SVD
Proof

Theorem: A= UXV*

Existence and Uniqueness

Theorem (Existence and Uniqueness of the SVD)

Every matrix A € C™*" has a singular value decomposition
A= UXV*, where

u e Cmxm is unitary
Vv e C™" is unitary
Y € RmMxn is diagonal, non-negative.

Furthermore, the singular values {oy} are uniquely determined,
and if A is square and the oy are distinct, the left { iy} and right

{Vi} singular vectors are uniquely determined up to complex scalar
factorss € C: |s| = 1.

We present a proof that is very “matrix-y,” a completely different approach is )
presented [MATH 524 (NOTES#7.1-7.2)] 2
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Missing Proof

We ended last lecture with: “If we can show that every matrix A
has a SVD, then it follows that the image of the unit sphere under
any linear map is a hyper-ellipse..."”

We now turn our attention to showing that this indeed is the case...

S
NS

. ) ) 1.3127 0.6831  0.6124
Figure: The unit-sphere S2?, and the image AS?, where A= | 0.0120 1.0928 0.6085 | .

0.3840 0.0353  1.0158 San DGO STATE
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Existence and Uniqueness of the SVD

Proof, 1 of 5

THE PROOF IS BY INDUCTION. Let o1 = ||Al|2. There must exist
i eCm, ||L71||2 =1, and v € C", ||\71||2 =1, such that
A\71 = 0’1L71:

A_’* Tk
o1 = Hj<—”2, for some x*. Let vj = i( .
[[5%[|2 [[x*]]2

5
15112

Clearly, Av; = p, for some p. Let ih = , and o1 = || p|2-

Consider any extension (3 Movie, see also [MaTH 524]) of 7 t0 an
orthonormal basis {Vi}x=1,., of C" and of & to an orthonormal

basis { ik }k=1,..n of C™. Let U; and V4 denote the matrices with
columns )y and Vi, respectively.
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Existence and Uniqueness of the SVD

Proof, 2 of 5

We have (by construction)

N op w*
Ur AV, = :[é B],

where 0 is a column-vector of size (m—1), and w* is a row vector
of size (n — 1), and the matrix B € C(m~1)x(n—1),

20% W= O'%—I—VI_}*V_I;

2

Now
‘ 2

g1 w* 01
0 B W
Hence, ||S|2 > \/02 + w*w.
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Existence and Uniqueness of the SVD
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Proof, 4 of 5

THE UNIQUENESS PROOF REMAINS —

[ceometric Version] If the singular values oy are distinct, then the
lengths of the semi-axes of the hyper-ellipse AS("~1) must be
distinct.

The semi-axes themselves are determined by the geometry, up to a
complex sign. Ugeometric-

[algebraic Version] 01 = ||A||2 is uniquely determined. Now,
suppose that in addition to Vi, there is another linearly
independent vector wy with ||wy|| =1, and ||Aw; || = o7.

We define a unit vector v», orthogonal to vj, as a linear
combination of vi and wy:

SAN DIEGO STATE
UNIVERSITY
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Existence and Uniqueness of the SVD

Proof, 3 of 5
We have S|z > /0?2 + w*w, and S = U;AV;. Since U; and V4

are unitary, we must have ||S||2 = ||All2 = o1.

*w = 0, which means w = 0, hence

6*
- |
If m=1, or n=1, we are done. Otherwise, the sub-matrix B
describes the action of A on the subspace orthogonal to vj.

Therefore ||w|3 = w

—

umw:sz[%

We can now recursively (inductively) apply the same process to B,
and establish existence of the SVD of A:
1 0* } [ o1 0*

A:U - —
{o U || 0 %

SAN DIFGO STATE
UNIVERSITY
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Existence and Uniqueness of the SVD

Proof, 5 of 5

Since ||A|l2 = o1, ||Ava]|2 < o1; but this must be an equality,
otherwise since for some 6
vi L v,

wy = cos(0)vi + sin(0)va, cos?() + sin?(f) = 1

we would have HAI/I71||2 < 01q.

