Numerical Matrix Analysis
 Notes \＃6－The QR－Factorization and Least Squares Problems：Orthogonality and Projections

Peter Blomgren
〈blomgren＠sdsu．edu〉
Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego，CA 92182－7720
http：／／terminus．sdsu．edu／
Spring 2024
（Revised：February 20，2024）
Peter Blomgren 〈blomgren＠sdsu．edu〉 6．QR \＆LSQ：Orthogonality and Projection
Student Learning Targets，and Objectives SLOs：QR－Factorization Least Squares Problems
Student Learning Targets，and Objectives

Target The QR－Factorization

Objective How to compute using the Gram－Schmidt Orthogonalization Method

Target Building Blocks
Objective Projectors，Idempotent Matrices，Complementary Projectors
Objective Characterization of the SVD using Orthogonal Projectors

OutlineStudent Learning Targets，and Objectives
－SLOs：QR－Factorization Least Squares Problems
（2）
Recap
－Checking the Roadmap
（3）Projectors
－Idempotent Matrices；Range \＆Nullspace；Complementary
－Orthogonal Projectors
－Orthonormal and Non－Orthonormal Basis
（4）The QR－Factorization
－The Full and Reduced QR－Factorizations
－Gram－Schmidt Orthogonalization
－QR：Existence and Uniqueness

Peter Blomgren 〈blomgren＠sdsu．edu〉 6．QR \＆LSQ：Orthogonality and Projections

```
            #
The QR-Factorization
```

Rear－view Mirror

So far we have reviewed（or quickly introduced）basic linear algebra concepts，e．g．
－Vector and Matrix operations，including norms．
－Matrix properties（vocabulary）：rank，range，nullspace，domain， Hermitian conjugate（adjoint），unitary．．

Then we introduced the idea－from a geometrical perspective－ of the Singular Value Decomposition $A=U \Sigma V^{*}$ of a matrix．

Finally，we connected the SVD and its properties to the majority of the concepts introduced．

In a sense，with the SVD we have extracted all information from the matrix A and we are＂done．＂

The QR－Factorizatio

Problem\＃1：We do not have a stable algorithm to compute the SVD．（We don＇t even know what＂stable＂means！）

Problem\＃2：Even when we have such an algorithm（later in the semester），it will turn out to be quite computation－ ally expensive．

The Approach：We will now start building our computational toolbox so that in the end we can implement a stable，effective algorithm for the SVD．

Along the way we will study other decompositions which may not be as complete as the SVD，but are cheaper to compute and are quite useful in certain applications．

Peter Blomgren 〈blomgren＠sdsu．edu〉 \quad 6．QR \＆LSQ：Orthogonality and Projections $\quad-(5 / 28)$

Recap	Idempotent Matrices；Range \＆Nullspace；Complementary
Projectors	Orthogonal Projectors

Projections，Projections，Everywhere！！！

Figure：Left－Projecting a geometrical shape onto different planes （the figure itself is a 2D projection of this 3D－to－2D projection！）； Right－Map projections； $\mathbb{S}^{2} \mapsto \mathbb{R}^{2}$ ，and $\mathbb{S}^{2} \mapsto \mathbb{R} \times[-\pi, \pi]$ ．
－Projectors：Orthogonal and non－orthogonal projection matrices．
－The QR－Factorization
－As an idea．．．
－Computed using Gram－Schmidt orthogonalization
－Computed using Householder triangularization
－Alternative not discussed：Computed using Givens rotation （ $\approx 50 \%$ more expensive than Householder，with no additional benefit．）
－Solving least－squares problems using the QR－factorization

Peter Blomgren 〈blomgren＠sdsu．edu〉 6．QR \＆LSQ：Orthogonality and Projections

Recap Idempotent Matrices；Range \＆Nullspace；Complementary Orthogonal Projectors
 Orthonormal and Non－Orthonormal Basis

Projectors
Idempotent Matrices

Definition（Projector）
A projector is a square matrix P that satisfies

$$
P^{2}=P .
$$

Think，for instance of

$$
P=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right],
$$

as the projection of a vector in \mathbb{R}^{3} onto the x－y plane in \mathbb{R}^{3} ：－find a corner in the room；put a broom－stick in the corner and let it point into the room；observe the shadow on the floor．（This is making the assumption that the lighting is laser－based and arranged so that all light－rays go straight from ceiling－to－floor．．．）

