Numerical Matrix Analysis

Notes \＃5－The Singular Value Decomposition

Peter Blomgren
〈blomgren＠sdsu．edu〉
Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego，CA 92182－7720
http：／／terminus．sdsu．edu／
Spring 2024

（Revised：February 1，2024）

Outline

(1) Student Learning Targets, and Objectives

- SLOs:The Singular Value Decomposition
(2) Recap
- Vector and Matrix Norm Inequalities
- Missing Proof
(3) Existence and Uniqueness of the SVD
- The Theorem
- Proof
(4) The SVD
- "Every Matrix is Diagonal"
- Singular Values and Eigenvalues
- The SVD \rightsquigarrow Matrix Properties

Student Learning Targets, and Objectives

Target The Singular Value Decomposition

Objective Existence and Uniqueness statements
Objective Impact: "diagonalizability"
Target The SVD \leftrightarrow Matrix Properties
Objective rank, range, null-space, norms
Objective relation to eigenvalues, determinant Objective Linearly Optimal Low Rank Approximations

Gratuitous "Al"

Google Bard, 2004-02-01: create an image of a nerdy mathematician preparing slides for a lecture on computational matrix algebra

"'Sup, bruh?!? I invert giant matrices by hand. What's your superpower?!?"

Last Time

- Hölder and Cauchy-[Bunyakovsky]-Schwarz inequalities:

$$
\left|\vec{v}^{*} \vec{w}\right| \stackrel{H}{\leq}\|\vec{v}\|_{p}\|\vec{w}\|_{q}, \frac{1}{p}+\frac{1}{q}=1, \quad\left|\vec{v}^{*} \vec{w}\right| \stackrel{C B S}{\leq}\|\vec{v}\|_{2}\|\vec{w}\|_{2}
$$

- Bounds on the norms of matrix products

$$
\|A B\| \leq\|A\|\|B\|
$$

- General matrix norms: The Frobenius norm $\|A\|_{F}^{2}=\sum_{i j}\left|a_{i j}\right|^{2}$.
- A geometrical introduction to the SVD.
- The reduced vs. the full SVD.

Missing Proof

We ended last lecture with: "If we can show that every matrix A has a SVD, then it follows that the image of the unit sphere under any linear map is a hyper-ellipse..."

We now turn our attention to showing that this indeed is the case...

Figure: The unit-sphere \mathbb{S}^{2}, and the image $A \mathbb{S}^{2}$, where $A=\left[\begin{array}{lll}1.3127 & 0.6831 & 0.6124 \\ 0.0129 & 1.0928 & 0.6085 \\ 0.3840 & 0.0353 & 1.0158\end{array}\right]$

Theorem: $A=U \Sigma V^{*}$

Existence and Uniqueness

Theorem (Existence and Uniqueness of the SVD)

Every matrix $A \in \mathbb{C}^{m \times n}$ has a singular value decomposition $A=U \Sigma V^{*}$, where

U	$\in \mathbb{C}^{m \times m}$	is unitary
$V \in \mathbb{C}^{n \times n}$	is unitary	
$\Sigma \in \mathbb{R}^{m \times n}$	is diagonal, non-negative.	

Furthermore, the singular values $\left\{\sigma_{k}\right\}$ are uniquely determined, and if A is square and the σ_{k} are distinct, the left $\left\{\vec{u}_{k}\right\}$ and right $\left\{\vec{v}_{k}\right\}$ singular vectors are uniquely determined up to complex scalar factors $s \in \mathbb{C}:|s|=1$.

We present a proof that is very "matrix-y," a completely different approach is presented [Math 524 (Notes\#7.1-7.2)]

Theorem: $A=U \Sigma V^{*}$
Proof, 1 of 5
The proof is by induction. Let $\sigma_{1}=\|A\|_{2}$.