This vector v; is a second right singular vector corresponding to
the singular value o71; it will lead to the appearance of a y (the last
(n — 1) elements of V'n) with ||y]l2 =1, and ||By||2 = o1.
Hence, if the singular vector v; is not unique, then the
corresponding singular value o7 is not simple (o1 % 02). Therefore
there cannot exist a vector wy as above.

Now, the uniqueness of the remaining singular vectors follows by
induction. [, epraic

SAN DIEGO STATE
UNIVERSITY
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“Every Matrix is Diagonal”
Singular Values and Eigenvalues
The SVD ~~ Matrix Properties

The SVD

The SVD: A= UL V*

“Every Matrix is Diagonal”
Singular Values and Eigenvalues

The SVD The SVD ~~ Matrix Properties

Singular Value vs. Eigenvalue Decomposition

Bold Statement

SVD enables us to say that every matrix is “diagonal” — as
long as we use the proper bases for the domain € C”, and range
(image) € C™ spaces.

Changing Bases — Rotating the Map!

Any b e C™ can be expanded in the basis of the left singular vectors of A
(i.e. the columns of U), and any X € C” in the basis of the right singular
vectors of A (i.e. the columns of V)...

The coordinates for these expansions are

b = U*b,

X = V*X.

Now, the relation b = AX can be written in terms of b’ and X':

b= AX

& U'b=U'AX=U*USV*x%
N——
A sae

s b =%

The idea of diagonalizing a matrix by a change of basis is the
foundation for the study of eigenvalues.

A non-defective square matrix A can be expressed as a diagonal
matrix of eigenvalues A, if the range (image) and domain are
expressed in a basis of the eigenvectors. The eigenvalue
decomposition of A € C™*™M s

A= XAX"1

where A = diag(A1, ..., Am), and the columns of X € C™*™
contain linearly independent eigenvectors of A.
We can change basis for the expression b = AX:

and find that .
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The SVD

5. The Singular Value Decomposition

“Every Matrix is Diagonal”
Singular Values and Eigenvalues
The SVD ~~ Matrix Properties

Singular Value vs. Eigenvalue Decomposition

The SVD and Eigenvalue Decomposition

The SVD, A= UxXV*

Eigenvalue Decomp., A = XAX ™!

Properties

Uses two different bases — the set of right
and left singular vectors.

Uses one basis — the eigenvectors.

Uses orthonormal bases

Uses a basis which is generally not orthog-
onal.

All matrices (even rectangular ones) have a
singular value decomposition.

Not all matrices (even square ones) have an
eigenvalue decomposition.

(Typical) Application Relevance

Behavior of A itself, or A=1.
Information in A.

Behavior of Ak, etA,
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“Every Matrix is Diagonal”
Singular Values and Eigenvalues

The SVD The SVD ~~ Matrix Properties

The SVD ~~» Matrix Properties

The SVD has many connections with other fundamental topics in linear
algebra...

In the following slides, assume that A € C™*", let p = min(m, n), and let
r < p denote the number of non-zero singular values of A; finally let
span(xi, Xa, . .., X,) denote the space spanned by the vectors
X1,%5,...,Xm, i.e. all linear combinations of the vectors.

Theorem (Rank of a Matrix)

rank(A) = r.

Proof (Rank of a Matrix)

The rank of a diagonal matrix is the number of non-zero entries. In the
decomposition A = UXV*, both U and V are full rank. Therefore
rank(A) = rank(X) = r. O
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“Every Matrix is Diagonal”
Singular Values and Eigenvalues

The SVD The SVD ~~ Matrix Properties

The SVD ~~» Matrix Properties

The Range (Image) and Null-space

Theorem (Range (Image) and Nullspace of a Matrix)

“Every Matrix is Diagonal”
Singular Values and Eigenvalues

The SVD The SVD ~~ Matrix Properties

The SVD ~~ Matrix Properties Euclidean and Frobenius Norms

Theorem (Euclidean and Frobenius Matrix Norms)

range(A) = span(uy, i, . . ., Uy),

null(A) = span(Vyy1, V12, .-, V).

