Numerical Matrix Analysis Notes #5 — The Singular Value Decomposition

Peter Blomgren (blomgren@sdsu.edu)

Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State University San Diego, CA 92182-7720

http://terminus.sdsu.edu/

Spring 2024

(Revised: February 1, 2024)

AN DIEGO STATE

-(1/28)

イロト イヨト イヨト イヨト

Outline

1 Student Learning Targets, and Objectives

- SLOs: The Singular Value Decomposition
- 2 Recap
 - Vector and Matrix Norm Inequalities
 - Missing Proof
- 3 Existence and Uniqueness of the SVD
 - The Theorem
 - Proof

4 The SVD

- "Every Matrix is Diagonal"
- Singular Values and Eigenvalues
- The SVD ~> Matrix Properties

N DIRGO STRI

- (2/28)

Student Learning Targets, and Objectives

Target The Singular Value Decomposition Objective Existence and Uniqueness statements Objective Impact: "diagonalizability"

Target The SVD ↔ Matrix Properties Objective rank, range, null-space, norms Objective relation to eigenvalues, determinant Objective Linearly Optimal Low Rank Approximations

Gratuitous "Al"

Google Bard, 2004-02-01: create an image of a nerdy mathematician preparing slides for a lecture on computational matrix algebra

"'Sup, bruh?!? I invert giant matrices by hand. What's your superpower?!?"

- (4/28)

イロト イヨト イヨト イヨト

Recap Existence and Uniqueness of the SVD The SVD

• Hölder and Cauchy-[Bunyakovsky]-Schwarz inequalities:

$$ert ec v^* ec w ert \stackrel{H}{\leq} ert ec v ert_{p} \, \|ec w \|_{q}, \; rac{1}{p} + rac{1}{q} = 1, \qquad ec v^* ec w ert \stackrel{ extsf{CBS}}{\leq} \, \|ec v \|_{2} \, \|ec w \|_{2}$$

• Bounds on the norms of matrix products

$$\|AB\| \le \|A\| \, \|B\|$$

- General matrix norms: The Frobenius norm $||A||_F^2 = \sum_{ij} |a_{ij}|^2$.
- A geometrical introduction to the SVD.
- The reduced vs. the full SVD.

Last Time

N DIRGO STR

- (5/28)

イロト イボト イヨト

 Recap
 Vector and Matrix Norm Inequalities

 Existence and Uniqueness of the SVD
 Vector and Matrix Norm Inequalities

 Missing Proof
 Missing Proof

Missing Proof

We ended last lecture with: "If we can show that every matrix A has a SVD, then it follows that the image of the unit sphere under any linear map is a hyper-ellipse..."

We now turn our attention to showing that this indeed is the case...

The Theorem Proof

Theorem: $A = U\Sigma V^*$

Existence and Uniqueness

Theorem (Existence and Uniqueness of the SVD)

Every matrix $A \in \mathbb{C}^{m \times n}$ has a singular value decomposition $A = U\Sigma V^*$, where

U	\in	$\mathbb{C}^{m \times m}$	is unitary
V	\in	$\mathbb{C}^{n \times n}$	is unitary
Σ	\in	$\mathbb{R}^{m \times n}$	is diagonal, non-negative.

Furthermore, the singular values $\{\sigma_k\}$ are uniquely determined, and if A is square and the σ_k are distinct, the left $\{\vec{u}_k\}$ and right $\{\vec{v}_k\}$ singular vectors are uniquely determined up to complex scalar factors $s \in \mathbb{C}$: |s| = 1.

We present a proof that is very "matrix-y," a completely different approach is presented $[\rm MATH\,524~(NOTES\#7.1-7.2)]$

- (7/28)

The Theorer Proof

Theorem: $A = U\Sigma V^*$

Proof, 1 of 5

SAN DIEGO STATE

The proof is by induction. Let $\sigma_1 = ||A||_2$.