The proof is by induction. Let $\sigma_{1}=\|A\|_{2}$. There must exist $\vec{u}_{1} \in \mathbb{C}^{m},\left\|\vec{u}_{1}\right\|_{2}=1$, and $\vec{v}_{1} \in \mathbb{C}^{n},\left\|\vec{v}_{1}\right\|_{2}=1$, such that $A \vec{v}_{1}=\sigma_{1} \vec{u}_{1}:$

$$
\sigma_{1}=\frac{\left\|A \vec{x}^{*}\right\|_{2}}{\left\|\vec{x}^{*}\right\|_{2}}, \text { for some } \vec{x}^{*} . \quad \text { Let } \overrightarrow{v_{1}}=\frac{\vec{x}^{*}}{\left\|\vec{x}^{*}\right\|_{2}} .
$$

Clearly, $A \vec{v}_{1}=\vec{p}$, for some \vec{p}. Let $\vec{u}_{1}=\frac{\vec{p}}{\|\vec{p}\|_{2}}$, and $\sigma_{1}=\|\vec{p}\|_{2}$.

Theorem: $A=U \Sigma V^{*}$

The proof is by induction. Let $\sigma_{1}=\|A\|_{2}$. There must exist $\vec{u}_{1} \in \mathbb{C}^{m},\left\|\vec{u}_{1}\right\|_{2}=1$, and $\vec{v}_{1} \in \mathbb{C}^{n},\left\|\vec{v}_{1}\right\|_{2}=1$, such that $A \vec{v}_{1}=\sigma_{1} \vec{u}_{1}:$

$$
\sigma_{1}=\frac{\left\|A \vec{x}^{*}\right\|_{2}}{\left\|\vec{x}^{*}\right\|_{2}}, \text { for some } \vec{x}^{*} . \quad \text { Let } \vec{v}_{1}=\frac{\vec{x}^{*}}{\left\|\vec{x}^{*}\right\|_{2}} .
$$

Clearly, $A \vec{v}_{1}=\vec{p}$, for some \vec{p}. Let $\vec{u}_{1}=\frac{\vec{p}}{\|\vec{p}\|_{2}}$, and $\sigma_{1}=\|\vec{p}\|_{2}$.
 orthonormal basis $\left\{\vec{v}_{k}\right\}_{k=1, \ldots, n}$ of \mathbb{C}^{n} and of \vec{u}_{1} to an orthonormal basis $\left\{\vec{u}_{k}\right\}_{k=1, \ldots, n}$ of \mathbb{C}^{m}. Let U_{1} and V_{1} denote the matrices with columns \vec{u}_{k} and \vec{v}_{k}, respectively.

We have (by construction)

$$
U_{1}^{*} A V_{1}=S=\left[\begin{array}{cc}
\sigma_{1} & \vec{w}^{*} \\
\overrightarrow{0} & B
\end{array}\right]
$$

where $\overrightarrow{0}$ is a column-vector of size $(m-1)$, and \vec{w}^{*} is a row vector of size $(n-1)$, and the matrix $B \in \mathbb{C}^{(m-1) \times(n-1)}$.

We have (by construction)

$$
U_{1}^{*} A V_{1}=S=\left[\begin{array}{cc}
\sigma_{1} & \vec{w}^{*} \\
\overrightarrow{0} & B
\end{array}\right]
$$

where $\overrightarrow{0}$ is a column-vector of size $(m-1)$, and \vec{w}^{*} is a row vector of size $(n-1)$, and the matrix $B \in \mathbb{C}^{(m-1) \times(n-1)}$.

Now,

$$
\left\|\left[\begin{array}{cc}
\sigma_{1} & \vec{w}^{*} \\
\overrightarrow{0} & B
\end{array}\right]\left[\begin{array}{c}
\sigma_{1} \\
\vec{w}
\end{array}\right]\right\|_{2} \geq \sigma_{1}^{2}+\vec{w}^{*} \vec{w}=\sqrt{\sigma_{1}^{2}+\vec{w}^{*} \vec{w}}\left\|\left[\begin{array}{c}
\sigma_{1} \\
\vec{w}
\end{array}\right]\right\|_{2},
$$

Hence, $\|S\|_{2} \geq \sqrt{\sigma_{1}^{2}+\vec{w}^{*} \vec{w}}$.