Proof (Range (Image) and Nullspace of a Matrix)

This follows directly from the change of bases induced by
A = UXZV* and the fact that

N

cm,
cn.

range(¥) = span(é,é,...,€E)

N

null(¥) = span(ért1,€r42,...,€n)
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“Every Matrix is Diagonal”
Singular Values and Eigenvalues

The SVD The SVD ~~ Matrix Properties

The SVD ~~ Matrix Properties Singular Values / Eigenvalues

The non-zero singular values of A are the square roots of the
non-zero eigenvalues of A*A or AA* (these two matrices have the
same non-zero eigenvalues).

Proof (Singular Values from AA* or A*A)

From
A'A = (UZVH)"(ULV*) = VE*U ULV = V(Z*'L)V* = V(Z*Z)V_1

we see that A*A and *¥ = diag(0?,03, ...
eigenvalues, \; =02, i=1,2,...,p.

i

,05) have the same

If n > p, we have an additional (n — p) zero eigenvalues.

The same argument works for AA* (just substitute m for n)...

— (19/28)
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5. The Singular Value Decomposition

|All2 =01, and |AllF = /02 + 02+ -+ o2
1 2

Proof (Euclidean and Frobenius Matrix Norms)

We already established that o1 = ||Al|2 in the existence proof,
since A = UXV* with unitary U and V,
[All2 = [[E]l2 = max{|oi|} = o1.

Now, since the Frobenius norm is invariant under unitary
Ale = IZIlF = /o3 + 03+ + 2

transformations,

Peter Blomgren (blomgren@sdsu.edu) 5. The Singular Value Decomposition — (18/28)

“Every Matrix is Diagonal”
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The SVD ~~ Matrix Properties Singular Values / Eigenvalues

Theorem (ox = |\«| for Hermitian Matrices)

If A= A*, then the singular values of A are the absolute values of the
eigenvalues of A. Note: In the language of [MATH 524] A is self-adjoint.
V.

Proof (part 1)

The eigenvalues of a Hermitian matrix are real since if (A, V) is an
eigenvalue-eigenvector pair (A # 0), then

(V, A7) = VAV = (A*V)*7 = (A7, 7)
(V, A7) = (7, \0)=\(V, V)
(V, AV) = (A7, V)= (A7, V)= (X0, V) = X\*(¥, ¥

Hence, A = A* = X\ € R. Further, a Hermitian matrix has a complete set
of orthogonal eigenvectors. This means that we can diagonalize A

A= QAQ" = Q(|A[sign(A)) Q"

for some unitary matrix @ and A a real diagonal matrix...
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“Every Matrix is Diagonal”
Singular Values and Eigenvalues
The SVD The SVD ~~ Matrix Properties

Singular Values / Eigenvalues

The SVD ~~ Matrix Properties

“Every Matrix is Diagonal”
Singular Values and Eigenvalues
The SVD The SVD ~~ Matrix Properties

The Determinant

Proof (part 2)

Since sign(A)Q* is unitary, we have

A= _Q |\ (sign(A)Q%)
M~ N ——
u = %
a SVD of A, where o; = |\j|, i =1,2,...,p. (An appropriate

ordering of the columns of U guarantees that the singular values
are ordered in decreasing order.) O
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The SVD ~» Matrix Properties Low-Rank Approximations, 1 of 5

The SVD ~~» Matrix Properties

For A e C™™, |det(A)| =[], oi.

Proof (Magnitude of Determinant is Product of Singular Values)

det(A)| = |det(UTV*)| = |det(U)]| - [det(Z)] - |det(V*)]
= 1-|det(T)| -1 = |det(Z)| = [ 01

where we have used the fact that det(AB) = det(A)det(B) and
that the magnitude of the determinant of a unitary matrix is one.
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“Every Matrix is Diagonal”

Singular Values and Eigenvalues
The SVD The SVD ~~ Matrix Properties

Low-Rank Approximations, 2 of 5

This discussion is a significant part of WHY this course exists!

Given the SVD of A, A= ULV™, we can represent A as a sum of r
rank-one matrices .
A= Z Ok Uk Vi
k=1

This is certainly not the only way to write A as a sum of rank-one
matrices: it could be written as a sum of its m rows, n columns, or
even its mn entries...

The decomposition above has the special property that if we
truncate the sum at v < r, then that partial sum captures as much
“energy” of A as possible for a rank-v sub-matrix of A.

We formalize this in a theorem...

SAN DIEGO STATE
UNIVERSIT
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Theorem (Optimal Low-Rank Approximation)

For any v with 0 < v < r, define

v
A,, = Zakﬁkv';
k=1
if v = p = min(m, n), define 0,41 = 0. Then

JA=Al2= inf [|A=Bla= 0,1
BGCan

rank(B) < v
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The SVD The SVD ~~ Matrix Properties

Low-Rank Approximations, 2.5 of 5

The SVD ~~» Matrix Properties

Low Rank Approximations in DS/Machine Learning/Generative Al

Low-Rank Adaptation (LoRA) is a family of methods for fine-tuning large-scale
Al/Machine Learning models in an efficient manner.

“Base-Models” (e.g. LLMs like ChatGPT; or image-generative models like the Stable
Diffusion SD1.5 or SDXL models) are trained on extremely large data sets — this
training uses significant resources, i.e. they are “expensive.”

Very Simplified: fine-tuning is “retraining” (parts of) the model using a smaller
specific data set; e.g. published peer-reviewed mathematics research papers, or images
created in a particular “style.”

The Model parameters use usually collected in a large matrix A € RM*N: and the
fine-tuning computes “a few” — collected in much smaller matrices B € RMXP and
C € RPXN | 5o that the effective fine-tuned model can be represented as

A+ BC

M and N are usually “quite large” (> 1,000), and p “small” (< 10).
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“Every Matrix is Diagonal”
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The SVD ~» Matrix Properties

Low-Rank Approximations, 4 of 5

The preceding theorem has a nice geometrical interpretation.

Ponder the issue of finding the best approximation of an
n-dimensional hyper-ellipsoid.

= The best approximation by a 2-dimensional ellipse must be the
ellipse spanned by the largest and second largest axis.

= We get the best 3-dimensional approximation by adding the span
of the 3rd largest axis, etc...

This is useful in many applications, e.g. signal compression
(images, audio, etc.), analysis of large data sets, etc.
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The SVD

Matrix Properties Low-Rank Approximations, 3 of 5

Proof (Optimal Low-Rank Approximation)

Suppose that there is some B with rank(B) < v such that
|A=Bll2 <[|A=Aull2 = u41.

Then there is an (n — v)-dimensional subspace null(B) = W C C” such
that w € W = Bw = 0. Thus Yw € W:

AWz = [[(A = B)wll2 < |A = Bll2l|wl]l2 < gyqal|w]l2-

Now, W is an (n — v)-dimensional subspace where ||AW||2 < o,11||W /2.
But there is a (v + 1)-dimensional subspace where [|AW |2 > o,41||W]|2
— V = span(uy, ..., Uy41) the space spanned by the first (v + 1) right
singular vectors of A.

Since the sum of the dimensions of the two subspaces
(v+1)+ (n—v) = (n+ 1) exceeds n, there must be a non-zero vector
lying in both. This is a contradiction.
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The SVD ~~» Matrix Properties Low-Rank Approximations, 5 of 5

We state the following theorem, and leave the proof as an “exercise.”

For the matrix A, as defined in the previous theorem

inf

(men

rank(B) < v

|A—A,|F= HA_BHF:\/gg+1+gg+2+...+gg

We will get back to how to compute the SVD later. For now, we note
that it is a powerful tool which can be used to

e find the numerical rank of a matrix;

e find the orthonormal basis for the range (image) and null-space;

e computing ||All2;

e computing low-rank approximations.

The SVD shows up in least squares fitting, regularization, intersection of
subspaces (video games?), and many, many other problems. B
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