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Student Learning Targets, and Objectives SLOs: QR-Factorization Least Squares Problems

Student Learning Targets, and Objectives

Target The QR-Factorization

Objective How to compute using the Gram-Schmidt Orthogonalization
Method

Target Building Blocks

Objective Projectors, Idempotent Matrices, Complementary Projectors
Objective Characterization of the SVD using Orthogonal Projectors
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A Quick Check of the Roadmap Rear-view Mirror

So far we have reviewed (or quickly introduced) basic linear algebra
concepts, e.g.

• Vector and Matrix operations, including norms.

• Matrix properties (vocabulary): rank, range, nullspace, domain,
Hermitian conjugate (adjoint), unitary...

Then we introduced the idea — from a geometrical perspective —
of the Singular Value Decomposition A = UΣV ∗ of a matrix.

Finally, we connected the SVD and its properties to the majority of
the concepts introduced.

In a sense, with the SVD we have extracted all information from
the matrix A and we are “done.”
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A Quick Check of the Roadmap Looking Forward

Problem#1: We do not have a stable algorithm to compute the
SVD. (We don’t even know what “stable” means!)

Problem#2: Even when we have such an algorithm (later in the
semester), it will turn out to be quite computation-
ally expensive.

The Approach: We will now start building our computational
toolbox so that in the end we can implement a
stable, effective algorithm for the SVD.

Along the way we will study other decompositions which may not
be as complete as the SVD, but are cheaper to compute and are
quite useful in certain applications.
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A Quick Check of the Roadmap The Near Future

• Projectors: Orthogonal and non-orthogonal projection matrices.

• The QR-Factorization

• As an idea...

• Computed using Gram-Schmidt orthogonalization

• Computed using Householder triangularization

• Alternative not discussed: Computed using Givens rotation
(≈ 50% more expensive than Householder, with no additional
benefit.)

• Solving least-squares problems using the QR-factorization
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Projections, Projections, Everywhere!!!

Figure: Left— Projecting a geometrical shape onto different planes
(the figure itself is a 2D projection of this 3D-to-2D projection!);
Right— Map projections; S2 7→ R2, and S2 7→ R× [−π, π].
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Projectors Idempotent Matrices

Definition (Projector)

A projector is a square matrix P that satisfies

P2 = P .

Think, for instance of

P =




1 0 0
0 1 0
0 0 0


 ,

as the projection of a vector in R3 onto the x-y plane in R3: — find a
corner in the room; put a broom-stick in the corner and let it point into
the room; observe the shadow on the floor. (This is making the
assumption that the lighting is laser-based and arranged so that all
light-rays go straight from ceiling-to-floor...)
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Projectors Range and Nullspace

More generally, P : ~v 7→ P~v maps the vector ~v onto range(P).

v

Pv

range(P)

Clearly, once the ~p = P~v is on range(P), another projection has no
effect, hence

P~p = P2~v = P~v ⇔ P(P~v − ~v) = P2~v − P~v = 0

Thus (P~v − ~v) ∈ null(P). If we think in terms of the projection being
the shadow of a light-source illuminating ~v , it means that the direction of
the light-rays are described by a vector in null(P).
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Complementary Projectors

If P is a projector, then (I − P) is also a projector

(I − P)2 = I 2 − IP − PI + P2 = I − 2P + P = I − P

(I − P) is the complementary projector to P .

We have the following properties





range(I − P) = null(P)
null(I − P) = range(P)

null(I − P) ∩ null(P) = {~0}
range(P) ∩ null(P) = {0̃}

range(I − P) ⊇ null(P), since if P~v = 0, then (I − P)~v = ~v
range(I − P) ⊆ null(P), since ∀~v , (I − P)~v = (~v − P~v) ∈ null(P).
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Complementary Projectors Separation of Cm

! We notice that a projector P separates Cm into two spaces. !
Conversely, if S1, S2 ⊆ Cm such that S1 ∩ S2 = {~0}, and S1 + S2 = Cm,
then S1 and S2 are complementary subspaces and there exists a
projector P onto S1 along S2 such that range(P) = S1, and
null(P) = S2.

An orthogonal projector is a projector that projects onto a subspace S1
along a space S2, where S1 and S2 are orthogonal

v

range(P)
Pv
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Orthogonal Projectors

Warning!!!

Orthogonal projectors are not orthogonal/unitary matrices!!!

An orthogonal projector is a projector that is also Hermitian, i.e.

P∗ = P , and P2 = P

If P = P∗, then the inner product of P~x ∈ S1 and (I − P)~y ∈ S2 is
zero:

〈P~x , (I − P)~y 〉 = ~x∗P∗(I − P)~y = ~x∗(P − P2
︸ ︷︷ ︸
P−P

)~y = 0
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Orthogonal Projectors ⇒ P∗ = P

We now show that if P projects onto S1 along S2 (S1 ⊥ S2, and S1
has dimension n), then P = P∗ — the construction will give us a
very simple characterization of the projector in terms of the SVD!

We construct the SVD of P as follows:
Let {~q1, ~q2, . . . , ~qm} be an orthonormal basis for Cm, where
{~q1, ~q2, . . . , ~qn} is a basis for S1, and {~qn+1, ~qn+2, . . . , ~qm} is a ba-
sis for S2. We have

{
P~qj = ~qj , j ≤ n
P~qj = 0, j > n

Now, let Q be the unitary (m ×m) matrix whose jth column is ~qj

.
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Orthogonal Projectors ⇒ P∗ = P

With this construction we have

PQ =



| | || | |
~q1 . . . ~qn ~0 . . .
| | || | |




and, multiplying by Q∗ from the left:

Q∗PQ = diag(1, . . . , 1︸ ︷︷ ︸
n ones

, 0, . . . , 0︸ ︷︷ ︸
(m−n) zeros

) = Σ

Thus we have constructed an SVD of P :

P = QΣQ∗

and clearly P is Hermitian

P∗ = (QΣQ∗)∗ = (Q∗)∗Σ∗Q∗ = QΣQ∗ = P . �

Peter Blomgren 〈blomgren@sdsu.edu〉 6. QR & LSQ: Orthogonality and Projections — (14/28)

Recap
Projectors

The QR-Factorization

Idempotent Matrices; Range & Nullspace; Complementary
Orthogonal Projectors
Orthonormal and Non-Orthonormal Basis

Projection with an Orthonormal Basis

Since some singular values (in Σ) are zero, we can use the reduced
SVD instead, i.e. we only keep the first n columns in Q, and we
end up with

P = Q̂Q̂∗

where the columns of Q ∈ Cm×n are orthonormal.

There is nothing magic about orthonormal vectors associated with
the SVD — as long as the columns, ~qj ∈ Cm, of Q̂ are
orthonormal, the matrix P = QQ∗ defines an orthogonal projection
onto S1 = range(Q).
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Projection with an Orthonormal Basis Rank-One Projections

The projection

~v 7→ P~v {defined by} QQ∗~v =
n∑

i=1

(~qi~q
∗
i )~v

can be viewed as a sum on n rank-one projections,

Pi = ~qi~q
∗
i

where each such projection isolates the component in a single direction
given by ~qi . These rank-one projectors will show up as building
blocks in future algorithms.

For completeness, we note that the complement of a rank-one projector
is a rank-(m − 1) projector that eliminates the component in the
direction of ~qi

P⊥~qi = (I − ~qi~q
∗
i )
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Projection with a Non-Orthonormal Basis

We can build an orthogonal projector from an arbitrary (not
necessarily orthogonal) basis.

Let S1 be the subspace spanned by the linearly independent vectors
{~a1, . . . , ~an} and let A be the matrix with columns ~aj .