Theorem: $A=U \Sigma V^{*}$

Proof, 3 of 5

We have $\|S\|_{2} \geq \sqrt{\sigma_{1}^{2}+\vec{w}^{*} \vec{w}}$, and $S=U_{1}^{*} A V_{1}$. Since U_{1} and V_{1} are unitary, we must have $\|S\|_{2}=\|A\|_{2}=\sigma_{1}$.

Theorem: $A=U \Sigma V^{*}$

We have $\|S\|_{2} \geq \sqrt{\sigma_{1}^{2}+\vec{w}^{*} \vec{w}}$, and $S=U_{1}^{*} A V_{1}$. Since U_{1} and V_{1} are unitary, we must have $\|S\|_{2}=\|A\|_{2}=\sigma_{1}$.
Therefore $\|\vec{w}\|_{2}^{2}=\vec{w}^{*} \vec{w}=0$, which means $\vec{w}=0$, hence

$$
U_{1}^{*} A V_{1}=S=\left[\begin{array}{cc}
\sigma_{1} & \overrightarrow{0}^{*} \\
\overrightarrow{0} & B
\end{array}\right], \quad \Leftrightarrow \quad A=U_{1}\left[\begin{array}{cc}
\sigma_{1} & \overrightarrow{0}^{*} \\
\overrightarrow{0} & B
\end{array}\right] V_{1}^{*}
$$

If $m=1$, or $n=1$, we are done. Otherwise, the sub-matrix B describes the action of A on the subspace orthogonal to \vec{v}_{1}.

Theorem: $A=U \Sigma V^{*}$

We have $\|S\|_{2} \geq \sqrt{\sigma_{1}^{2}+\vec{w}^{*} \vec{w}}$, and $S=U_{1}^{*} A V_{1}$. Since U_{1} and V_{1} are unitary, we must have $\|S\|_{2}=\|A\|_{2}=\sigma_{1}$.
Therefore $\|\vec{w}\|_{2}^{2}=\vec{w}^{*} \vec{w}=0$, which means $\vec{w}=0$, hence

$$
U_{1}^{*} A V_{1}=S=\left[\begin{array}{cc}
\sigma_{1} & \overrightarrow{0}^{*} \\
\overrightarrow{0} & B
\end{array}\right], \quad \Leftrightarrow \quad A=U_{1}\left[\begin{array}{cc}
\sigma_{1} & \overrightarrow{0}^{*} \\
\overrightarrow{0} & B
\end{array}\right] V_{1}^{*}
$$

If $m=1$, or $n=1$, we are done. Otherwise, the sub-matrix B describes the action of A on the subspace orthogonal to $\overrightarrow{v_{1}}$.

We can now recursively (inductively) apply the same process to B, and establish existence of the SVD of A :

$$
A=U_{1}\left[\begin{array}{ll}
1 & \overrightarrow{0}^{*} \\
\overrightarrow{0} & U_{2}
\end{array}\right]\left[\begin{array}{cc}
\sigma_{1} & \overrightarrow{0}^{*} \\
\overrightarrow{0} & \Sigma_{2}
\end{array}\right]\left[\begin{array}{ll}
1 & \overrightarrow{0}^{*} \\
\overrightarrow{0} & V_{2}
\end{array}\right]^{*} V_{1}^{*}=U \Sigma V^{*} .
$$

The uniqueness proof remains -
[Geometric Version] If the singular values σ_{k} are distinct, then the lengths of the semi-axes of the hyper-ellipse $A \mathbb{S}^{(n-1)}$ must be distinct.

The semi-axes themselves are determined by the geometry, up to a complex sign. $\square_{\text {geometric }}$.

Theorem: $A=U \Sigma V^{*}$

The uniqueness proof remains -
[Geometric Version] If the singular values σ_{k} are distinct, then the lengths of the semi-axes of the hyper-ellipse $A \mathbb{S}^{(n-1)}$ must be distinct.

