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Student Learning Targets, and Objectives SLOs:The Singular Value Decomposition

Student Learning Targets, and Objectives

Target The Singular Value Decomposition

Objective Existence and Uniqueness statements
Objective Impact: “diagonalizability”

Target The SVD ↔ Matrix Properties

Objective rank, range, null-space, norms
Objective relation to eigenvalues, determinant
Objective Linearly Optimal Low Rank Approximations
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Student Learning Targets, and Objectives SLOs:The Singular Value Decomposition

Gratuitous “AI”

Google Bard, 2004-02-01: create an image of a nerdy mathematician preparing slides

for a lecture on computational matrix algebra

“’Sup, bruh?!? I invert giant matrices

by hand. What’s your superpower?!?”
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Recap
Existence and Uniqueness of the SVD

The SVD

Vector and Matrix Norm Inequalities
Missing Proof

Last Time

• Hölder and Cauchy-[Bunyakovsky]-Schwarz inequalities:

|~v∗~w |
H
≤ ‖~v‖p ‖~w‖q,

1

p
+

1

q
= 1, |~v∗~w |

CBS
≤ ‖~v‖2 ‖~w‖2

• Bounds on the norms of matrix products

‖AB‖ ≤ ‖A‖ ‖B‖

• General matrix norms: The Frobenius norm ‖A‖2F =
∑

ij |aij |
2.

• A geometrical introduction to the SVD.

• The reduced vs. the full SVD.
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Recap
Existence and Uniqueness of the SVD

The SVD

Vector and Matrix Norm Inequalities
Missing Proof

Missing Proof

We ended last lecture with: “ If we can show that every matrix A
has a SVD, then it follows that the image of the unit sphere under
any linear map is a hyper-ellipse...”

We now turn our attention to showing that this indeed is the case...
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Figure: The unit-sphere S2, and the image AS2, where A =





1.3127 0.6831 0.6124
0.0129 1.0928 0.6085
0.3840 0.0353 1.0158



 .

Peter Blomgren 〈blomgren@sdsu.edu〉 5. The Singular Value Decomposition — (6/28)



Recap
Existence and Uniqueness of the SVD

The SVD

The Theorem
Proof

Theorem: A = UΣV ∗ Existence and Uniqueness

Theorem (Existence and Uniqueness of the SVD)

Every matrix A ∈ C
m×n has a singular value decomposition

A = UΣV ∗, where

U ∈ C
m×m is unitary

V ∈ C
n×n is unitary

Σ ∈ R
m×n is diagonal, non-negative.

Furthermore, the singular values {σk} are uniquely determined,
and if A is square and the σk are distinct, the left {~uk} and right
{~vk} singular vectors are uniquely determined up to complex scalar
factors s ∈ C : |s| = 1.

We present a proof that is very “matrix-y,” a completely different approach is
presented [Math 524 (Notes#7.1–7.2)]
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Recap
Existence and Uniqueness of the SVD

The SVD

The Theorem
Proof

Theorem: A = UΣV ∗ Proof, 1 of 5

The proof is by induction. Let σ1 = ‖A‖2.
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Recap
Existence and Uniqueness of the SVD

The SVD

The Theorem
Proof

Theorem: A = UΣV ∗ Proof, 1 of 5

The proof is by induction. Let σ1 = ‖A‖2. There must exist
~u1 ∈ C

m, ‖~u1‖2 = 1, and ~v1 ∈ C
n, ‖~v1‖2 = 1, such that

A~v1 = σ1~u1:

σ1 =
‖A~x∗‖2
‖~x∗‖2

, for some ~x∗. Let ~v1 =
~x∗

‖~x∗‖2
.

Clearly, A~v1 = ~p, for some ~p. Let ~u1 =
~p

‖~p‖2
, and σ1 = ‖~p‖2.
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Recap
Existence and Uniqueness of the SVD

The SVD

The Theorem
Proof

Theorem: A = UΣV ∗ Proof, 1 of 5

The proof is by induction. Let σ1 = ‖A‖2. There must exist
~u1 ∈ C

m, ‖~u1‖2 = 1, and ~v1 ∈ C
n, ‖~v1‖2 = 1, such that

A~v1 = σ1~u1:

σ1 =
‖A~x∗‖2
‖~x∗‖2

, for some ~x∗. Let ~v1 =
~x∗

‖~x∗‖2
.