Theorem: $A = U\Sigma V^*$

Proof, 1 of 5

N DIEGO STA

THE PROOF IS BY INDUCTION. Let $\sigma_1 = ||A||_2$. There must exist $\vec{u}_1 \in \mathbb{C}^m$, $||\vec{u}_1||_2 = 1$, and $\vec{v}_1 \in \mathbb{C}^n$, $||\vec{v}_1||_2 = 1$, such that $A\vec{v}_1 = \sigma_1\vec{u}_1$:

$$\sigma_1 = \frac{\|A\vec{x}^*\|_2}{\|\vec{x}^*\|_2}, \text{ for some } \vec{x}^*. \text{ Let } \vec{v_1} = \frac{\vec{x}^*}{\|\vec{x}^*\|_2}.$$

Clearly, $A\vec{v_1} = \vec{p}$, for some \vec{p} . Let $\vec{u_1} = \frac{\vec{p}}{\|\vec{p}\|_2}$, and $\sigma_1 = \|\vec{p}\|_2$.

Theorem: $A = U\Sigma V^*$

Proof, 1 of 5

AN DIEGO STAT

THE PROOF IS BY INDUCTION. Let $\sigma_1 = ||A||_2$. There must exist $\vec{u}_1 \in \mathbb{C}^m$, $||\vec{u}_1||_2 = 1$, and $\vec{v}_1 \in \mathbb{C}^n$, $||\vec{v}_1||_2 = 1$, such that $A\vec{v}_1 = \sigma_1\vec{u}_1$:

$$\sigma_1 = \frac{\|A ec{x}^*\|_2}{\|ec{x}^*\|_2}, ext{ for some } ec{x}^*. ext{ Let } ec{v_1} = rac{ec{x}^*}{\|ec{x}^*\|_2}.$$

Clearly, $A\vec{v_1} = \vec{p}$, for some \vec{p} . Let $\vec{u_1} = \frac{\vec{p}}{\|\vec{p}\|_2}$, and $\sigma_1 = \|\vec{p}\|_2$.

Consider any extension (\exists Movie, see also [MATH 524]) of $\vec{v_1}$ to an orthonormal basis $\{\vec{v_k}\}_{k=1,...,n}$ of \mathbb{C}^n and of $\vec{u_1}$ to an orthonormal basis $\{\vec{u_k}\}_{k=1,...,n}$ of \mathbb{C}^m . Let U_1 and V_1 denote the matrices with columns $\vec{u_k}$ and $\vec{v_k}$, respectively.

Theorem: $A = U\Sigma V^*$

Proof, 2 of 5

N DIEGO STAT

We have (by construction)

$$U_1^*AV_1 = S = \begin{bmatrix} \sigma_1 & \vec{w}^* \\ \vec{0} & B \end{bmatrix},$$

where $\vec{0}$ is a column-vector of size (m-1), and \vec{w}^* is a row vector of size (n-1), and the matrix $B \in \mathbb{C}^{(m-1)\times(n-1)}$.

Theorem: $A = U\Sigma V^*$

Proof, 2 of 5

N DIEGO STA

We have (by construction)

$$U_1^*AV_1 = S = \begin{bmatrix} \sigma_1 & \vec{w}^* \\ \vec{0} & B \end{bmatrix},$$

where $\vec{0}$ is a column-vector of size (m-1), and \vec{w}^* is a row vector of size (n-1), and the matrix $B \in \mathbb{C}^{(m-1)\times(n-1)}$.

Now,

$$\left\| \left[\begin{array}{cc} \sigma_1 & \vec{w}^* \\ \vec{0} & B \end{array} \right] \left[\begin{array}{c} \sigma_1 \\ \vec{w} \end{array} \right] \right\|_2 \geq \sigma_1^2 + \vec{w}^* \vec{w} = \sqrt{\sigma_1^2 + \vec{w}^* \vec{w}} \, \left\| \left[\begin{array}{c} \sigma_1 \\ \vec{w} \end{array} \right] \right\|_2,$$

Hence, $||S||_2 \ge \sqrt{\sigma_1^2 + \vec{w}^* \vec{w}}$.

The Theore Proof

Theorem: $A = U\Sigma V^*$

Proof, 3 of 5

We have $||S||_2 \ge \sqrt{\sigma_1^2 + \vec{w}^* \vec{w}}$, and $S = U_1^* A V_1$. Since U_1 and V_1 are unitary, we must have $||S||_2 = ||A||_2 = \sigma_1$.