The semi-axes themselves are determined by the geometry, up to a complex sign. $\square_{\text {geometric }}$.
[Algebraic Version] $\sigma_{1}=\|A\|_{2}$ is uniquely determined. Now, suppose that in addition to \vec{V}_{1}, there is another linearly independent vector \vec{w}_{1} with $\left\|\vec{w}_{1}\right\|=1$, and $\left\|A \vec{w}_{1}\right\|=\sigma_{1}$.
We define a unit vector \vec{v}_{2}, orthogonal to \vec{v}_{1}, as a linear combination of $\overrightarrow{v_{1}}$ and $\overrightarrow{w_{1}}$:

$$
\vec{v}_{2}=\frac{\overrightarrow{w_{1}}-\left(\vec{v}_{1}^{*} \overrightarrow{w_{1}}\right) \overrightarrow{v_{1}}}{\left\|\vec{w}_{1}-\left(\vec{v}_{1}^{*} \vec{w}_{1}\right) \vec{v}_{1}\right\|_{2}} \cdot \quad\left(\vec{v}_{2}=\vec{w}_{1}^{\perp} \vec{v}_{1}\right)
$$

Theorem: $A=U \Sigma V^{*}$

Since $\|A\|_{2}=\sigma_{1},\left\|A \overrightarrow{v_{2}}\right\|_{2} \leq \sigma_{1}$; but this must be an equality, otherwise since for some θ

$$
\vec{w}_{1}=\cos (\theta) \vec{v}_{1}+\sin (\theta) \vec{v}_{2}, \quad \vec{v}_{1} \perp \vec{v}_{2}, \quad \cos ^{2}(\theta)+\sin ^{2}(\theta)=1
$$

we would have $\left\|A \vec{w}_{1}\right\|_{2}<\sigma_{1}$.
This vector \vec{v}_{2} is a second right singular vector corresponding to the singular value σ_{1}; it will lead to the appearance of a \vec{y} (the last ($n-1$) elements of $V_{1}^{*} \vec{v}_{2}$) with $\|\vec{y}\|_{2}=1$, and $\|B \vec{y}\|_{2}=\sigma_{1}$.
Hence, if the singular vector \vec{v}_{1} is not unique, then the corresponding singular value σ_{1} is not simple ($\sigma_{1} \ngtr \sigma_{2}$). Therefore there cannot exist a vector \vec{w}_{1} as above.
Now, the uniqueness of the remaining singular vectors follows by induction. $\square_{\text {algebraic }}$

The SVD: $A=U \Sigma V^{*}$

Bold Statement

SVD enables us to say that every matrix is "diagonal" - as long as we use the proper bases for the domain $\in \mathbb{C}^{n}$, and range (image) $\in \mathbb{C}^{m}$ spaces.

Changing Bases - Rotating the Map!

Any $\vec{b} \in \mathbb{C}^{m}$ can be expanded in the basis of the left singular vectors of A (i.e. the columns of U), and any $\vec{x} \in \mathbb{C}^{n}$ in the basis of the right singular vectors of A (i.e. the columns of V)...
The coordinates for these expansions are

$$
\vec{b}^{\prime}=U^{*} \vec{b}, \quad \vec{x}^{\prime}=V^{*} \vec{x}
$$

Now, the relation $\vec{b}=A \vec{x}$ can be written in terms of $\overrightarrow{b^{\prime}}$ and \vec{x}^{\prime} :

$$
\vec{b}=A \vec{x} \quad \Leftrightarrow \quad U^{*} \vec{b}=U^{*} A \vec{x}=U^{*} \underbrace{U \sum V^{*}}_{A} \vec{x} \quad \Leftrightarrow \quad \tilde{b}^{\prime}=\boldsymbol{\Sigma} \tilde{\mathbf{x}}^{\prime}
$$

