
Numerical Matrix Analysis

Notes #8
The QR-Factorization: — Least Squares Problems

Peter Blomgren
〈blomgren@sdsu.edu〉

Department of Mathematics and Statistics
Dynamical Systems Group

Computational Sciences Research Center

San Diego State University
San Diego, CA 92182-7720

http://terminus.sdsu.edu/

Spring 2024
(Revised: February 20, 2024)

Peter Blomgren 〈blomgren@sdsu.edu〉 8. Least Squares Problems — (1/23)

http://terminus.sdsu.edu/

Outline

1 Student Learning Targets, and Objectives
SLOs: QR-Factorization Least Squares Problems

2 Recap

3 Least Squares Problems
Problem, Language...
Problem Set-up: the Vandermonde Matrix
Formal Statement

4 LSQ: The Solution
Pseudo-Inverse
The Moore-Penrose Matrix Inverse
3.5 Algorithms for the LSQ Problem

Peter Blomgren 〈blomgren@sdsu.edu〉 8. Least Squares Problems — (2/23)

Student Learning Targets, and Objectives SLOs: QR-Factorization Least Squares Problems

Student Learning Targets, and Objectives

Target Linear Least Squares Problems

Objective Discrepancy Measure: Residual
Objective Relation to the Maximum Likelyhood Estimate
Objective Polynomial Fitting, and the Vandermonde Matrix
Objective The Moore-Penrose Pseudo-Inverse of a Matrix

Target Approaches

Objective Normal Equations
Objective Pseudo-Inverse Solution based on the SVD
Objective Pseudo-Inverse Solution based on the QR-Factorization

Peter Blomgren 〈blomgren@sdsu.edu〉 8. Least Squares Problems — (3/23)

Recap
Least Squares Problems

LSQ: The Solution

Previously (Gram-Schmidt and Householder)

Computing the QR-factorization 3 ways:

Gram-Schmidt Orthogonalization — Modified vs. Classical.

Householder Triangularization

Modified Gram-Schmidt Householder

Numerically stable∗ Even better stability
Useful for iterative methods Not as useful for iterative methods

“Triangular Orthogonalization” “Orthogonal Triangularization”

AR1R2 . . .Rn = Q̂ Qn . . .Q2Q1A = R

Work ∼ 2mn2 flops Work
(
∼ 2mn2 − 2n3

3

)
flops

Note: No Q at this lower cost!!!

Peter Blomgren 〈blomgren@sdsu.edu〉 8. Least Squares Problems — (4/23)

Recap
Least Squares Problems

LSQ: The Solution

Problem, Language...
Problem Set-up: the Vandermonde Matrix
Formal Statement

Least Squares

Least squares data/model fitting is used everywhere; — social
sciences, engineering, statistics, mathematics, “data science” . . .

In our language, the problem is expressed as an overdetermined
system

A~x = ~b, A ∈ C
m×n, m≫ n.

Since A is “tall and skinny,” we have more equations than
unknowns. Very likely to be inconsistent.

The least squares solution is defined by

~xLS = arg min
~x∈Cn

∥∥∥~b − A~x
∥∥∥
2

2
.

Peter Blomgren 〈blomgren@sdsu.edu〉 8. Least Squares Problems — (5/23)

Recap
Least Squares Problems

LSQ: The Solution

Problem, Language...
Problem Set-up: the Vandermonde Matrix
Formal Statement

Least Squares: Some Language

The quantity ~r(~x) = ~b − A~x is known as the residual, and since
our problem is overdetermined, we cannot (in general) hope to find
an ~x∗ such that ~r(~x∗) = ~0.

Minimizing some norm of ~r(~x) is a close second best.

This (among other things, like e.g. checking that large matrices
contain zeros) is why we needed the discussion of norms back in
[Lecture#3].

The choice of the 2-norm leads to a problem that is easy to work
with, and it is usually the correct choice for statistical reasons —
computing the least squares solution yields the Maximum
Likelihood Estimate (under certain conditions — independent
identically distributed variables, etc...)

Peter Blomgren 〈blomgren@sdsu.edu〉 8. Least Squares Problems — (6/23)

Recap
Least Squares Problems

LSQ: The Solution

Problem, Language...
Problem Set-up: the Vandermonde Matrix
Formal Statement

Example: Polynomial Data-Fitting

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
25

30

35

40

45

50

55

0 5 10 15 20
14

16

18
−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

25

30

35

40

45

50

55

0 5 10 15 20
10

15

20
−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

25

30

35

40

45

50

55

0 5 10 15 20
0

10

20

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
25

30

35

40

45

50

55

0 5 10 15 20
0

10

20
−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

25

30

35

40

45

50

55

0 5 10 15 20
0

10

20
−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

25

30

35

40

45

50

55

0 5 10 15 20
0

10

20

Figure: Illustrating the least-squares polynomial fit of degrees 1, 2, 3, 6, 12, and 18 to a
data-set containing 38 points. The top panel of each figure shows the data-set and the fitted
polynomial; the bottom panel shows the residual (as a function of the polynomial degree).