The Theore Proof

Theorem: $A = U\Sigma V^*$

Proof, 3 of 5

We have $||S||_2 \ge \sqrt{\sigma_1^2 + \vec{w}^* \vec{w}}$, and $S = U_1^* A V_1$. Since U_1 and V_1 are unitary, we must have $||S||_2 = ||A||_2 = \sigma_1$.

Therefore $\|\vec{w}\|_2^2 = \vec{w}^*\vec{w} = 0$, which means $\vec{w} = 0$, hence

$$U_1^* A V_1 = S = \begin{bmatrix} \sigma_1 & \vec{0}^* \\ \vec{0} & B \end{bmatrix}, \quad \Leftrightarrow \quad A = U_1 \begin{bmatrix} \sigma_1 & \vec{0}^* \\ \vec{0} & B \end{bmatrix} V_1^*$$

If m = 1, or n = 1, we are done. Otherwise, the sub-matrix B describes the action of A on the subspace orthogonal to $\vec{v_1}$.

The Theore Proof

Theorem: $A = U\Sigma V^*$

Proof, 3 of 5

We have $||S||_2 \ge \sqrt{\sigma_1^2 + \vec{w}^* \vec{w}}$, and $S = U_1^* A V_1$. Since U_1 and V_1 are unitary, we must have $||S||_2 = ||A||_2 = \sigma_1$.

Therefore $\|\vec{w}\|_2^2 = \vec{w}^* \vec{w} = 0$, which means $\vec{w} = 0$, hence

$$U_1^* A V_1 = S = \begin{bmatrix} \sigma_1 & \vec{0}^* \\ \vec{0} & B \end{bmatrix}, \quad \Leftrightarrow \quad A = U_1 \begin{bmatrix} \sigma_1 & \vec{0}^* \\ \vec{0} & B \end{bmatrix} V_1^*$$

If m = 1, or n = 1, we are done. Otherwise, the sub-matrix B describes the action of A on the subspace orthogonal to $\vec{v_1}$.

We can now recursively (inductively) apply the same process to B, and establish existence of the SVD of A:

$$A = U_1 \begin{bmatrix} 1 & \vec{0}^* \\ \vec{0} & U_2 \end{bmatrix} \begin{bmatrix} \sigma_1 & \vec{0}^* \\ \vec{0} & \Sigma_2 \end{bmatrix} \begin{bmatrix} 1 & \vec{0}^* \\ \vec{0} & V_2 \end{bmatrix}^* V_1^* = U \Sigma V^*.$$

Theorem: $A = U\Sigma V^*$

Proof, 4 of 5

The uniqueness proof remains —

[Geometric Version] If the singular values σ_k are distinct, then the lengths of the semi-axes of the hyper-ellipse $A\mathbb{S}^{(n-1)}$ must be distinct.

The semi-axes themselves are determined by the geometry, up to a complex sign. $\Box_{\rm geometric}.$

Theorem: $A = U\Sigma V^*$

Proof, 4 of 5

The uniqueness proof remains —

[Geometric Version] If the singular values σ_k are distinct, then the lengths of the semi-axes of the hyper-ellipse $A\mathbb{S}^{(n-1)}$ must be distinct.

The semi-axes themselves are determined by the geometry, up to a complex sign. $\Box_{\rm geometric}.$

[Algebraic Version] $\sigma_1 = ||A||_2$ is uniquely determined. Now, suppose that in addition to $\vec{v_1}$, there is another linearly independent vector $\vec{w_1}$ with $||\vec{w_1}|| = 1$, and $||A\vec{w_1}|| = \sigma_1$. We define a unit vector $\vec{v_2}$, orthogonal to $\vec{v_1}$, as a linear

combination of $\vec{v_1}$ and $\vec{w_1}$:

$$\vec{v}_2 = \frac{\vec{w}_1 - (\vec{v}_1^* \vec{w}_1) \vec{v}_1}{\|\vec{w}_1 - (\vec{v}_1^* \vec{w}_1) \vec{v}_1\|_2}. \quad (\vec{v}_2 = \vec{w}_1^{\perp \vec{v}_1})$$

Theorem: $A = U\Sigma V^*$

Proof, 5 of 5

Since $||A||_2 = \sigma_1$, $||A\vec{v}_2||_2 \le \sigma_1$; but this must be an equality, otherwise since for some θ

 $ec{w_1}=\cos(heta)ec{v_1}+\sin(heta)ec{v_2}, \quad ec{v_1}\perpec{v_2}, \quad \cos^2(heta)+\sin^2(heta)=1$

we would have $\|A\vec{w}_1\|_2 < \sigma_1$.