Clearly, A~v1 = ~p, for some ~p. Let ~u1 =
~p

‖~p‖2
, and σ1 = ‖~p‖2.

Consider any extension (∃ Movie, see also [Math 524]) of ~v1 to an
orthonormal basis {~vk}k=1,...,n of Cn and of ~u1 to an orthonormal
basis {~uk}k=1,...,n of Cm. Let U1 and V1 denote the matrices with
columns ~uk and ~vk , respectively.
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Recap
Existence and Uniqueness of the SVD

The SVD

The Theorem
Proof

Theorem: A = UΣV ∗ Proof, 2 of 5

We have (by construction)

U∗
1AV1 = S =

[
σ1 ~w∗

~0 B

]

,

where ~0 is a column-vector of size (m − 1), and ~w∗ is a row vector
of size (n − 1), and the matrix B ∈ C

(m−1)×(n−1).
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Recap
Existence and Uniqueness of the SVD

The SVD

The Theorem
Proof

Theorem: A = UΣV ∗ Proof, 2 of 5

We have (by construction)

U∗
1AV1 = S =

[
σ1 ~w∗

~0 B

]

,

where ~0 is a column-vector of size (m − 1), and ~w∗ is a row vector
of size (n − 1), and the matrix B ∈ C

(m−1)×(n−1).

Now,

∥
∥
∥
∥

[
σ1 ~w∗

~0 B

] [
σ1
~w

]∥
∥
∥
∥
2

≥ σ2
1 + ~w∗~w =

√

σ2
1 + ~w∗~w

∥
∥
∥
∥

[
σ1
~w

]∥
∥
∥
∥
2

,

Hence, ‖S‖2 ≥
√

σ2
1 + ~w∗~w .
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Recap
Existence and Uniqueness of the SVD

The SVD

The Theorem
Proof

Theorem: A = UΣV ∗ Proof, 3 of 5

We have ‖S‖2 ≥
√

σ2
1 + ~w∗~w , and S = U∗

1AV1. Since U1 and V1

are unitary, we must have ‖S‖2 = ‖A‖2 = σ1.
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Recap
Existence and Uniqueness of the SVD

The SVD

The Theorem
Proof

Theorem: A = UΣV ∗ Proof, 3 of 5

We have ‖S‖2 ≥
√

σ2
1 + ~w∗~w , and S = U∗

1AV1. Since U1 and V1

are unitary, we must have ‖S‖2 = ‖A‖2 = σ1.

Therefore ‖~w‖22 = ~w∗~w = 0, which means ~w = 0, hence

U∗
1AV1 = S =

[
σ1 ~0∗

~0 B

]

, ⇔ A = U1

[
σ1 ~0∗

~0 B

]

V ∗
1

If m = 1, or n = 1, we are done. Otherwise, the sub-matrix B
describes the action of A on the subspace orthogonal to ~v1.
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Recap
Existence and Uniqueness of the SVD

The SVD

The Theorem
Proof

Theorem: A = UΣV ∗ Proof, 3 of 5

We have ‖S‖2 ≥
√

σ2
1 + ~w∗~w , and S = U∗

1AV1. Since U1 and V1

are unitary, we must have ‖S‖2 = ‖A‖2 = σ1.

Therefore ‖~w‖22 = ~w∗~w = 0, which means ~w = 0, hence

U∗
1AV1 = S =

[
σ1 ~0∗

~0 B

]

, ⇔ A = U1

[
σ1 ~0∗

~0 B

]

V ∗
1

If m = 1, or n = 1, we are done. Otherwise, the sub-matrix B
describes the action of A on the subspace orthogonal to ~v1.

We can now recursively (inductively) apply the same process to B ,
and establish existence of the SVD of A:

A = U1

[
1 ~0∗

~0 U2

] [
σ1 ~0∗

~0 Σ2

] [
1 ~0∗

~0 V2

]∗

V ∗
1 = UΣV ∗.
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Recap
Existence and Uniqueness of the SVD

The SVD

The Theorem
Proof

Theorem: A = UΣV ∗ Proof, 4 of 5

The uniqueness proof remains —

[Geometric Version] If the singular values σk are distinct, then the
lengths of the semi-axes of the hyper-ellipse AS(n−1) must be
distinct.