The QR－Factorizatio

More generally，$P: \vec{v} \mapsto P \vec{v}$ maps the vector \vec{v} onto range (P) ．

Clearly，once the $\vec{p}=P \vec{v}$ is on range (P) ，another projection has no effect，hence

$$
P \vec{p}=P^{2} \vec{v}=P \vec{v} \quad \Leftrightarrow \quad P(P \vec{v}-\vec{v})=P^{2} \vec{v}-P \vec{v}=0
$$

Thus $(P \vec{v}-\vec{v}) \in \operatorname{null}(P)$ ．If we think in terms of the projection being the shadow of a light－source illuminating \vec{v} ，it means that the direction of the light－rays are described by a vector in $\operatorname{null}(P)$ ．

Peter Blomgren 〈blomgren＠sdsu．edu〉 6．QR \＆LSQ：Orthogonality and Projections

Recap	Idempotent Matrices；Range \＆Nullspace；Complementary
Projectors	Orthogonal Projectors
Orthonormal and Non－Orthonormal Basis	

Complementary Projectors

Separation of \mathbb{C}^{m}
（！）We notice that a projector P separates \mathbb{C}^{m} into two spaces．
Conversely，if $S_{1}, S_{2} \subseteq \mathbb{C}^{m}$ such that $S_{1} \cap S_{2}=\{\overrightarrow{0}\}$ ，and $S_{1}+S_{2}=\mathbb{C}^{m}$ ， then S_{1} and S_{2} are complementary subspaces and there exists a projector P onto S_{1} along S_{2} such that range $(P)=S_{1}$ ，and $\operatorname{null}(P)=S_{2}$ ．
An orthogonal projector is a projector that projects onto a subspace S_{1} along a space S_{2} ，where S_{1} and S_{2} are orthogonal

Complementary Projectors
If P is a projector，then $(I-P)$ is also a projector

$$
(I-P)^{2}=I^{2}-I P-P I+P^{2}=I-2 P+P=I-P
$$

$(I-P)$ is the complementary projector to P ．
We have the following properties

$$
\left\{\begin{aligned}
\operatorname{range}(I-P) & =\operatorname{null}(P) \\
\operatorname{null}(I-P) & =\operatorname{range}(P) \\
\operatorname{null}(I-P) \cap \operatorname{null}(P) & =\{\overrightarrow{0}\} \\
\operatorname{range}(\mathbf{P}) \cap \operatorname{null}(\mathbf{P}) & =\{\tilde{\mathbf{0}}\}
\end{aligned}\right.
$$

range $(I-P) \supseteq \operatorname{null}(P)$ ，since if $P \vec{v}=0$ ，then $(I-P) \vec{v}=\vec{v}$ range $(I-P) \subseteq \operatorname{null}(P)$ ，since $\forall \vec{v},(I-P) \vec{v}=(\vec{v}-P \vec{v}) \in \operatorname{null}(P)$ ．

Peter Blomgren 〈blomgren＠sdsu．edu〉 6．QR \＆LSQ：Orthogonality and Projections－（10／28）

Recap	Idempotent Matrices；Range \＆Nullspace；Complementary
Projectors	Orthogonal Projectors
Orthonormal and Non－Orthonormal Basis	

Orthogonal Projectors

Warning！！！

Orthogonal projectors are not orthogonal／unitary matrices！！！
An orthogonal projector is a projector that is also Hermitian，i．e．

$$
P^{*}=P, \quad \text { and } \quad P^{2}=P
$$

If $P=P^{*}$ ，then the inner product of $P \vec{x} \in S_{1}$ and $(I-P) \vec{y} \in S_{2}$ is zero：

$$
\langle P \vec{x},(I-P) \vec{y}\rangle=\vec{x}^{*} P^{*}(I-P) \vec{y}=\vec{x}^{*}(\underbrace{P-P^{2}}_{P-P}) \vec{y}=0
$$

Reca
 Idempotent Matrices；Range \＆Nullspace；Complementary

We now show that if P projects onto S_{1} along $S_{2}\left(S_{1} \perp S_{2}\right.$ ，and S_{1} has dimension n ），then $P=P^{*}$－the construction will give us a very simple characterization of the projector in terms of the SVD！