~v
P7→ ~y ∈ range(A), ~y = A~x , some ~x ∈ Cn

~y − ~v ⊥ range(A)
⇔ ~a∗j (~y − ~v) = 0, ∀j
⇔ ~a∗j (A~x − ~v) = 0, ∀j
⇔ A∗(A~x − ~v) = 0
⇔ A∗A~x = A∗~v
⇔ ~x = (A∗A)−1A∗~v
⇔ ~y = A(A∗A)−1A∗

︸ ︷︷ ︸
Numerically Dangerous

~v = P~v
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Projections: Summary

The key thing we bring from the discussion on projections is the
ability to identify how much of the “action” is directed in a certain
set of directions, or subspace.

These ideas will be used, explicitly or implicitly, in many algorithms
presented in this (and other) classes.

We now turn our attention to on of the “heavy-hitters” among
numerical algorithms — the QR-factorization.
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The Reduced QR-Factorization

In many application we are interested in the column spaces
spanned by a matrix A, i.e. the spaces

span (~a1) ⊆ span (~a1, ~a2) ⊆ span (~a1, ~a2, ~a3) ⊆ . . .

We may, for instance, be looking for a minimum, or maximum of
some quantity over each subspace.

The QR-factorization generates a sequence of orthonormal
vectors {~q1, ~q2, ~q3, . . . } that spans these spaces, i.e.

span (~q1, ~q2, . . . , ~qk) = span (~a1, ~a2, . . . , ~ak) , k = 1, . . . , n

The reason for doing this is that it is much easier to work in an
orthonormal basis.
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The Reduced QR-Factorization The Idea

span (~q1) = span (~a1) ⇒ ~a1 = r11~q1
span (~q1, ~q2) = span (~a1, ~a2) ⇒ ~a2 = r12~q1 + r22~q2

span (~q1, . . . , ~q3) = span (~a1, . . . , ~a3) ⇒ ~a3 = r13~q1 + r23~q2 + r33~q3
...

span (~q1, . . . , ~qn) = span (~a1, . . . , ~an) ⇒ ~an = r1n~q1 + · · ·+ rnn~qn

In matrix notation, with A ∈ Cm×n, Q̂ ∈ Cm×n with orthonormal
columns, R̂ ∈ Cn×n

A = Q̂R̂
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The Full QR-Factorization

As for the SVD, we can extend the QR-factorization by padding Q̂
with an additional (m− n) orthonormal columns, and zero-padding
R̂ with an additional (m − n) rows of zeros:
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Figure: The Reduced QR-
Factorization, A = Q̂R̂

Figure: The Full QR-Factorization,
A = QR

In the full QR-factorization, the columns ~qj , j > n are orthogonal
to range(A). If rank(A) = n, they are an orthonormal basis for
range(A)⊥ = null(A∗), the space orthogonal to range(A).
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Building the QR-Factorization — Gram-Schmidt Orthogonalization

The equations on slide 20 outline a method for computing
reduced QR-factorizations.

At the kth step, we are looking to construct ~qk ∈ span (~a1, . . . ~ak)
such that ~qk ⊥ span (~q1, . . . ~qk−1)

We simply take ~ak , and subtract all the projections onto the
directions ~q1, . . . ~qk−1, and then normalize the resulting vector

(∗) ~vk = ~ak − (~q1~q
∗
1)~ak − · · · − (~qk−1~q

∗
k−1)~ak

~qk = ~vk/‖~vk‖2

Computationally, it is more efficient to compute

(∗′) ~vk = ~ak − ~q1(~q
∗
1~ak)− · · · − ~qk−1(~q

∗
k−1~ak)

Peter Blomgren 〈blomgren@sdsu.edu〉 6. QR & LSQ: Orthogonality and Projections — (22/28)

Recap
Projectors

The QR-Factorization

The Full and Reduced QR-Factorizations
Gram-Schmidt Orthogonalization
QR: Existence and Uniqueness

Algorithm: Classical Gram-Schmidt ∃ Movie

We summarize our findings:

Algorithm (Classical Gram-Schmidt)

1: for k ∈ {1, . . . , n} do
2: ~vk ← ~ak
3: for i ∈ {1, . . . , k − 1} do
4: rik ← ~q∗i ~ak
5: ~vk ← ~vk − rik~qi
6: end for
7: rkk ← ‖~vk‖2
8: ~qk ← ~vk/rkk
9: end for

Mathematically, we are done. Numerically, however, we can run
into trouble due to roundoff errors.
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The QR-Factorization: Existence and Uniqueness 1 of 2

Theorem (Existence of the QR-Factorization)

Every A ∈ Cm×n (m ≥ n) has a full QR-factorization, hence also a
reduced QR-factorization.