Peter Blomgren 〈blomgren@sdsu.edu〉 8. Least Squares Problems — (7/23)

Recap
Least Squares Problems

LSQ: The Solution

Problem, Language...
Problem Set-up: the Vandermonde Matrix
Formal Statement

Least-Squares: Problem Set-Up

So... How do we fit (polynomial) models to data?!? We flip back to
[Lecture#2] and express our system using the Vandermonde matrix

A =




1 x1 x21 · · · xd1
1 x2 x22 · · · xd2
...

...
...

...
1 xm x2m · · · xdm


 , ~c =




c0
c1
c2
...
cd



, ~b =




b0
b1
b2
...
bm



,

where the fitting polynomial is described using the coefficients ~c

p(x) = c0 + c1x + c2x
2 + · · ·+ cdx

d .

Given the locations of the points ~x , and a particular set of coefficients ~c ,
the matrix-vector product ~p = A~c evaluates the polynomial in those
points, i.e. ~pT = (p(x1), p(x2), . . . , p(xm)).

Peter Blomgren 〈blomgren@sdsu.edu〉 8. Least Squares Problems — (8/23)

Recap
Least Squares Problems

LSQ: The Solution

Problem, Language...
Problem Set-up: the Vandermonde Matrix
Formal Statement

Least-Squares: Thinking About Projectors

We can think of the least squares problem as the problem of
finding the vector in range(A) which is closest to ~b.

Since we are measuring using the 2-norm, “closest”
def
= closest in

the sense of Euclidean distance.

We look to minimize the residual, ~r = ~b − A~x .

The minimum residual must be orthogonal to range(A).

b

range(A)
y = Ax = Pb

r = b − Ax

Peter Blomgren 〈blomgren@sdsu.edu〉 8. Least Squares Problems — (9/23)

Recap
Least Squares Problems

LSQ: The Solution

Problem, Language...
Problem Set-up: the Vandermonde Matrix
Formal Statement

Least Squares: Formal Statement

Theorem (Linear Least Squares)

Let A ∈ C
m×n (m ≥ n), and ~b ∈ C

m be given. A vector ~x ∈ C
n

minimizes the residual norm ‖~r ‖2 = ‖~b − A~x‖2, thereby solving
the least squares problem, if and only if ~r ⊥ range(A), that is

A∗~r = 0︸ ︷︷ ︸
~r ∈ null(A∗)

, ⇔ A∗A~x = A∗~b, ⇔ A~x = P~b

where the orthogonal projector P ∈ C
m×m maps Cm onto

range(A). The (n × n) system A∗A~x = A∗~b (the normal
equations), is non-singular if and only if A has full rank ⇔ The
solution ~x∗ is unique if and only if A has full rank.

Peter Blomgren 〈blomgren@sdsu.edu〉 8. Least Squares Problems — (10/23)

Recap
Least Squares Problems

LSQ: The Solution

Pseudo-Inverse
The Moore-Penrose Matrix Inverse
3.5 Algorithms for the LSQ Problem

Language: The Pseudo-Inverse

Hence, if A has full rank, the least squares-solution ~xLS is uniquely
determined by

~xLS = (A∗A)−1A∗ ~b.

The matrix

A† def
= (A∗A)−1A∗

is known as a pseudo-inverse of A.

With this notation and language, the least squares problem comes
down to computing one or both of

~x = A†~b, ~y = P~b

We will look at
(
3 + 1

2

)
algorithms for accomplishing this.

Peter Blomgren 〈blomgren@sdsu.edu〉 8. Least Squares Problems — (11/23)

Recap
Least Squares Problems

LSQ: The Solution

Pseudo-Inverse
The Moore-Penrose Matrix Inverse
3.5 Algorithms for the LSQ Problem

The Moore-Penrose Matrix Inverse Pseudo-Inverse

Given B ∈ C
m×n, the Moore-Penrose generalized matrix inverse is

a unique pseudo-inverse B†, satisfying

(i) BB†B = B

(ii) B†BB† = B†

(iii) (BB†)∗ = BB†

(iv) (B†B)∗ = B†B

The Moore-Penrose inverse is often referred to in the literature, so
it is a good thing to know what it is...