This vector \vec{v}_2 is a **second** right singular vector corresponding to the singular value σ_1 ; it will lead to the appearance of a \vec{y} (the last (n-1) elements of $V_1^* \vec{v}_2$) with $\|\vec{y}\|_2 = 1$, and $\|B\vec{y}\|_2 = \sigma_1$.

Hence, if the singular vector $\vec{v_1}$ is not unique, then the corresponding singular value σ_1 is not simple ($\sigma_1 \neq \sigma_2$). Therefore there cannot exist a vector $\vec{w_1}$ as above.

Now, the uniqueness of the remaining singular vectors follows by induction. $\Box_{\tt algebraic}$

 Recap
 "Every Matrix is Diagonal"

 Existence and Uniqueness of the SVD
 Singular Values and Eigenvalues

 The SVD
 The SVD → Matrix Properties

The SVD: $A = U\Sigma V^*$

Bold Statement

SVD enables us to say that every matrix is "diagonal" — as long as we use the proper bases for the domain $\in \mathbb{C}^n$, and range (image) $\in \mathbb{C}^m$ spaces.

Changing Bases — Rotating the Map!

Any $\vec{b} \in \mathbb{C}^m$ can be expanded in the basis of the left singular vectors of A (*i.e.* the columns of U), and any $\vec{x} \in \mathbb{C}^n$ in the basis of the right singular vectors of A (*i.e.* the columns of V)...

The coordinates for these expansions are

$$\vec{b}' = U^* \vec{b}, \qquad \vec{x}' = V^* \vec{x}.$$

Now, the relation $\vec{b} = A\vec{x}$ can be written in terms of $\vec{b'}$ and $\vec{x'}$:

$$\vec{b} = A\vec{x} \quad \Leftrightarrow \quad U^*\vec{b} = U^*A\vec{x} = U^*\underbrace{U\Sigma V^*}_{A}\vec{x} \quad \Leftrightarrow \quad \widetilde{\mathbf{b}}' = \mathbf{\Sigma}\widetilde{\mathbf{x}}'$$

— (13/28)

Singular Value vs. Eigenvalue Decomposition

1 of 2

DIRGO STA

-(14/28)

イロト イポト イヨト イヨト

The idea of **diagonalizing** a matrix by a change of basis is the foundation for the study of eigenvalues.

A non-defective square matrix A can be expressed as a diagonal matrix of eigenvalues Λ , if the range (image) and domain are expressed in a basis of the eigenvectors. The **eigenvalue** decomposition of $A \in \mathbb{C}^{m \times m}$ is

$$A = X\Lambda X^{-1}$$

where $\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_m)$, and the columns of $X \in \mathbb{C}^{m \times m}$ contain linearly independent eigenvectors of A. We can change basis for the expression $\vec{b} = A\vec{x}$:

$$\vec{b}' = X^{-1}\vec{b}, \qquad \vec{x}' = X^{-1}\vec{x}.$$

and find that

$$\vec{b}' = \Lambda \vec{x}'$$

"Every Matrix is Diagonal" Singular Values and Eigenvalues The SVD ~> Matrix Properties

Singular Value vs. Eigenvalue Decomposition

SAN DIEGO STATE

- (15/28)

イロト イヨト イヨト

The SVD and Eigenvalue Decomposition

The SVD, $A = U\Sigma V^*$	Eigenvalue Decomp., $A = X\Lambda X^{-1}$			
Properties				
Uses two different bases — the set of right and left singular vectors.	Uses one basis — the eigenvectors.			
Uses orthonormal bases	Uses a basis which is generally not orthog- onal.			
All matrices (even rectangular ones) have a singular value decomposition.	Not all matrices (even square ones) have an eigenvalue decomposition.			
(Typical) Application Relevance				
Behavior of A itself, or A^{-1} .	Behavior of A^k , e^{tA} .			
Information in A.				