Theorem (Uniqueness of the QR-Factorization)

Every A ∈ Cm×n (m ≥ n) of full rank has a unique reduced
QR-factorization A = Q̂R̂, with rkk > 0.

Peter Blomgren 〈blomgren@sdsu.edu〉 6. QR & LSQ: Orthogonality and Projections — (24/28)



Recap
Projectors

The QR-Factorization

The Full and Reduced QR-Factorizations
Gram-Schmidt Orthogonalization
QR: Existence and Uniqueness

The QR-Factorization: Existence and Uniqueness 2 of 2

1. If A is full rank, the Gram-Schmidt algorithm gives the unique
reduced QR-factorization.

2. If A does not have full rank, then ~vk = 0 can occur during the
iteration; if it does set ~qk to be an arbitrary vector∗ orthogonal
to span (~q1, . . . ~qk−1), and proceed.

3. For Full QR factorization, when m > n, follow Gram-Schmidt
as described until j = n, then take an addition (m − n) steps,
introducing arbitrary orthogonal ~qk in each step.

∗ Column pivoting (exchanges) may be necessary.
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Solving A~x = ~b by QR-Factorization

If we have a QR-factorization algorithm handy, then we have the
following “algorithm” for solving A~x = ~b

1. Compute the QR-factorization A = QR .

2. Compute ~y = Q∗~b.

3. Solve R~x = ~y for ~x .

Note: Computing Q∗~b is just a multiplication with a unitary matrix.
Since |det(Q∗)| = 1 this completely numerically stable in the sense
that errors will not be magnified. (We will quantify this
soon.)

Note: Solving R~x = ~y is very easy (backward substitution) since R is
upper triangular.

Note: The bulk of the work is in computing the QR-factorization (2–3
times that of Gaussian Elimination).
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Homework #3 Due Date in Canvas/Gradescope

Implement the reduced QR-factorization by Classical Gram-Schmidt.

1. Write a function which given A ∈ Cm×n computes Q ∈ Cm×n, and R ∈ Cn×n — in
matlab/python you want to start something like this (e.g. file: qr cgs.m, or qr cgs.py):

function [Q,R] = qr cgs(A)

% Indentation does not matter...

% Implicit Return of Results

def qr cgs(A)

# Indentation matters

# Explicit Return of Results

return Q, R

See help function in matab, or python functions (clickable) for help on writing functions.

2. Validate your function — test that (i) (A − QR) ≈ 0; (ii) Q is unitary; and (iii) R upper
triangular. Show 3 test cases for (3× 3), (5× 5), and (251× 251) matrices.

3. Compare the result for the (3 × 3), (5 × 5) cases with the built-in (“library”) version of the
QR-factorization; comment on the similarities/differences.
See help qr in matlab, or numpy.linalg.qr (clickable).

4. Can you find a non-zero matrix where your QR-factorization breaks?

∞. Hand in your code, and your validation/test-cases.

∞∞. Appropriately “tag” all pages with the corresponding question(s) in Gradescope.
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Homework AI-Policy Spring 2024

AI-era Policies — SPRING 2024

AI-3 Documented: Students can use AI in any manner for this
assessment or deliverable, but they must provide appropriate
documentation for all AI use.

This applies to ALL MATH-543 WORK during the SPRING 2024
semester.

The goal is to leverage existing tools and resources to generate HIGH
QUALITY SOLUTIONS to all assessments.

You MUST document what tools you use and HOW they were used
(including prompts); AND how results were VALIDATED.

BE PREPARED to DISCUSS homework solutions and AI-strategies. Par-
ticipation in the in-class discussions will be an essential component
of the grade for each assessment.
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