We construct the SVD of P as follows：

Let $\left\{\vec{q}_{1}, \vec{q}_{2}, \ldots, \vec{q}_{m}\right\}$ be an orthonormal basis for \mathbb{C}^{m} ，where． $\left\{\vec{q}_{1}, \vec{q}_{2}, \ldots, \vec{q}_{n}\right\}$ is a basis for S_{1} ，and $\left\{\vec{q}_{n+1}, \vec{q}_{n+2}, \ldots, \vec{q}_{m}\right\}$ is a ba－ sis for S_{2} ．We have

$$
\left\{\begin{array}{lll}
P \vec{q}_{j}=\vec{q}_{j}, & j \leq n \\
P \vec{q}_{j}=0, & j>n
\end{array}\right.
$$

Now，let Q be the unitary $(m \times m)$ matrix whose j th column is \vec{q}_{j}

Peter Blomgren 〈blomgren＠sdsu．edu〉 6．QR \＆LSQ：Orthogonality and Projections－（13／28）

Recap	Idempotent Matrices；Range \＆Nullspace；Complementary
Projectors	Orthogonal Projectors
Orthonormal and Non－Orthonormal Basis	

Projection with an Orthonormal Basis

Since some singular values（in Σ ）are zero，we can use the reduced SVD instead，i．e．we only keep the first n columns in Q ，and we end up with

$$
P=\widehat{Q} \widehat{Q}^{*}
$$

where the columns of $Q \in \mathbb{C}^{m \times n}$ are orthonormal．
There is nothing magic about orthonormal vectors associated with the SVD－as long as the columns，$\vec{q}_{j} \in \mathbb{C}^{m}$ ，of \widehat{Q} are orthonormal，the matrix $P=Q Q^{*}$ defines an orthogonal projection onto $S_{1}=\operatorname{range}(Q)$ ．

With this construction we have

$$
P Q=\left[\begin{array}{ccccc}
\mid & & \mid & \mid & \\
\vec{q}_{1} & \ldots & \vec{q}_{n} & \overrightarrow{0} & \ldots \\
\mid & & \mid & \mid &
\end{array}\right]
$$

and，multiplying by Q^{*} from the left：

$$
Q^{*} P Q=\operatorname{diag}(\underbrace{1, \ldots, 1}_{n \text { ones }}, \underbrace{0, \ldots, 0}_{(m-n) \text { zeros }})=\Sigma
$$

Thus we have constructed an SVD of P ：

$$
P=Q \Sigma Q^{*}
$$

and clearly P is Hermitian

$$
P^{*}=\left(Q \Sigma Q^{*}\right)^{*}=\left(Q^{*}\right)^{*} \Sigma^{*} Q^{*}=Q \Sigma Q^{*}=P
$$

Peter Blomgren 〈blomgren＠sdsu．edu〉 6．QR \＆LSQ：Orthogonality and Projections－（14／28）

> | Recap | Idempotent Matrices; Range \& Nullspace; Complementary |
| ---: | :--- |
| Projectors | Orthogonal Projectors |
| Orthonormal and Non-Orthonormal Basis | |

Projection with an Orthonormal Basis
Rank－One Projections
The projection

$$
\vec{v} \mapsto P \vec{v} \quad\{\text { defined by }\} \quad Q Q^{*} \vec{v}=\sum_{i=1}^{n}\left(\vec{q}_{i} \vec{q}_{i}^{*}\right) \vec{v}
$$

can be viewed as a sum on n rank－one projections，

$$
P_{i}=\vec{q}_{i} \vec{q}_{i}^{*}
$$

where each such projection isolates the component in a single direction given by \vec{q}_{i} ．These rank－one projectors will show up as building blocks in future algorithms．