The semi-axes themselves are determined by the geometry, up to a
complex sign. �geometric.
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Recap
Existence and Uniqueness of the SVD

The SVD

The Theorem
Proof

Theorem: A = UΣV ∗ Proof, 4 of 5

The uniqueness proof remains —

[Geometric Version] If the singular values σk are distinct, then the
lengths of the semi-axes of the hyper-ellipse AS(n−1) must be
distinct.

The semi-axes themselves are determined by the geometry, up to a
complex sign. �geometric.

[Algebraic Version] σ1 = ‖A‖2 is uniquely determined. Now,
suppose that in addition to ~v1, there is another linearly
independent vector ~w1 with ‖~w1‖ = 1, and ‖A~w1‖ = σ1.

We define a unit vector ~v2, orthogonal to ~v1, as a linear
combination of ~v1 and ~w1:

~v2 =
~w1 − (~v∗1 ~w1)~v1

‖~w1 − (~v∗1 ~w1)~v1‖2
. (~v2 = ~w1

⊥~v1)
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Recap
Existence and Uniqueness of the SVD

The SVD

The Theorem
Proof

Theorem: A = UΣV ∗ Proof, 5 of 5

Since ‖A‖2 = σ1, ‖A~v2‖2 ≤ σ1; but this must be an equality,
otherwise since for some θ

~w1 = cos(θ)~v1 + sin(θ)~v2, ~v1 ⊥ ~v2, cos2(θ) + sin2(θ) = 1

we would have ‖A~w1‖2 < σ1.

This vector ~v2 is a second right singular vector corresponding to
the singular value σ1; it will lead to the appearance of a ~y (the last
(n − 1) elements of V ∗

1 ~v2) with ‖~y‖2 = 1, and ‖B~y‖2 = σ1.

Hence, if the singular vector ~v1 is not unique, then the
corresponding singular value σ1 is not simple (σ1 6> σ2). Therefore
there cannot exist a vector ~w1 as above.

Now, the uniqueness of the remaining singular vectors follows by
induction. �algebraic
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Recap
Existence and Uniqueness of the SVD

The SVD

“Every Matrix is Diagonal”
Singular Values and Eigenvalues
The SVD  Matrix Properties

The SVD: A = UΣV ∗

Bold Statement

SVD enables us to say that every matrix is “diagonal” — as
long as we use the proper bases for the domain ∈ C

n, and range
(image) ∈ C

m spaces.

Changing Bases — Rotating the Map!

Any ~b ∈ C
m can be expanded in the basis of the left singular vectors of A

(i.e. the columns of U), and any ~x ∈ C
n in the basis of the right singular

vectors of A (i.e. the columns of V )...

The coordinates for these expansions are

~b′ = U∗~b, ~x ′ = V ∗~x .

Now, the relation ~b = A~x can be written in terms of ~b′ and ~x ′:

~b = A~x ⇔ U∗~b = U∗A~x = U∗ UΣV ∗

︸ ︷︷ ︸

A

~x ⇔ b̃′ = Σx̃′
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Recap
Existence and Uniqueness of the SVD

The SVD

“Every Matrix is Diagonal”
Singular Values and Eigenvalues
The SVD  Matrix Properties

Singular Value vs. Eigenvalue Decomposition 1 of 2

The idea of diagonalizing a matrix by a change of basis is the
foundation for the study of eigenvalues.

A non-defective square matrix A can be expressed as a diagonal
matrix of eigenvalues Λ, if the range (image) and domain are
expressed in a basis of the eigenvectors. The eigenvalue
decomposition of A ∈ C

m×m is

A = XΛX−1

where Λ = diag(λ1, . . . , λm), and the columns of X ∈ C
m×m

contain linearly independent eigenvectors of A.
We can change basis for the expression ~b = A~x :

~b′ = X−1~b, ~x ′ = X−1~x .

and find that
~b′ = Λ~x ′
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Recap
Existence and Uniqueness of the SVD

The SVD

“Every Matrix is Diagonal”
Singular Values and Eigenvalues
The SVD  Matrix Properties

Singular Value vs. Eigenvalue Decomposition 2 of 2

The SVD and Eigenvalue Decomposition

The SVD, A = UΣV ∗ Eigenvalue Decomp., A = XΛX−1

Properties

Uses two different bases — the set of right
and left singular vectors.

Uses one basis — the eigenvectors.

Uses orthonormal bases
null

Uses a basis which is generally not orthog-
onal.