Peter Blomgren 〈blomgren@sdsu.edu〉 8. Least Squares Problems — (12/23)

Recap
Least Squares Problems

LSQ: The Solution

Pseudo-Inverse
The Moore-Penrose Matrix Inverse
3.5 Algorithms for the LSQ Problem

A Note on the Case (m < n)

When A ∈ C
m×n, (m < n), we must have rank(A) ≤ m < n, and

A∗A ∈ C
n×n. Since (n > m) this matrix cannot have full rank it

is not invertible.

The rank-deficient scenario, where rank(A) < n requires “some”
more thought.

The Normal Equations Matrix (A∗A) is not invertible we lose
the “infinite precision” pseudo-inverse (A∗A)−1A∗; and with it the
uniqueness of “the” solution.

In order to make progress we have to (yet again) re-define what we
mean by finding a solution... but that’s a story for a different day.

Peter Blomgren 〈blomgren@sdsu.edu〉 8. Least Squares Problems — (13/23)

Recap
Least Squares Problems

LSQ: The Solution

Pseudo-Inverse
The Moore-Penrose Matrix Inverse
3.5 Algorithms for the LSQ Problem

Take#1 — The Normal Equations ∼
(
mn2 + n3

3

)
flops

The classical / straight-forward / bone-headed(?) way to solve the least
squares problem is to solve the normal equations

A∗A~x = A∗~b.

The preferred way of doing this is by computing the Cholesky
factorization (essentially a symmetric row-reduction algorithm; details to
follow in [Notes#17])

A∗A
Cholesky
−→ R∗R ,

where R is an upper triangular matrix; The equivalent system

R∗R~x = A∗~b, (A† = (R∗R)−1A∗),

can be solved by a forward and a backward substitution sweep.

Sidenote: There are specialized iterative schemes, e.g. CGNE (Conjugate Gradient on the Normal Equations) which
are useful in certain circumstances (sparse A-matrix); see

• https://en.wikipedia.org/wiki/Conjugate gradient method#Conjugate gradient on the normal equations

• https://mathworld.wolfram.com/ConjugateGradientMethodontheNormalEquations.html

Peter Blomgren 〈blomgren@sdsu.edu〉 8. Least Squares Problems — (14/23)

https://en.wikipedia.org/wiki/Conjugate_gradient_method#Conjugate_gradient_on_the_normal_equations
https://mathworld.wolfram.com/ConjugateGradientMethodontheNormalEquations.html

Recap
Least Squares Problems

LSQ: The Solution

Pseudo-Inverse
The Moore-Penrose Matrix Inverse
3.5 Algorithms for the LSQ Problem

Take#2 — The SVD ∼
(
2mn2 + 11n3

)
flops

If we compute the reduced SVD

A = ÛΣ̂V ∗,

then we can use Û to express the projector P = ÛÛ∗, and end up with
the linear system of equations

ÛΣ̂V ∗~x = ÛÛ∗~b.

and we get ~xLS by

~xLS = V Σ̂−1Û∗~b.

Here, the pseudo-inverse is expressed as

A† = V Σ̂−1Û∗.

Note: Since rank(A) = rank(Σ̂) this does not directly help with the rank-deficient problem.

Peter Blomgren 〈blomgren@sdsu.edu〉 8. Least Squares Problems — (15/23)

Recap
Least Squares Problems

LSQ: The Solution

Pseudo-Inverse
The Moore-Penrose Matrix Inverse
3.5 Algorithms for the LSQ Problem

Take#3 — The QR-Factorization ∼
(
2mn2 − 2n3

3

)
flops

With the reduced QR factorization, the game unfolds like this...

Given A = Q̂R̂ , we can project ~b to the range of A using P = Q̂Q̂∗, then
the system

Q̂R̂~x = Q̂Q̂∗~b.

has a unique solution, given by

~xLS = R̂−1Q̂∗~b, (A† = R̂−1Q̂∗).

Note: Again, rank(A) = rank(R); i.e.we are not getting any direct help with the rank-deficient problem.

Comment

Note that we do not need Q explicitly, only the action Q∗~b, which we
can get cheaply from the Q-less version of Householder triangularization.

Peter Blomgren 〈blomgren@sdsu.edu〉 8. Least Squares Problems — (16/23)

Recap
Least Squares Problems

LSQ: The Solution

Pseudo-Inverse
The Moore-Penrose Matrix Inverse
3.5 Algorithms for the LSQ Problem

Take#31
2 — The Q-less QR-Factorization

Say we computed R̂ using the Householder Q-less QR-factorization,
but “forgot” to compute Q∗~b, is everything lost?!?

No, we can still compute ~xLS using the following sequence

~x ← R−1R−∗(A∗~b)

~r ← ~b − A~x
~e ← R−1R−∗(A∗~r)
~x ← ~x + ~e.

The first step solves the “semi-normal equations”

R∗R~x = A∗~b.