For completeness，we note that the complement of a rank－one projector is a rank－$(m-1)$ projector that eliminates the component in the direction of \vec{q}_{i}

$$
P_{\perp \vec{q}_{i}}=\left(I-\vec{q}_{i} \vec{a}_{i}^{*}\right)
$$

Projection with a Non－Orthonormal Basis

We can build an orthogonal projector from an arbitrary（not necessarily orthogonal）basis．
Let S_{1} be the subspace spanned by the linearly independent vectors $\left\{\vec{a}_{1}, \ldots, \vec{a}_{n}\right\}$ and let A be the matrix with columns \vec{a}_{j} ．

$$
\begin{aligned}
\vec{v} & \stackrel{P}{\mapsto} \vec{y} \in \operatorname{range}(A), \quad \vec{y}=A \vec{x}, \text { some } \vec{x} \in \mathbb{C}^{n} \\
\vec{y}-\vec{v} & \perp \operatorname{range}(A) \\
& \Leftrightarrow \vec{a}_{j}^{*}(\vec{y}-\vec{v})=0, \forall j \\
& \Leftrightarrow \vec{a}_{j}^{*}(A \vec{x}-\vec{v})=0, \forall j \\
& \Leftrightarrow A^{*}(A \vec{x}-\vec{v})=0 \\
& \Leftrightarrow A^{*} A \vec{x}=A^{*} \vec{v} \\
& \Leftrightarrow \vec{x}=\left(A^{*} A\right)^{-1} A^{*} \vec{v} \\
& \Leftrightarrow \vec{y}=\underbrace{A\left(A^{*} A\right)^{-1} A^{*}}_{\text {Numerically Dangerous }} \vec{v}=\mathbf{P} \vec{v}
\end{aligned}
$$

Peter Blomgren 〈blomgren＠sdsu．edu〉 6．QR \＆LSQ：Orthogonality and Projections $\quad-(17 / 28)$

> | Recap | The Full and Reduced QR-Factorizations |
| ---: | :--- |
| Projectors | Gram-Schmidt Orthogonalization |
| The QR-Factorization | QR: Existence and Uniqueness |

The Reduced QR－Factorization

In many application we are interested in the column spaces spanned by a matrix A ，i．e．the spaces

$$
\operatorname{span}\left(\vec{a}_{1}\right) \subseteq \operatorname{span}\left(\vec{a}_{1}, \vec{a}_{2}\right) \subseteq \operatorname{span}\left(\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}\right) \subseteq \ldots
$$

We may，for instance，be looking for a minimum，or maximum of some quantity over each subspace．

The QR－factorization generates a sequence of orthonormal vectors $\left\{\vec{q}_{1}, \vec{q}_{2}, \vec{q}_{3}, \ldots\right\}$ that spans these spaces，i．e．

$$
\operatorname{span}\left(\vec{q}_{1}, \vec{q}_{2}, \ldots, \vec{q}_{k}\right)=\operatorname{span}\left(\vec{a}_{1}, \vec{a}_{2}, \ldots, \vec{a}_{k}\right), \quad k=1, \ldots, n
$$

The reason for doing this is that it is much easier to work in an orthonormal basis．
dempotent Matrices；Range \＆Nullspace；Complementary Orthogonal Projectors
The QR－Factorization Orthonormal and Non－Orthonormal Basis
Projections：Summary

The key thing we bring from the discussion on projections is the ability to identify how much of the＂action＂is directed in a certain set of directions，or subspace．

These ideas will be used，explicitly or implicitly，in many algorithms presented in this（and other）classes．

We now turn our attention to on of the＂heavy－hitters＂among numerical algorithms－the QR－factorization．

Peter Blomgren〈blomgren＠sdsu．edu〉 6．QR \＆LSQ：Orthogonality and Projections

$\begin{array}{cl}\text { Recap } & \text { The Full and Reduced QR－Factorizations } \\ \text { Gram－Schmidt Ort }\end{array}$

The QR－Factorization
The Reduced QR－Factorization
The Idea

$$
\begin{aligned}
\operatorname{span}\left(\vec{q}_{1}\right)=\operatorname{span}\left(\vec{a}_{1}\right) & \Rightarrow \vec{a}_{1}=r_{11} \vec{q}_{1} \\
\operatorname{span}\left(\vec{q}_{1}, \vec{q}_{2}\right)=\operatorname{span}\left(\vec{a}_{1}, \vec{a}_{2}\right) & \Rightarrow \vec{a}_{2}=r_{12} \vec{q}_{1}+r_{22} \vec{q}_{2} \\
\operatorname{span}\left(\vec{q}_{1}, \ldots, \vec{q}_{3}\right)=\operatorname{span}\left(\vec{a}_{1}, \ldots, \vec{a}_{3}\right) & \Rightarrow \vec{a}_{3}=r_{13} \vec{q}_{1}+r_{23} \vec{q}_{2}+r_{33} \vec{q}_{3} \\
& \vdots \\
\operatorname{span}\left(\vec{q}_{1}, \ldots, \vec{q}_{n}\right)=\operatorname{span}\left(\vec{a}_{1}, \ldots, \vec{a}_{n}\right) & \Rightarrow \vec{a}_{n}=r_{1 n} \vec{q}_{1}+\cdots+r_{n n} \vec{q}_{n}
\end{aligned}
$$

In matrix notation，with $A \in \mathbb{C}^{m \times n}, \widehat{Q} \in \mathbb{C}^{m \times n}$ with orthonormal columns，$\widehat{R} \in \mathbb{C}^{n \times n}$

As for the SVD，we can extend the QR－factorization by padding \widehat{Q} with an additional（ $m-n$ ）orthonormal columns，and zero－padding \widehat{R} with an additional（ $m-n$ ）rows of zeros：

In the full QR－factorization，the columns $\vec{q}_{j}, j>n$ are orthogonal to $\operatorname{range}(A)$ ．If $\operatorname{rank}(A)=n$ ，they are an orthonormal basis for $\operatorname{range}(A)^{\perp}=\operatorname{null}\left(A^{*}\right)$ ，the space orthogonal to range (A) ．

Building the QR－Factorization — Gram－Schmidt Orthogonalization
The equations on slide 20 outline a method for computing reduced QR－factorizations．

At the k th step，we are looking to construct $\vec{q}_{k} \in \operatorname{span}\left(\vec{a}_{1}, \ldots \vec{a}_{k}\right)$ such that $\vec{q}_{k} \perp \operatorname{span}\left(\vec{q}_{1}, \ldots \vec{q}_{k-1}\right)$

We simply take \vec{a}_{k} ，and subtract all the projections onto the directions $\vec{q}_{1}, \ldots \vec{q}_{k-1}$ ，and then normalize the resulting vector

```
(*) }\mp@subsup{\vec{v}}{k}{}=\mp@subsup{\vec{a}}{k}{}-(\mp@subsup{\vec{q}}{1}{}\mp@subsup{\vec{q}}{1}{*})\mp@subsup{\vec{a}}{k}{}-\cdots-(\mp@subsup{\vec{q}}{k-1}{}\mp@subsup{\vec{q}}{k-1}{*})\mp@subsup{\vec{a}}{k}{
```

$\vec{q}_{k}=\vec{v}_{k} /\left\|\vec{v}_{k}\right\|_{2}$

Computationally，it is more efficient to compute
$\left(*^{\prime}\right) \quad \vec{v}_{k}=\vec{a}_{k}-\vec{q}_{1}\left(\vec{q}_{1}^{*} \vec{a}_{k}\right)-\cdots-\vec{q}_{k-1}\left(\vec{q}_{k-1}^{*} \vec{a}_{k}\right)$

Peter Blomgren 〈blomgren＠sdsu．edu〉 6．QR \＆LSQ：Orthogonality and Projections

> | Recap | The Full and Reduced QR-Factorizations |
| ---: | :--- |
| Projectors | Gram-Schmidt Orthogonalization |
| The QR-Factorization | QR: Existence and Uniqueness |

The QR－Factorization：Existence and Uniqueness

Theorem（Existence of the QR－Factorization）
Every $A \in \mathbb{C}^{m \times n}(m \geq n)$ has a full $Q R$－factorization，hence also a reduced $Q R$－factorization．

Theorem（Uniqueness of the QR－Factorization）
Every $A \in \mathbb{C}^{m \times n}$（ $m \geq n$ ）of full rank has a unique reduced $Q R$－factorization $A=\widehat{Q} R$ ，with $r_{k k}>0$ ．

Mathematically，we are done．Numerically，however，we can run into trouble due to roundoff errors．

Reca
 The Full and Reduced QR－Factorizations Shmidt Orthogonalizatio
 The QR－Factorization QR：Existence and Uniqueness