"Every Matrix is Diagonal" Singular Values and Eigenvalues The SVD \rightsquigarrow Matrix Properties

The SVD ~~> Matrix Properties

The SVD has many connections with other fundamental topics in linear algebra...

In the following slides, assume that $A \in \mathbb{C}^{m \times n}$, let $p = \min(m, n)$, and let $r \leq p$ denote the number of non-zero singular values of A; finally let $\operatorname{span}(\vec{x_1}, \vec{x_2}, \ldots, \vec{x_m})$ denote the space spanned by the vectors $\vec{x_1}, \vec{x_2}, \ldots, \vec{x_m}$, *i.e.* all linear combinations of the vectors.

Theorem (Rank of a Matrix)

 $\operatorname{rank}(A) = r.$

Proof (Rank of a Matrix)

The rank of a diagonal matrix is the number of non-zero entries. In the decomposition $A = U\Sigma V^*$, both U and V are full rank. Therefore rank(A) = rank(Σ) = r. \Box

イロト イボト イヨト イヨト

The Rank

"Every Matrix is Diagonal" Singular Values and Eigenvalues The SVD \rightsquigarrow Matrix Properties

The SVD ~~ Matrix Properties

The Range (Image) and Null-space

イロト イポト イヨト イヨト

N DIEGO STAT

— (17/28)

Theorem (Range (Image) and Nullspace of a Matrix)

range(
$$A$$
) = span($\vec{u}_1, \vec{u}_2, \dots, \vec{u}_r$),
null(A) = span($\vec{v}_{r+1}, \vec{v}_{r+2}, \dots, \vec{v}_n$).

Proof (Range (Image) and Nullspace of a Matrix)

This follows directly from the change of bases induced by $A = U\Sigma V^*$ and the fact that

$$\begin{aligned} \operatorname{range}(\Sigma) &= \operatorname{span}(\vec{e}_1, \vec{e}_2, \dots, \vec{e}_r) &\subseteq \mathbb{C}^m, \\ \operatorname{null}(\Sigma) &= \operatorname{span}(\vec{e}_{r+1}, \vec{e}_{r+2}, \dots, \vec{e}_n) &\subseteq \mathbb{C}^n. \end{aligned}$$

"Every Matrix is Diagonal" Singular Values and Eigenvalues The SVD \rightsquigarrow Matrix Properties

The SVD ~~ Matrix Properties

Euclidean and Frobenius Norms

イロト イヨト イヨト イヨト

N DIEGO STAT

— (18/28)

Theorem (Euclidean and Frobenius Matrix Norms)

$$||A||_2 = \sigma_1$$
, and $||A||_F = \sqrt{\sigma_1^2 + \sigma_2^2 + \dots + \sigma_r^2}$.

Proof (Euclidean and Frobenius Matrix Norms)

We already established that $\sigma_1 = ||A||_2$ in the existence proof, since $A = U\Sigma V^*$ with unitary U and V, $||A||_2 = ||\Sigma||_2 = \max\{|\sigma_i|\} = \sigma_1.$

Now, since the Frobenius norm is invariant under unitary transformations, $||A||_F = ||\Sigma||_F = \sqrt{\sigma_1^2 + \sigma_2^2 + \cdots + \sigma_r^2}$.

"Every Matrix is Diagonal" Singular Values and Eigenvalues The SVD ~> Matrix Properties

The SVD ~~> Matrix Properties

Singular Values / Eigenvalues

DIEGO STAT

— (19/28)

Theorem

The non-zero singular values of A are the square roots of the non-zero eigenvalues of A^*A or AA^* (these two matrices have the same non-zero eigenvalues).

Proof (Singular Values from AA^* or A^*A)

From

$$A^*A = (U\Sigma V^*)^*(U\Sigma V^*) = V\Sigma^*U^*U\Sigma V^* = V(\Sigma^*\Sigma)V^* = V(\Sigma^*\Sigma)V^{-1}$$

we see that A^*A and $\Sigma^*\Sigma = \operatorname{diag}(\sigma_1^2, \sigma_2^2, \ldots, \sigma_p^2)$ have the same eigenvalues, $\lambda_i = \sigma_i^2$, $i = 1, 2, \ldots, p$.

If n > p, we have an additional (n - p) zero eigenvalues.