The remaining three steps takes one step of iterative refinement to
reduce roundoff error.

Peter Blomgren 〈blomgren@sdsu.edu〉 8. Least Squares Problems — (17/23)

Recap
Least Squares Problems

LSQ: The Solution

Pseudo-Inverse
The Moore-Penrose Matrix Inverse
3.5 Algorithms for the LSQ Problem

Algorithms for Least Squares: Comments Figures on Next Slides

Method Work (flops) Comment

Normal Equations ∼
(

mn2 + n3

3

)

Fastest, sensitive to roundoff er-
rors. Not recommended.

QR-Factorization ∼
(

2mn2 − 2n3

3

) Your everyday choice. Can run into
trouble when A is close to rank-
deficient.

SVD ∼
(

2mn2 + 11n3
)

The Big HammerTM more stable
than the QR approach, but requires
more computational work.

Comment

If m ≫ n, then the work for QR and SVD are both dominated by the first term, 2mn2,
and the computational cost of the SVD is not excessive. However, when m ≈ n the
cost of the SVD is roughly 10 times that of the QR-factorization.

Peter Blomgren 〈blomgren@sdsu.edu〉 8. Least Squares Problems — (18/23)

Recap
Least Squares Problems

LSQ: The Solution

Pseudo-Inverse
The Moore-Penrose Matrix Inverse
3.5 Algorithms for the LSQ Problem

Algorithms for Least Squares: Work Comparison 1/2

Figure: It is worth noting that the relative NE–QR–SVD work only de-
pends on the aspect ratio — n

m
∈ [0, 1]

Peter Blomgren 〈blomgren@sdsu.edu〉 8. Least Squares Problems — (19/23)

Recap
Least Squares Problems

LSQ: The Solution

Pseudo-Inverse
The Moore-Penrose Matrix Inverse
3.5 Algorithms for the LSQ Problem

Algorithms for Least Squares: Work Comparison 2/2

Figure: We have normalized so that the QR-workload is one; we notice
that the NE “savings” are quite small (and come with extra in-
stability issues); as the aspect ratio approaches one, the SVD-
workload is about 10 times that of the QR-workload.

Peter Blomgren 〈blomgren@sdsu.edu〉 8. Least Squares Problems — (20/23)

Recap
Least Squares Problems

LSQ: The Solution

Pseudo-Inverse
The Moore-Penrose Matrix Inverse
3.5 Algorithms for the LSQ Problem

Looking Forward

We can now compute (and have a “serious” use for) one of the big
important tools of numerical linear algebra — the QR-factorization.

Next, we finally(?) formalize the discussion on “numerical
stability,” and then we take another look at some of our algorithms
in the light of stability considerations.

Peter Blomgren 〈blomgren@sdsu.edu〉 8. Least Squares Problems — (21/23)

Recap
Least Squares Problems

LSQ: The Solution

Pseudo-Inverse
The Moore-Penrose Matrix Inverse
3.5 Algorithms for the LSQ Problem

HW#4 Due Date in Canvas/Gradescope

HW#4

1. Implement modified Gram-Schmidt QR-factorization.

Write a function which given an A ∈ C
m×n computes Q ∈ C

m×n,
and R ∈ C

n×n — qr mgs(A) → Q, R.

Work through experiment #1 and #2 in “Lecture 9” of Trefethen
& Bau. Make sure your versions of classical and modified GS can
reproduce figure 9.1.

Note that depending on your coding environment, you may have
to use larger (and worse conditioned) matrices to achieve the loss
of orthogonality in classical Gram-Schmidt.

2. Do exercises 9.1(a,b), and 9.2(a,b).

For additional (non-mandatory) fun do exercises 9.1(c) and 9.2(c).

Peter Blomgren 〈blomgren@sdsu.edu〉 8. Least Squares Problems — (22/23)

Recap
Least Squares Problems

LSQ: The Solution

Pseudo-Inverse
The Moore-Penrose Matrix Inverse
3.5 Algorithms for the LSQ Problem

Homework AI-Policy Spring 2024

AI-era Policies — SPRING 2024

AI-3 Documented: Students can use AI in any manner for this
assessment or deliverable, but they must provide appropriate
documentation for all AI use.

This applies to ALL MATH-543 WORK during the SPRING 2024
semester.

The goal is to leverage existing tools and resources to generate HIGH
QUALITY SOLUTIONS to all assessments.

You MUST document what tools you use and HOW they were used
(including prompts); AND how results were VALIDATED.

BE PREPARED to DISCUSS homework solutions and AI-strategies. Par-
ticipation in the in-class discussions will be an essential component
of the grade for each assessment.

Peter Blomgren 〈blomgren@sdsu.edu〉 8. