Numerical Matrix Analysis

Notes \＃8
The QR－Factorization：－Least Squares Problems

Peter Blomgren
〈blomgren＠sdsu．edu〉
Department of Mathematics and Statistics
Dynamical Systems Group

Computational Sciences Research Center
San Diego State University
San Diego，CA 92182－7720
http：／／terminus．sdsu．edu／
Spring 2024
（Revised：February 20，2024）

Peter Blomgren〈blomgren＠sdsu．edu〉 8．Least Squares Problems

Outline
（1）Student Learning Targets，and Objectives
－SLOs：QR－Factorization Least Squares Problems
RecapLeast Squares Problems
－Problem，Language．．．
－Problem Set－up：the Vandermonde Matrix
－Formal Statement
4 LSQ：The Solution
－Pseudo－Inverse
－The Moore－Penrose Matrix Inverse
－3．5 Algorithms for the LSQ Problem

Peter Blomgren 〈blomgren＠sdsu．edu〉 8．Least Squares Problems

Reap

Squares Problems
LSQ：The Solution
Previously（Gram－Schmidt and Householder）
Computing the QR－factorization 3 ways：
Gram－Schmidt Orthogonalization — Modified vs．Classical．
Householder Triangularization

Modified Gram－Schmidt	Householder
Numerically stable＊	Even better stability
Useful for iterative methods	Not as useful for iterative methods
＂Triangular Orthogonalization＂	＂Orthogonal Triangularization＂
$A R_{1} R_{2} \ldots R_{n}=\widehat{Q}$	$Q_{n} \ldots Q_{2} Q_{1} A=R$
Work $\sim 2 m n^{2}$ flops	Work $\left(\sim 2 m n^{2}-\frac{2 n^{3}}{3}\right)$ flops
	Note：No Q at this lower cost！！！！
Peter Blomgren 〈blongrenosssu．edu〉	
8．Least Squares Problems	

Least Squares

Least squares data／model fitting is used everywhere；－social sciences，engineering，statistics，mathematics，＂data science＂．．
In our language，the problem is expressed as an overdetermined system

$$
A \vec{x}=\vec{b}, \quad A \in \mathbb{C}^{m \times n}, m \gg n .
$$

Since A is＂tall and skinny，＂we have more equations than unknowns．\rightsquigarrow Very likely to be inconsistent．

The least squares solution is defined by

$$
\vec{x}_{\mathrm{LS}}=\arg \min _{\vec{x} \in \mathbb{C}^{n}}\|\vec{b}-A \vec{x}\|_{2}^{2} .
$$

$$
\begin{aligned}
\text { Recap } & \text { Problem, Language... } \\
\text { Least Squares Problems } & \text { Problem Set-up: the Vandermonde Matrix } \\
\text { LSQ: The Solution } & \text { Formal Statement }
\end{aligned}
$$

Example：Polynomial Data－Fitting

Figure：Illustrating the least－squares polynomial fit of degrees $1,2,3,6,12$ ，and 18 to a data－set containing 38 points．The top panel of each figure shows the data－set and the fitted polynomial；the bottom panel shows the residual（as a function of the polynomial degree），

Least Squares：Some Language

The quantity $\vec{r}(\vec{x})=\vec{b}-A \vec{x}$ is known as the residual，and since our problem is overdetermined，we cannot（in general）hope to find an \vec{x}^{*} such that $\vec{r}\left(\vec{x}^{*}\right)=\overrightarrow{0}$ ．

Minimizing some norm of $\vec{r}(\vec{x})$ is a close second best．
This（among other things，like e．g．checking that large matrices contain zeros）is why we needed the discussion of norms back in ［Lecture\＃3］．

The choice of the 2－norm leads to a problem that is easy to work with，and it is usually the correct choice for statistical reasons－ computing the least squares solution yields the Maximum
Likelihood Estimate（under certain conditions－independent identically distributed variables，etc．．．）