The same argument works for AA^* (just substitute *m* for *n*)...

"Every Matrix is Diagonal" Singular Values and Eigenvalues The SVD → Matrix Properties

The SVD ~~> Matrix Properties

Singular Values / Eigenvalues

DIEGO STAT

(20/28)

Theorem $(\sigma_k = |\lambda_k|$ for Hermitian Matrices)

If $A = A^*$, then the singular values of A are the absolute values of the eigenvalues of A. Note: In the language of [MATH 524] A is self-adjoint.

Proof (part 1)

The eigenvalues of a Hermitian matrix are real since if (λ, \vec{v}) is an eigenvalue-eigenvector pair $(\lambda \neq 0)$, then

$$\begin{array}{lll} \langle \vec{v}, A\vec{v} \rangle &=& \vec{v}^* A \vec{v} = (A^* \vec{v})^* \vec{v} = \langle A^* \vec{v}, \vec{v} \rangle \\ \langle \vec{v}, A \vec{v} \rangle &=& \langle \vec{v}, \lambda \vec{v} \rangle = \lambda \langle \vec{v}, \vec{v} \rangle \\ \langle \vec{v}, A \vec{v} \rangle &=& \langle A^* \vec{v}, \vec{v} \rangle = \langle A \vec{v}, \vec{v} \rangle = \langle \lambda \vec{v}, \vec{v} \rangle = \lambda^* \langle \vec{v}, \vec{v} \rangle \end{array}$$

Hence, $\lambda = \lambda^* \Rightarrow \lambda \in \mathbb{R}$. Further, a Hermitian matrix has a complete set of orthogonal eigenvectors. This means that we can diagonalize A

$$A = Q \Lambda Q^* = Q(|\Lambda| \operatorname{sign}(\Lambda))Q^*$$

for some unitary matrix Q and Λ a real diagonal matrix...

 Recap
 "Every Matrix is Diagonal"

 Existence and Uniqueness of the SVD
 Singular Values and Eigenvalues

 The SVD
 The SVD → Matrix Properties

The SVD ~~ Matrix Properties

Singular Values / Eigenvalues

イロト イヨト イヨト イヨト

N DIRGO STR

-(21/28)

Proof (part 2)

Since $sign(\Lambda)Q^*$ is unitary, we have

$$A = \underbrace{Q}_{U} \underbrace{|\Lambda|}_{\Sigma} \underbrace{(\operatorname{sign}(\Lambda)Q^*)}_{V^*}$$

a SVD of A, where $\sigma_i = |\lambda_i|, i = 1, 2, ..., p$. (An appropriate ordering of the columns of U guarantees that the singular values are ordered in decreasing order.) \Box

"Every Matrix is Diagonal" Singular Values and Eigenvalues The SVD ---> Matrix Properties

The SVD ~~> Matrix Properties

The Determinant

Theorem

For
$$A \in \mathbb{C}^{m \times m}$$
, $|\det(A)| = \prod_{i=1}^{m} \sigma_i$.

Proof (Magnitude of Determinant is Product of Singular Values)

$$\begin{aligned} |\det(A)| &= |\det(U\Sigma V^*)| = |\det(U)| \cdot |\det(\Sigma)| \cdot |\det(V^*)| \\ &= 1 \cdot |\det(\Sigma)| \cdot 1 = |\det(\Sigma)| = \prod_{i=1}^m \sigma_i \end{aligned}$$

where we have used the fact that det(AB) = det(A)det(B) and that the magnitude of the determinant of a unitary matrix is one.

イロト イヨト イヨト イヨト

Recap "Even Existence and Uniqueness of the SVD Singu The SVD The S

"Every Matrix is Diagonal" Singular Values and Eigenvalues The SVD ~ Matrix Properties

The SVD ~~> Matrix Properties

Low-Rank Approximations, 1 of 5

DIRGO STA

— (23/28)

This discussion is a significant part of WHY this course exists!

Given the SVD of A, $A = U\Sigma V^*$, we can represent A as a sum of r rank-one matrices

$$A = \sum_{k=1}^{r} \sigma_k \vec{u}_k \vec{v}_k^*$$

This is certainly not the only way to write A as a sum of rank-one matrices: it could be written as a sum of its m rows, n columns, or even its mn entries...