All matrices (even rectangular ones) have a
singular value decomposition.

Not all matrices (even square ones) have an
eigenvalue decomposition.

(Typical) Application Relevance

Behavior of A itself, or A−1. Behavior of Ak , etA.

Information in A.
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Recap
Existence and Uniqueness of the SVD

The SVD

“Every Matrix is Diagonal”
Singular Values and Eigenvalues
The SVD  Matrix Properties

The SVD  Matrix Properties The Rank

The SVD has many connections with other fundamental topics in linear
algebra...

In the following slides, assume that A ∈ C
m×n, let p = min(m, n), and let

r ≤ p denote the number of non-zero singular values of A; finally let
span(~x1, ~x2, . . . , ~xm) denote the space spanned by the vectors
~x1, ~x2, . . . , ~xm, i.e. all linear combinations of the vectors.

Theorem (Rank of a Matrix)

rank(A) = r .

Proof (Rank of a Matrix)

The rank of a diagonal matrix is the number of non-zero entries. In the
decomposition A = UΣV ∗, both U and V are full rank. Therefore
rank(A) = rank(Σ) = r . �
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Recap
Existence and Uniqueness of the SVD

The SVD

“Every Matrix is Diagonal”
Singular Values and Eigenvalues
The SVD  Matrix Properties

The SVD  Matrix Properties The Range (Image) and Null-space

Theorem (Range (Image) and Nullspace of a Matrix)

range(A) = span(~u1, ~u2, . . . , ~ur ),

null(A) = span(~vr+1, ~vr+2, . . . , ~vn).

Proof (Range (Image) and Nullspace of a Matrix)

This follows directly from the change of bases induced by
A = UΣV ∗ and the fact that

range(Σ) = span(~e1, ~e2, . . . , ~er ) ⊆ C
m,

null(Σ) = span(~er+1, ~er+2, . . . , ~en) ⊆ C
n.
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Recap
Existence and Uniqueness of the SVD

The SVD

“Every Matrix is Diagonal”
Singular Values and Eigenvalues
The SVD  Matrix Properties

The SVD  Matrix Properties Euclidean and Frobenius Norms

Theorem (Euclidean and Frobenius Matrix Norms)

‖A‖2 = σ1, and ‖A‖F =
√

σ2
1 + σ2

2 + · · ·+ σ2
r .

Proof (Euclidean and Frobenius Matrix Norms)

We already established that σ1 = ‖A‖2 in the existence proof,
since A = UΣV ∗ with unitary U and V ,
‖A‖2 = ‖Σ‖2 = max{|σi |} = σ1.

Now, since the Frobenius norm is invariant under unitary

transformations, ‖A‖F = ‖Σ‖F =
√

σ2
1 + σ2

2 + · · ·+ σ2
r .
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Recap
Existence and Uniqueness of the SVD

The SVD

“Every Matrix is Diagonal”
Singular Values and Eigenvalues
The SVD  Matrix Properties

The SVD  Matrix Properties Singular Values / Eigenvalues

Theorem

The non-zero singular values of A are the square roots of the
non-zero eigenvalues of A∗A or AA∗ (these two matrices have the
same non-zero eigenvalues).

Proof (Singular Values from AA∗ or A∗A)

From

A∗A = (UΣV ∗)∗(UΣV ∗) = VΣ∗U∗UΣV ∗ = V (Σ∗Σ)V ∗ = V (Σ∗Σ)V−1

we see that A∗A and Σ∗Σ = diag(σ2
1 , σ

2
2 , . . . , σ

2
p) have the same

eigenvalues, λi = σ2
i , i = 1, 2, . . . , p.

If n > p, we have an additional (n − p) zero eigenvalues.

The same argument works for AA∗ (just substitute m for n)...
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Recap
Existence and Uniqueness of the SVD

The SVD

“Every Matrix is Diagonal”
Singular Values and Eigenvalues
The SVD  Matrix Properties

The SVD  Matrix Properties Singular Values / Eigenvalues

Theorem (σk = |λk | for Hermitian Matrices)

If A = A∗, then the singular values of A are the absolute values of the
eigenvalues of A. Note: In the language of [Math 524] A is self-adjoint.