1．If A is full rank，the Gram－Schmidt algorithm gives the unique reduced QR－factorization．

2．If A does not have full rank，then $\vec{v}_{k}=0$ can occur during the iteration；if it does set \vec{q}_{k} to be an arbitrary vector＊orthogonal to span $\left(\vec{q}_{1}, \ldots \vec{q}_{k-1}\right)$ ，and proceed．

3．For Full $Q R$ factorization，when $m>n$ ，follow Gram－Schmidt as described until $j=n$ ，then take an addition $(m-n)$ steps， introducing arbitrary orthogonal \vec{q}_{k} in each step．
＊Column pivoting（exchanges）may be necessary．

Peter Blomgren 〈blomgren＠sdsu．edu〉 6．QR \＆LSQ：Orthogonality and Projections
－$(25 / 28)$

$\begin{aligned} \text { Recap } & \text { The Full and Reduced QR－Factorizations }\end{aligned}$
 Projectors Gram－Schmidt Orthogonalization

Due Date in Canvas／Gradescope
Homework \＃3
Implement the reduced QR－factorization by Classical Gram－Schmidt．
1．Write a function which given $A \in \mathbb{C}^{m \times n}$ computes $Q \in \mathbb{C}^{m \times n}$ ，and $R \in \mathbb{C}^{n \times n}$－in matlab／python you want to start something like this（e．g．file：qr＿cgs．m，or qr＿cgs．py）：

```
function [Q,R] = qr_cgs(A)
% Indentation does not matter...
\％Implicit Return of Results
```

```
def qr_cgs(A)
    # Indentation matters
    # Explicit Return of Results
    return Q, R
```

See help function in matab，or python＿functions（clickable）for help on writing functions．
2．Validate your function－test that（i）$(A-Q R) \approx 0$ ；（ii）Q is unitary；and（iii）R upper triangular．Show 3 test cases for $(3 \times 3),(5 \times 5)$ ，and (251×251) matrices．
3．Compare the result for the $(3 \times 3),(5 \times 5)$ cases with the built－in（＂library＂）version of the QR－factorization；comment on the similarities／differences．
See help qr in matlab，or numpy．linalg．qr（clickable）．
4．Can you find a non－zero matrix where your QR－factorization breaks？
∞ ．Hand in your code，and your validation／test－cases．
∞^{∞} ．Appropriately＂tag＂all pages with the corresponding question（s）in Gradescope．

Solving $A \vec{x}=\vec{b}$ by QR－Factorization
If we have a QR－factorization algorithm handy，then we have the following＂algorithm＂for solving $A \vec{x}=\vec{b}$

1．Compute the $Q R$－factorization $A=Q R$ ．
2．Compute $\vec{y}=Q^{*} \vec{b}$ ．
3．Solve $R \vec{x}=\vec{y}$ for \vec{x} ．
Note：Computing $Q^{*} \vec{b}$ is just a multiplication with a unitary matrix． Since $\left|\operatorname{det}\left(Q^{*}\right)\right|=1$ this completely numerically stable in the sense that errors will not be magnified．（We will quantify this soon．）
Note：Solving $R \vec{x}=\vec{y}$ is very easy（backward substitution）since R is upper triangular．

Note：The bulk of the work is in computing the QR－factorization（2－3 times that of Gaussian Elimination）．

Peter Blomgren 〈blomgren＠sdsu．edu〉 6．QR \＆LSQ：Orthogonality and Projections

```
Recap The Full and Reduced QR-Factorizations
Projectors Gram-Schmidt Orthogonalizatio
The QR-Factorization QR: Existence and Uniqueness
```

Homework AI－Policy Spring 2024

Al－era Policies－SPRING 2024

AI－3 Documented：Students can use Al in any manner for this assessment or deliverable，but they must provide appropriate documentation for all AI use．

This applies to ALL MATH－543 WORK during the SPRING 2024 semester．

The goal is to leverage existing tools and resources to generate HIGH QUALITY SOLUTIONS to all assessments．

You MUST document what tools you use and HOW they were used （including prompts）；AND how results were VALIDATED．

BE PREPARED to DISCUSS homework solutions and Al－strategies．Par－ ticipation in the in－class discussions will be an essential component of the grade for each assessment．