Singular Value vs. Eigenvalue Decomposition
The idea of diagonalizing a matrix by a change of basis is the foundation for the study of eigenvalues.
A non-defective square matrix A can be expressed as a diagonal matrix of eigenvalues Λ, if the range (image) and domain are expressed in a basis of the eigenvectors. The eigenvalue decomposition of $A \in \mathbb{C}^{m \times m}$ is

$$
A=X \wedge X^{-1}
$$

where $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{m}\right)$, and the columns of $X \in \mathbb{C}^{m \times m}$ contain linearly independent eigenvectors of A.
We can change basis for the expression $\vec{b}=A \vec{x}$:

$$
\overrightarrow{b^{\prime}}=X^{-1} \vec{b}, \quad \vec{x}^{\prime}=X^{-1} \vec{x}
$$

and find that

$$
\overrightarrow{b^{\prime}}=\Lambda \vec{x}^{\prime}
$$

Singular Value vs. Eigenvalue Decomposition

The SVD and Eigenvalue Decomposition

The SVD, $A=U \Sigma V^{*}$	Eigenvalue Decomp., $A=X \wedge X^{-1}$	
Properties		
Uses two different bases - the set of right and left singular vectors.	Uses one basis - the eigenvectors.	
Uses orthonormal bases	Uses a basis which is generally not orthog- onal.	
All matrices (even rectangular ones) have a singular value decomposition.	Not all matrices (even square ones) have an eigenvalue decomposition.	
Application Relevance		
Behavior of A itself, or A^{-1}. Information in A.	Behavior of $A^{k}, e^{t A}$.	

The SVD has many connections with other fundamental topics in linear algebra...
In the following slides, assume that $A \in \mathbb{C}^{m \times n}$, let $p=\min (m, n)$, and let $r \leq p$ denote the number of non-zero singular values of A; finally let $\operatorname{span}\left(\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{m}\right)$ denote the space spanned by the vectors $\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{m}$, i.e. all linear combinations of the vectors.

Theorem (Rank of a Matrix)

$$
\operatorname{rank}(A)=r .
$$

Proof (Rank of a Matrix)

The rank of a diagonal matrix is the number of non-zero entries. In the decomposition $A=U \Sigma V^{*}$, both U and V are full rank. Therefore $\operatorname{rank}(A)=\operatorname{rank}(\Sigma)=r . \square$

The SVD \rightsquigarrow Matrix Properties
The Range (Image) and Null-space

Theorem (Range (Image) and Nullspace of a Matrix)

$$
\begin{gathered}
\operatorname{range}(A)=\operatorname{span}\left(\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{r}\right), \\
\operatorname{null}(A)=\operatorname{span}\left(\vec{v}_{r+1}, \vec{v}_{r+2}, \ldots, \vec{v}_{n}\right) .
\end{gathered}
$$

Proof (Range (Image) and Nullspace of a Matrix)

This follows directly from the change of bases induced by $A=U \Sigma V^{*}$ and the fact that

$$
\begin{array}{rlrl}
\operatorname{range}(\Sigma) & =\operatorname{span}\left(\vec{e}_{1}, \vec{e}_{2}, \ldots, \vec{e}_{r}\right) & \subseteq \mathbb{C}^{m}, \\
\operatorname{null}(\Sigma) & =\operatorname{span}\left(\vec{e}_{r+1}, \vec{e}_{r+2}, \ldots, \vec{e}_{n}\right) \subseteq \mathbb{C}^{n} .
\end{array}
$$

The SVD \rightsquigarrow Matrix Properties
Euclidean and Frobenius Norms

Theorem (Euclidean and Frobenius Matrix Norms)

$$
\|A\|_{2}=\sigma_{1}, \quad \text { and } \quad\|A\|_{F}=\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}+\cdots+\sigma_{r}^{2}} .
$$

Proof (Euclidean and Frobenius Matrix Norms)

We already established that $\sigma_{1}=\|A\|_{2}$ in the existence proof, since $A=U \Sigma V^{*}$ with unitary U and V,

$$
\|A\|_{2}=\|\Sigma\|_{2}=\max \left\{\left|\sigma_{i}\right|\right\}=\sigma_{1} .
$$

Now, since the Frobenius norm is invariant under unitary transformations, $\|A\|_{F}=\|\Sigma\|_{F}=\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}+\cdots+\sigma_{r}^{2}}$.

The SVD \rightsquigarrow Matrix Properties Singular Values / Eigenvalues

Theorem

The non-zero singular values of A are the square roots of the non-zero eigenvalues of $A^{*} A$ or $A A^{*}$ (these two matrices have the same non-zero eigenvalues).