The decomposition above has the special property that if we truncate the sum at $\nu < r$, then that partial sum captures as much "energy" of A as possible for a rank- ν sub-matrix of A.

We formalize this in a theorem...

"Every Matrix is Diagonal" Singular Values and Eigenvalues The SVD \rightsquigarrow Matrix Properties

The SVD ~~ Matrix Properties

Low-Rank Approximations, 2 of 5

イロト イヨト イヨト イヨト

N DIEGO STAT

— (24/28)

Theorem (Optimal Low-Rank Approximation)

For any ν with $0 \leq \nu < r$, define

$$A_{\nu} = \sum_{k=1}^{\nu} \sigma_k \vec{u}_k \vec{v}_k^*$$

if $\nu = p = \min(m, n)$, define $\sigma_{\nu+1} = 0$. Then

$$\|A - A_{\nu}\|_{2} = \inf_{\substack{B \in \mathbb{C}^{m \times n} \\ \operatorname{rank}(B) \leq \nu}} \|A - B\|_{2} = \sigma_{\nu+1}$$

"Every Matrix is Diagonal" Singular Values and Eigenvalues The SVD ---> Matrix Properties

The SVD ~> Matrix Properties

Low-Rank Approximations, 2.5 of 5

イロト イボト イヨト イヨト

Low Rank Approximations in DS/Machine Learning/Generative AI

Low-Rank Adaptation (LoRA) is a family of methods for fine-tuning large-scale AI/Machine Learning models in an efficient manner.

"Base-Models" (e.g. LLMs like ChatGPT; or image-generative models like the Stable Diffusion SD1.5 or SDXL models) are trained on extremely large data sets — this training uses significant resources, *i.e.* they are "expensive."

Very Simplified: fine-tuning is "retraining" (parts of) the model using a smaller specific data set; *e.g.* published peer-reviewed mathematics research papers, or images created in a particular "style."

The Model parameters use usually collected in a large matrix $A \in \mathbb{R}^{M \times N}$; and the fine-tuning computes "a few" — collected in much smaller matrices $B \in \mathbb{R}^{M \times p}$, and $C \in \mathbb{R}^{p \times N}$, so that the effective fine-tuned model can be represented as

A + BC

M and *N* are usually "quite large" (> 1,000), and *p* "small" (< 10).

— (25/28)

"Every Matrix is Diagonal" Singular Values and Eigenvalues The SVD ↔ Matrix Properties

The SVD ~> Matrix Properties

Low-Rank Approximations, 3 of 5

Proof (Optimal Low-Rank Approximation)

Suppose that there is some B with $\operatorname{rank}(B) \leq \nu$ such that $||A - B||_2 < ||A - A_{\nu}||_2 = \sigma_{\nu+1}$.

"Every Matrix is Diagonal" Singular Values and Eigenvalues The SVD ↔ Matrix Properties

The SVD ~~ Matrix Properties

Low-Rank Approximations, 3 of 5

Proof (Optimal Low-Rank Approximation)

Suppose that there is some B with $\operatorname{rank}(B) \leq \nu$ such that $\|A - B\|_2 < \|A - A_\nu\|_2 = \sigma_{\nu+1}$.

Then there is an $(n - \nu)$ -dimensional subspace $\operatorname{null}(B) = \mathbb{W} \subseteq \mathbb{C}^n$ such that $\vec{w} \in \mathbb{W} \Rightarrow B\vec{w} = 0$. Thus $\forall \vec{w} \in \mathbb{W}$:

$$\|A\vec{w}\|_2 = \|(A-B)\vec{w}\|_2 \le \|A-B\|_2\|\vec{w}\|_2 < \sigma_{\nu+1}\|\vec{w}\|_2.$$

"Every Matrix is Diagonal" Singular Values and Eigenvalues The SVD ↔ Matrix Properties

The SVD ~> Matrix Properties

Low-Rank Approximations, 3 of 5

DIEGO STAT

Proof (Optimal Low-Rank Approximation)

Suppose that there is some B with $\operatorname{rank}(B) \leq \nu$ such that $\|A - B\|_2 < \|A - A_\nu\|_2 = \sigma_{\nu+1}$.