Peter Blomgren〈blomgren＠sdsu．edu〉 8．Least Squares Problems

Problem，Language．．
Problem Set－up：the Vandermonde Matrix Formal Statement

Least－Squares：Problem Set－Up
So．．．How do we fit（polynomial）models to data？！？We flip back to ［Lecture\＃2］and express our system using the Vandermonde matrix

$$
A=\left[\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{d} \\
1 & x_{2} & x_{2}^{2} & \cdots & x_{2}^{d} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & x_{m} & x_{m}^{2} & \cdots & x_{m}^{d}
\end{array}\right], \quad \vec{c}=\left[\begin{array}{c}
c_{0} \\
c_{1} \\
c_{2} \\
\vdots \\
c_{d}
\end{array}\right], \quad \vec{b}=\left[\begin{array}{c}
b_{0} \\
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right],
$$

where the fitting polynomial is described using the coefficients \vec{c}

$$
p(x)=c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{d} x^{d}
$$

Given the locations of the points \vec{x} ，and a particular set of coefficients \vec{c} ， the matrix－vector product $\vec{p}=A \vec{c}$ evaluates the polynomial in those points，i．e．$\vec{p}^{T}=\left(p\left(x_{1}\right), p\left(x_{2}\right), \ldots, p\left(x_{m}\right)\right)$ ．

Least－Squares：Thinking About Projectors

We can think of the least squares problem as the problem of finding the vector in range (A) which is closest to \vec{b} ．

Since we are measuring using the 2 －norm，＂closest＂$\stackrel{\text { def }}{=}$ closest in the sense of Euclidean distance
We look to minimize the residual，$\vec{r}=\vec{b}-A \vec{x}$ ．
The minimum residual must be orthogonal to range (A) ．

$$
\begin{aligned}
\text { Recap } & \text { Pseudo-Inverse } \\
\text { Least Squares Problems } & \text { The Moore-Penrose Matrix Inverse } \\
\text { LSQ: The Solution } & \text { 3.5 Algorithms for the LSQ Problem }
\end{aligned}
$$

Language：The Pseudo－Inverse
Hence，if A has full rank，the least squares－solution $\vec{x}_{\text {LS }}$ is uniquely determined by

$$
\vec{x}_{\mathrm{LS}}=\left(A^{*} A\right)^{-1} A^{*} \vec{b} .
$$

The matrix

$$
A^{\dagger} \stackrel{\text { def }}{=}\left(A^{*} A\right)^{-1} A^{*}
$$

is known as a pseudo－inverse of A ．
With this notation and language，the least squares problem comes down to computing one or both of

$$
\vec{x}=A^{\dagger} \vec{b}, \quad \vec{y}=P \vec{b}
$$

We will look at $\left(3+\frac{1}{2}\right)$ algorithms for accomplishing this．

Theorem（Linear Least Squares）

Let $A \in \mathbb{C}^{m \times n}(m \geq n)$ ，and $\vec{b} \in \mathbb{C}^{m}$ be given．A vector $\vec{x} \in \mathbb{C}^{n}$ minimizes the residual norm $\|\vec{r}\|_{2}=\|\vec{b}-A \vec{x}\|_{2}$ ，thereby solving the least squares problem，if and only if $\vec{r} \perp$ range (A) ，that is

$$
\underbrace{A^{*} \vec{r}=0}_{\vec{r} \in \operatorname{null}\left(A^{*}\right)}, \quad \Leftrightarrow \quad A^{*} A \vec{x}=A^{*} \vec{b}, \quad \Leftrightarrow \quad A \vec{x}=P \vec{b}
$$

where the orthogonal projector $P \in \mathbb{C}^{m \times m}$ maps \mathbb{C}^{m} onto range (A) ．The $(n \times n)$ system $A^{*} A \vec{x}=A^{*} \vec{b}$（the normal equations），is non－singular if and only if A has full rank \Leftrightarrow The solution \vec{x}^{*} is unique if and only if A has full rank．

The Moore－Penrose Matrix Inverse
Pseudo－Inverse

Given $B \in \mathbb{C}^{m \times n}$ ，the Moore－Penrose generalized matrix inverse is a unique pseudo－inverse B^{\dagger} ，satisfying
（i）$B B^{\dagger} B=B$
（ii）$\quad B^{\dagger} B B^{\dagger}=B^{\dagger}$
（iii）$\quad\left(B B^{\dagger}\right)^{*}=B B^{\dagger}$
（iv）$\left(B^{\dagger} B\right)^{*}=B^{\dagger} B$
The Moore－Penrose inverse is often referred to in the literature，so it is a good thing to know what it is．．．