Proof (Singular Values from $A A^{*}$ or $A^{*} A$)

From
$A^{*} A=\left(U \Sigma V^{*}\right)^{*}\left(U \Sigma V^{*}\right)=V \Sigma^{*} U^{*} U \Sigma V^{*}=V\left(\Sigma^{*} \Sigma\right) V^{*}=V\left(\Sigma^{*} \Sigma\right) V^{-1}$
we see that $A^{*} A$ and $\Sigma^{*} \Sigma=\operatorname{diag}\left(\sigma_{1}^{2}, \sigma_{2}^{2}, \ldots, \sigma_{p}^{2}\right)$ have the same eigenvalues, $\lambda_{i}=\sigma_{i}^{2}, i=1,2, \ldots, p$.
If $n>p$, we have an additional $(n-p)$ zero eigenvalues.
The same argument works for $A A^{*}$ (just substitute m for n)...

The SVD \rightsquigarrow Matrix Properties Singular Values / Eigenvalues

Theorem ($\sigma_{k}=\left|\lambda_{k}\right|$ for Hermitian Matrices)

If $A=A^{*}$, then the singular values of A are the absolute values of the eigenvalues of A.

Proof (part 1)

The eigenvalues of a Hermitian matrix are real since if (λ, \vec{v}) is an eigenvalue-eigenvector pair $(\lambda \neq 0)$, then

$$
\begin{aligned}
& \langle\vec{v}, A \vec{v}\rangle=\vec{v}^{*} A \vec{v}=\left(A^{*} \vec{v}\right)^{*} \vec{v}=\left\langle A^{*} \vec{v}, \vec{v}\right\rangle \\
& \langle\vec{v}, A \vec{v}\rangle=\langle\vec{v}, \lambda \vec{v}\rangle=\lambda\langle\vec{v}, \vec{v}\rangle \\
& \langle\vec{v}, A \vec{v}\rangle=\left\langle A^{*} \vec{v}, \vec{v}\right\rangle=\langle A \vec{v}, \vec{v}\rangle=\langle\lambda \vec{v}, \vec{v}\rangle=\lambda^{*}\langle\vec{v}, \vec{v}\rangle
\end{aligned}
$$

Hence, $\lambda=\lambda^{*} \Rightarrow \lambda \in \mathbb{R}$. Further, a Hermitian matrix has a complete set of orthogonal eigenvectors. This means that we can diagonalize A

$$
A=Q \wedge Q^{*}=Q(|\Lambda| \operatorname{sign}(\Lambda)) Q^{*}
$$

for some unitary matrix Q and Λ a real diagonal matrix...

The SVD \rightsquigarrow Matrix Properties
Singular Values / Eigenvalues

Proof (part 2)

Since $\operatorname{sign}(\Lambda) Q^{*}$ is unitary, we have

$$
A=\underbrace{Q}_{U} \underbrace{|\Lambda|}_{\Sigma} \underbrace{\left(\operatorname{sign}(\Lambda) Q^{*}\right)}_{V^{*}}
$$

a SVD of A, where $\sigma_{i}=\left|\lambda_{i}\right|, i=1,2, \ldots, p$. (An appropriate ordering of the columns of U guarantees that the singular values are ordered in decreasing order.) \square

The SVD \rightsquigarrow Matrix Properties
The Determinant

Theorem

For $A \in \mathbb{C}^{m \times m},|\operatorname{det}(A)|=\prod_{i=1}^{m} \sigma_{i}$.

Proof (Magnitude of Determinant is Product of Singular Values)

$$
\begin{aligned}
|\operatorname{det}(A)| & =\left|\operatorname{det}\left(U \Sigma V^{*}\right)\right|=|\operatorname{det}(U)| \cdot|\operatorname{det}(\Sigma)| \cdot\left|\operatorname{det}\left(V^{*}\right)\right| \\
& =1 \cdot|\operatorname{det}(\Sigma)| \cdot 1=|\operatorname{det}(\Sigma)|=\prod_{i=1}^{m} \sigma_{i}
\end{aligned}
$$

where we have used the fact that $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$ and that the magnitude of the determinant of a unitary matrix is one.