Proof (part 1)

The eigenvalues of a Hermitian matrix are real since if (λ,~v) is an
eigenvalue-eigenvector pair (λ 6= 0), then

〈 ~v , A~v 〉 = ~v∗A~v = (A∗~v)∗~v = 〈A∗~v , ~v 〉
〈 ~v , A~v 〉 = 〈 ~v , λ~v 〉 = λ〈 ~v , ~v 〉
〈 ~v , A~v 〉 = 〈A∗~v , ~v 〉 = 〈A~v , ~v 〉 = 〈λ~v , ~v 〉 = λ∗〈 ~v , ~v 〉

Hence, λ = λ∗ ⇒ λ ∈ R. Further, a Hermitian matrix has a complete set
of orthogonal eigenvectors. This means that we can diagonalize A

A = QΛQ∗ = Q(|Λ|sign(Λ))Q∗

for some unitary matrix Q and Λ a real diagonal matrix...
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Recap
Existence and Uniqueness of the SVD

The SVD

“Every Matrix is Diagonal”
Singular Values and Eigenvalues
The SVD  Matrix Properties

The SVD  Matrix Properties Singular Values / Eigenvalues

Proof (part 2)

Since sign(Λ)Q∗ is unitary, we have

A = Q
︸︷︷︸

U

|Λ|
︸︷︷︸

Σ

(sign(Λ)Q∗)
︸ ︷︷ ︸

V ∗

a SVD of A, where σi = |λi |, i = 1, 2, . . . , p. (An appropriate
ordering of the columns of U guarantees that the singular values
are ordered in decreasing order.) �
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Recap
Existence and Uniqueness of the SVD

The SVD

“Every Matrix is Diagonal”
Singular Values and Eigenvalues
The SVD  Matrix Properties

The SVD  Matrix Properties The Determinant

Theorem

For A ∈ C
m×m, |det(A)| =

∏m
i=1 σi .

Proof (Magnitude of Determinant is Product of Singular Values)

|det(A)| = |det(UΣV ∗)| = |det(U)| · |det(Σ)| · |det(V ∗)|

= 1 · |det(Σ)| · 1 = |det(Σ)| =
∏m

i=1 σi

where we have used the fact that det(AB) = det(A)det(B) and
that the magnitude of the determinant of a unitary matrix is one.
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Recap
Existence and Uniqueness of the SVD

The SVD

“Every Matrix is Diagonal”
Singular Values and Eigenvalues
The SVD  Matrix Properties

The SVD  Matrix Properties Low-Rank Approximations, 1 of 5

This discussion is a significant part of WHY this course exists!

Given the SVD of A, A = UΣV ∗, we can represent A as a sum of r
rank-one matrices

A =

r∑

k=1

σk~uk~v
∗
k

This is certainly not the only way to write A as a sum of rank-one
matrices: it could be written as a sum of its m rows, n columns, or
even its mn entries...

The decomposition above has the special property that if we
truncate the sum at ν < r , then that partial sum captures as much
“energy” of A as possible for a rank-ν sub-matrix of A.

We formalize this in a theorem...
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Recap
Existence and Uniqueness of the SVD

The SVD

“Every Matrix is Diagonal”
Singular Values and Eigenvalues
The SVD  Matrix Properties

The SVD  Matrix Properties Low-Rank Approximations, 2 of 5

Theorem (Optimal Low-Rank Approximation)

For any ν with 0 ≤ ν < r , define

Aν =
ν∑

k=1

σk~uk~v
∗
k

if ν = p = min(m, n), define σν+1 = 0. Then

‖A− Aν‖2 = inf
B ∈ C

m×n

rank(B) ≤ ν

‖A− B‖2 = σν+1
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Recap
Existence and Uniqueness of the SVD

The SVD

“Every Matrix is Diagonal”
Singular Values and Eigenvalues
The SVD  Matrix Properties

The SVD  Matrix Properties Low-Rank Approximations, 2.5 of 5

Low Rank Approximations in DS/Machine Learning/Generative AI

Low-Rank Adaptation (LoRA) is a family of methods for fine-tuning large-scale
AI/Machine Learning models in an efficient manner.

“Base-Models” (e.g. LLMs like ChatGPT; or image-generative models like the Stable
Diffusion SD1.5 or SDXL models) are trained on extremely large data sets — this
training uses significant resources, i.e. they are “expensive.”

Very Simplified: fine-tuning is “retraining” (parts of) the model using a smaller
specific data set; e.g. published peer-reviewed mathematics research papers, or images
created in a particular “style.”