Pseudo－Inverse
Matrix Inverse
3．5 Algorithms for the LSQ Problem

A Note on the Case（ $m<n$ ）

When $A \in \mathbb{C}^{m \times n},(m<n)$ ，we must have $\operatorname{rank}(A) \leq m<n$ ，and $A^{*} A \in \mathbb{C}^{n \times n}$ ．Since $(n>m)$ this matrix cannot have full rank \rightsquigarrow it is not invertible．

The rank－deficient scenario，where $\operatorname{rank}(A)<n$ requires＂some＂ more thought．

The Normal Equations Matrix $\left(A^{*} A\right)$ is not invertible \rightsquigarrow we lose the＂infinite precision＂pseudo－inverse $\left(A^{*} A\right)^{-1} A^{*}$ ；and with it the uniqueness of＂the＂solution．

In order to make progress we have to（yet again）re－define what we mean by finding a solution．．．but that＇s a story for a different day．

Peter Blomgren 〈blomgren＠sdsu．edu〉 8．Least Squares Problems
－（13／23）

$$
\begin{array}{r|r}
\text { Recap } & \text { Pseudo-Inverse } \\
\text { Least Squares Problems } & \text { The Moore-Penrose Matrix Inverse } \\
\text { LSQ: The Solution } & \mathbf{3 . 5} \text { Algorithms for the LSQ Problem }
\end{array}
$$

Take\＃2－The SVD

$$
\sim\left(2 m n^{2}+11 n^{3}\right) \text { flops }
$$

If we compute the reduced SVD

$$
A=\widehat{U} \widehat{\Sigma} V^{*},
$$

then we can use \widehat{U} to express the projector $P=\widehat{U} \widehat{U}^{*}$ ，and end up with the linear system of equations

$$
\widehat{U} \widehat{\Sigma} V^{*} \vec{x}=\widehat{U} \widehat{U}^{*} \vec{b} .
$$

and we get $\vec{x}_{\text {LS }}$ by

$$
\vec{x}_{\mathrm{LS}}=V \widehat{\Sigma}^{-1} \widehat{U}^{*} \vec{b} .
$$

Here，the pseudo－inverse is expressed as

$$
A^{\dagger}=V \widehat{\Sigma}^{-1} \widehat{U}^{*} .
$$

Note：Since $\operatorname{rank}(A)=\operatorname{rank}(\widehat{\Sigma})$ this does not directly help with the rank－deficient problem

Take\＃1－The Normal Equations

$$
\sim\left(m n^{2}+\frac{n^{3}}{3}\right) \text { flops }
$$

The classical／straight－forward／bone－headed（？）way to solve the least squares problem is to solve the normal equations

$$
A^{*} A \vec{x}=A^{*} \vec{b}
$$

The preferred way of doing this is by computing the Cholesky
factorization（essentially a symmetric row－reduction algorithm；details to follow in［Notes\＃17］）

$$
A^{*} A \xrightarrow{\text { Cholesky }} \quad R^{*} R,
$$

where R is an upper triangular matrix；The equivalent system

$$
R^{*} R \vec{x}=A^{*} \vec{b}, \quad\left(A^{\dagger}=\left(R^{*} R\right)^{-1} A^{*}\right),
$$

can be solved by a forward and a backward substitution sweep．
Sidenote：There are specialized iterative schemes，e．g．CGNE（Conjugate Gradient on the Normal Equations）which are useful in certain circumstances（sparse A－matrix）；see
－https：／／en．wikipedia．org／wiki／Conjugate＿gradient＿method\＃Conjugate＿gradient＿on＿the＿normal＿equations
－https：／／mathworld．wolfram．com／ConjugateGradientMethodontheNormalEquations．html
Peter Blomgren 〈blomgren＠sdsu．edu〉 8．Least Squares Problems

> | east Squares Problems | The Moore-Penrose Matrix Inverse |
| :---: | :--- |
| LSQ: The Solution | $\mathbf{3 . 5}$ Algorithms for the LSQ Problem |