The SVD \rightsquigarrow Matrix Properties

This discussion is a significant part of WHY this course exists!
Given the SVD of $A, A=U \Sigma V^{*}$, we can represent A as a sum of r rank-one matrices

$$
A=\sum_{k=1}^{r} \sigma_{k} \vec{u}_{k} \vec{v}_{k}^{*}
$$

This is certainly not the only way to write A as a sum of rank-one matrices: it could be written as a sum of its m rows, n columns, or even its $m n$ entries...

The decomposition above has the special property that if we truncate the sum at $\nu<r$, then that partial sum captures as much "energy" of A as possible for a rank- ν sub-matrix of A.

We formalize this in a theorem...

The SVD \rightsquigarrow Matrix Properties
Low-Rank Approximations, 2 of 5

Theorem (Optimal Low-Rank Approximation)

For any ν with $0 \leq \nu<r$, define

$$
A_{\nu}=\sum_{k=1}^{\nu} \sigma_{k} \vec{u}_{k} \vec{v}_{k}^{*}
$$

if $\nu=p=\min (m, n)$, define $\sigma_{\nu+1}=0$. Then

$$
\left\|A-A_{\nu}\right\|_{2}=\inf _{\substack{B \in \mathbb{C}_{m \times n} \\ \operatorname{rank}(B) \leq \nu}}\|A-B\|_{2}=\sigma_{\nu+1}
$$

The SVD \rightsquigarrow Matrix Properties
 Low-Rank Approximations, 2.5 of 5

Low Rank Approximations in DS/Machine Learning/Generative AI

Low-Rank Adaptation (LoRA) is a family of methods for fine-tuning large-scale $\mathrm{AI} /$ Machine Learning models in an efficient manner.
"Base-Models" (e.g. LLMs like ChatGPT; or image-generative models like the Stable Diffusion SD1.5 or SDXL models) are trained on extremely large data sets - this training uses significant resources, i.e. they are "expensive."

Very Simplified: fine-tuning is "retraining" (parts of) the model using a smaller specific data set; e.g. published peer-reviewed mathematics research papers, or images created in a particular "style."

The Model parameters use usually collected in a large matrix $A \in \mathbb{R}^{M \times N}$; and the fine-tuning computes "a few" - collected in much smaller matrices $B \in \mathbb{R}^{M \times p}$, and $C \in \mathbb{R}^{p \times N}$, so that the effective fine-tuned model can be represented as

$$
A+B C
$$

M and N are usually "quite large" ($>1,000$), and p "small" (<10).

Proof (Optimal Low-Rank Approximation)

Suppose that there is some B with $\operatorname{rank}(B) \leq \nu$ such that $\|A-B\|_{2}<\left\|A-A_{\nu}\right\|_{2}=\sigma_{\nu+1}$.

The SVD \rightsquigarrow Matrix Properties

Low-Rank Approximations, 3 of 5

Proof (Optimal Low-Rank Approximation)

Suppose that there is some B with $\operatorname{rank}(B) \leq \nu$ such that $\|A-B\|_{2}<\left\|A-A_{\nu}\right\|_{2}=\sigma_{\nu+1}$.
Then there is an $(n-\nu)$-dimensional subspace $\operatorname{null}(B)=\mathbb{W} \subseteq \mathbb{C}^{n}$ such that $\vec{w} \in \mathbb{W} \Rightarrow B \vec{w}=0$. Thus $\forall \vec{w} \in \mathbb{W}$:

$$
\|A \vec{w}\|_{2}=\|(A-B) \vec{w}\|_{2} \leq\|A-B\|_{2}\|\vec{w}\|_{2}<\sigma_{\nu+1}\|\vec{w}\|_{2} .
$$

The SVD \rightsquigarrow Matrix Properties

Proof (Optimal Low-Rank Approximation)

Suppose that there is some B with $\operatorname{rank}(B) \leq \nu$ such that $\|A-B\|_{2}<\left\|A-A_{\nu}\right\|_{2}=\sigma_{\nu+1}$.