Then there is an $(n - \nu)$ -dimensional subspace $\operatorname{null}(B) = \mathbb{W} \subseteq \mathbb{C}^n$ such that $\vec{w} \in \mathbb{W} \Rightarrow B\vec{w} = 0$. Thus $\forall \vec{w} \in \mathbb{W}$:

$$\|Aec w\|_2 = \|(A-B)ec w\|_2 \leq \|A-B\|_2\|ec w\|_2 < \sigma_{
u+1}\|ec w\|_2.$$

Now, \mathbb{W} is an $(n - \nu)$ -dimensional subspace where $||A\vec{w}||_2 < \sigma_{\nu+1} ||\vec{w}||_2$. But there is a $(\nu + 1)$ -dimensional subspace where $||A\vec{w}||_2 \ge \sigma_{\nu+1} ||\vec{w}||_2$ $- \mathbb{V} = \operatorname{span}(u_1, \ldots, u_{\nu+1})$ the space spanned by the first $(\nu + 1)$ right singular vectors of A.

"Every Matrix is Diagonal" Singular Values and Eigenvalues The SVD ↔ Matrix Properties

The SVD ~> Matrix Properties

Low-Rank Approximations, 3 of 5

Proof (Optimal Low-Rank Approximation)

Suppose that there is some B with $\operatorname{rank}(B) \leq \nu$ such that $\|A - B\|_2 < \|A - A_\nu\|_2 = \sigma_{\nu+1}$.

Then there is an $(n - \nu)$ -dimensional subspace $\operatorname{null}(B) = \mathbb{W} \subseteq \mathbb{C}^n$ such that $\vec{w} \in \mathbb{W} \Rightarrow B\vec{w} = 0$. Thus $\forall \vec{w} \in \mathbb{W}$:

$$\|Aec w\|_2 = \|(A-B)ec w\|_2 \le \|A-B\|_2\|ec w\|_2 < \sigma_{
u+1}\|ec w\|_2.$$

Now, \mathbb{W} is an $(n - \nu)$ -dimensional subspace where $\|A\vec{w}\|_2 < \sigma_{\nu+1} \|\vec{w}\|_2$. But there is a $(\nu + 1)$ -dimensional subspace where $\|A\vec{w}\|_2 \ge \sigma_{\nu+1} \|\vec{w}\|_2$ $- \mathbb{V} = \operatorname{span}(u_1, \ldots, u_{\nu+1})$ the space spanned by the first $(\nu + 1)$ right singular vectors of A.

Since the sum of the dimensions of the two subspaces $(\nu + 1) + (n - \nu) = (n + 1)$ exceeds *n*, there must be a non-zero vector lying in both. This is a contradiction.

The SVD ~~> Matrix Properties

Low-Rank Approximations, 4 of 5

イロト イポト イヨト イヨト

N DIRGO STA

— (27/28)

The preceding theorem has a nice geometrical interpretation.

Ponder the issue of finding the best approximation of an *n*-dimensional hyper-ellipsoid.

- \Rightarrow The best approximation by a 2-dimensional ellipse must be the ellipse spanned by the largest and second largest axis.
- \Rightarrow We get the best 3-dimensional approximation by adding the span of the 3rd largest axis, etc...

This is useful in many applications, *e.g.* signal compression (images, audio, etc.), analysis of large data sets, etc.

The SVD ~~> Matrix Properties

Low-Rank Approximations, 5 of 5

AN DIEGO STATE

— (28/28)

We state the following theorem, and leave the proof as an "exercise."

Theorem

For the matrix A_{ν} as defined in the previous theorem

$$\|A - A_{\nu}\|_{F} = \inf_{\substack{B \in \mathbb{C}^{m \times n} \\ \operatorname{rank}(B) \leq \nu}} \|A - B\|_{F} = \sqrt{\sigma_{\nu+1}^{2} + \sigma_{\nu+2}^{2} + \dots + \sigma_{r}^{2}}$$

We will get back to **how to compute** the SVD later. For now, we note that it is a powerful tool which can be used to

- find the numerical rank of a matrix;
- find the orthonormal basis for the range (image) and null-space;
- computing $||A||_2$;
- computing low-rank approximations.

The SVD shows up in least squares fitting, regularization, intersection of subspaces (video games?), and many, many other problems.