Take\＃3－The QR－Factorization

$$
\sim\left(2 m n^{2}-\frac{2 n^{3}}{3}\right) \text { flops }
$$

With the reduced QR factorization，the game unfolds like this．．．
Given $A=\widehat{Q} \widehat{R}$ ，we can project \vec{b} to the range of A using $P=\widehat{Q} \widehat{Q}^{*}$ ，then the system

$$
\widehat{Q} \widehat{R} \vec{x}=\widehat{Q} \widehat{Q}^{*} \vec{b}
$$

has a unique solution，given by

$$
\vec{x}_{\mathrm{LS}}=\widehat{R}^{-1} \widehat{Q}^{*} \vec{b}, \quad\left(A^{\dagger}=\widehat{R}^{-1} \widehat{Q}^{*}\right) .
$$

Note：Again， $\operatorname{rank}(A)=\operatorname{rank}(R)$ ；i．e．we are not getting any direct help with the rank－deficient problem．

Comment

Note that we do not need Q explicitly，only the action $Q^{*} \vec{b}$ ，which we can get cheaply from the Q－less version of Householder triangularization．

Pseudo－Inverse
Moore－Penrose Matrix Inverse
3．5 Algorithms for the LSQ Problem

Figures on Next Slides

Method	Work（flops）	Comment
Normal Equations	$\sim\left(m n^{2}+\frac{n^{3}}{3}\right)$	Fastest，sensitive to roundoff er－ rors．Not recommended．
QR－Factorization	$\sim\left(2 m n^{2}-\frac{2 n^{3}}{3}\right)$	Your everyday choice．Can run into trouble when A is close to rank－ deficient．
SVD	$\sim\left(2 m n^{2}+11 n^{3}\right)$	The Big Hammer than more stable more computational work．requires

Comment
If $m \gg n$ ，then the work for QR and SVD are both dominated by the first term， $2 m n^{2}$ ， and the computational cost of the SVD is not excessive．However，when $m \approx n$ the cost of the SVD is roughly 10 times that of the QR－factorization．

Peter Blomgren 〈blomgren＠sdsu．edu〉 8．Least Squares Problems
Recap Pseudo－Inverse
east Squares Problems The Moore－Penrose Matrix Inverse
Algorithms for Least Squares：Work Comparison

Figure：We have normalized so that the QR－workload is one；we notice that the NE＂savings＂are quite small（and come with extra in－ stability issues）；as the aspect ratio approaches one，the SVD－ workload is about 10 times that of the QR－workload．

We can now compute（and have a＂serious＂use for）one of the big important tools of numerical linear algebra－the QR－factorization．

Next，we finally（？）formalize the discussion on＂numerical stability，＂and then we take another look at some of our algorithms in the light of stability considerations．

HW\＃4

1．Implement modified Gram－Schmidt QR－factorization．
Write a function which given an $A \in \mathbb{C}^{m \times n}$ computes $Q \in \mathbb{C}^{m \times n}$ ， and $R \in \mathbb{C}^{n \times n}-$ qr＿mgs $(\mathrm{A}) \rightarrow \mathrm{Q}, \mathrm{R}$ ．

Work through experiment \＃1 and \＃2 in＂Lecture 9＂of Trefethen \＆Bau．Make sure your versions of classical and modified GS can reproduce figure 9．1．

Note that depending on your coding environment，you may have to use larger（and worse conditioned）matrices to achieve the loss of orthogonality in classical Gram－Schmidt．

2．Do exercises $9.1(a, b)$ ，and $9.2(a, b)$ ．
For additional（non－mandatory）fun do exercises 9．1（c）and 9．2（c）．

Pseudo－Inverse
Least Squares Problems The Moore－Penrose Matrix Inverse
LSQ：The Solution 3．5 Algorithms for the LSQ Problem
Homework AI－Policy Spring 2024

AI－era Policies－SPRING 2024

AI－3 Documented：Students can use Al in any manner for this assessment or deliverable，but they must provide appropriate documentation for all AI use．

This applies to ALL MATH－543 WORK during the SPRING 2024 semester．

The goal is to leverage existing tools and resources to generate HIGH QUALITY SOLUTIONS to all assessments．

You MUST document what tools you use and HOW they were used （including prompts）；AND how results were VALIDATED

BE PREPARED to DISCUSS homework solutions and Al－strategies．Par－ ticipation in the in－class discussions will be an essential component of the grade for each assessment．