Then there is an $(n-\nu)$-dimensional subspace $\operatorname{null}(B)=\mathbb{W} \subseteq \mathbb{C}^{n}$ such that $\vec{w} \in \mathbb{W} \Rightarrow B \vec{w}=0$. Thus $\forall \vec{w} \in \mathbb{W}$:

$$
\|A \vec{w}\|_{2}=\|(A-B) \vec{w}\|_{2} \leq\|A-B\|_{2}\|\vec{w}\|_{2}<\sigma_{\nu+1}\|\vec{w}\|_{2} .
$$

Now, \mathbb{W} is an $(n-\nu)$-dimensional subspace where $\|A \vec{w}\|_{2}<\sigma_{\nu+1}\|\vec{w}\|_{2}$. But there is a $(\nu+1)$-dimensional subspace where $\|A \vec{w}\|_{2} \geq \sigma_{\nu+1}\|\vec{w}\|_{2}$ $-\mathbb{V}=\operatorname{span}\left(u_{1}, \ldots, u_{\nu+1}\right)$ the space spanned by the first $(\nu+1)$ right singular vectors of A.

The SVD \rightsquigarrow Matrix Properties

Proof (Optimal Low-Rank Approximation)

Suppose that there is some B with $\operatorname{rank}(B) \leq \nu$ such that $\|A-B\|_{2}<\left\|A-A_{\nu}\right\|_{2}=\sigma_{\nu+1}$.

Then there is an $(n-\nu)$-dimensional subspace $\operatorname{null}(B)=\mathbb{W} \subseteq \mathbb{C}^{n}$ such that $\vec{w} \in \mathbb{W} \Rightarrow B \vec{w}=0$. Thus $\forall \vec{w} \in \mathbb{W}$:

$$
\|A \vec{w}\|_{2}=\|(A-B) \vec{w}\|_{2} \leq\|A-B\|_{2}\|\vec{w}\|_{2}<\sigma_{\nu+1}\|\vec{w}\|_{2}
$$

Now, \mathbb{W} is an $(n-\nu)$-dimensional subspace where $\|A \vec{w}\|_{2}<\sigma_{\nu+1}\|\vec{w}\|_{2}$. But there is a $(\nu+1)$-dimensional subspace where $\|A \vec{w}\|_{2} \geq \sigma_{\nu+1}\|\vec{w}\|_{2}$ $-\mathbb{V}=\operatorname{span}\left(u_{1}, \ldots, u_{\nu+1}\right)$ the space spanned by the first $(\nu+1)$ right singular vectors of A.

Since the sum of the dimensions of the two subspaces $(\nu+1)+(n-\nu)=(n+1)$ exceeds n, there must be a non-zero vector lying in both. This is a contradiction.

The SVD \rightsquigarrow Matrix Properties

The preceding theorem has a nice geometrical interpretation.
Ponder the issue of finding the best approximation of an n-dimensional hyper-ellipsoid.
\Rightarrow The best approximation by a 2-dimensional ellipse must be the ellipse spanned by the largest and second largest axis.
\Rightarrow We get the best 3-dimensional approximation by adding the span of the 3rd largest axis, etc...

This is useful in many applications, e.g. signal compression (images, audio, etc.), analysis of large data sets, etc.

The SVD \rightsquigarrow Matrix Properties

Low-Rank Approximations, 5 of 5

We state the following theorem, and leave the proof as an "exercise."

Theorem

For the matrix A_{ν} as defined in the previous theorem

$$
\left\|A-A_{\nu}\right\|_{F}=\inf _{\substack{B \in \mathbb{C}^{m \times n} \\ \operatorname{rank}(B) \leq \nu}}\|A-B\|_{F}=\sqrt{\sigma_{\nu+1}^{2}+\sigma_{\nu+2}^{2}+\cdots+\sigma_{r}^{2}}
$$

We will get back to how to compute the SVD later. For now, we note that it is a powerful tool which can be used to

- find the numerical rank of a matrix;
- find the orthonormal basis for the range (image) and null-space;
- computing $\|A\|_{2}$;
- computing low-rank approximations.

The SVD shows up in least squares fitting, regularization, intersection of subspaces (video games?), and many, many other problems.