The Model parameters use usually collected in a large matrix A ∈ RM×N ; and the
fine-tuning computes “a few” — collected in much smaller matrices B ∈ RM×p , and
C ∈ Rp×N , so that the effective fine-tuned model can be represented as

A+ BC

M and N are usually “quite large” (> 1, 000), and p “small” (< 10).
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Existence and Uniqueness of the SVD

The SVD

“Every Matrix is Diagonal”
Singular Values and Eigenvalues
The SVD  Matrix Properties

The SVD  Matrix Properties Low-Rank Approximations, 3 of 5

Proof (Optimal Low-Rank Approximation)

Suppose that there is some B with rank(B) ≤ ν such that
‖A− B‖2 < ‖A− Aν‖2 = σν+1.
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Recap
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Proof (Optimal Low-Rank Approximation)

Suppose that there is some B with rank(B) ≤ ν such that
‖A− B‖2 < ‖A− Aν‖2 = σν+1.

Then there is an (n − ν)-dimensional subspace null(B) = W ⊆ C
n such

that ~w ∈ W ⇒ B ~w = 0. Thus ∀~w ∈ W:

‖A~w‖2 = ‖(A− B)~w‖2 ≤ ‖A− B‖2‖~w‖2 < σν+1‖~w‖2.
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Proof (Optimal Low-Rank Approximation)

Suppose that there is some B with rank(B) ≤ ν such that
‖A− B‖2 < ‖A− Aν‖2 = σν+1.

Then there is an (n − ν)-dimensional subspace null(B) = W ⊆ C
n such

that ~w ∈ W ⇒ B ~w = 0. Thus ∀~w ∈ W:

‖A~w‖2 = ‖(A− B)~w‖2 ≤ ‖A− B‖2‖~w‖2 < σν+1‖~w‖2.

Now, W is an (n − ν)-dimensional subspace where ‖A~w‖2 < σν+1‖~w‖2.
But there is a (ν + 1)-dimensional subspace where ‖A~w‖2 ≥ σν+1‖~w‖2
— V = span(u1, . . . , uν+1) the space spanned by the first (ν + 1) right
singular vectors of A.
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Proof (Optimal Low-Rank Approximation)

Suppose that there is some B with rank(B) ≤ ν such that
‖A− B‖2 < ‖A− Aν‖2 = σν+1.

Then there is an (n − ν)-dimensional subspace null(B) = W ⊆ C
n such

that ~w ∈ W ⇒ B ~w = 0. Thus ∀~w ∈ W:

‖A~w‖2 = ‖(A− B)~w‖2 ≤ ‖A− B‖2‖~w‖2 < σν+1‖~w‖2.

Now, W is an (n − ν)-dimensional subspace where ‖A~w‖2 < σν+1‖~w‖2.
But there is a (ν + 1)-dimensional subspace where ‖A~w‖2 ≥ σν+1‖~w‖2
— V = span(u1, . . . , uν+1) the space spanned by the first (ν + 1) right
singular vectors of A.

Since the sum of the dimensions of the two subspaces
(ν + 1) + (n − ν) = (n + 1) exceeds n, there must be a non-zero vector
lying in both. This is a contradiction.
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The preceding theorem has a nice geometrical interpretation.

Ponder the issue of finding the best approximation of an
n-dimensional hyper-ellipsoid.

⇒ The best approximation by a 2-dimensional ellipse must be the
ellipse spanned by the largest and second largest axis.

⇒ We get the best 3-dimensional approximation by adding the span
of the 3rd largest axis, etc...

This is useful in many applications, e.g. signal compression
(images, audio, etc.), analysis of large data sets, etc.
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We state the following theorem, and leave the proof as an “exercise.”

Theorem

For the matrix Aν as defined in the previous theorem

‖A− Aν‖F = inf
B ∈ C

m×n

rank(B) ≤ ν

‖A− B‖F =
√

σ2
ν+1 + σ2

ν+2 + · · ·+ σ2
r

We will get back to how to compute the SVD later. For now, we note
that it is a powerful tool which can be used to
• find the numerical rank of a matrix;
• find the orthonormal basis for the range (image) and null-space;
• computing ‖A‖2;
• computing low-rank approximations.

The SVD shows up in least squares fitting, regularization, intersection of
subspaces (video games?), and many, many other problems.
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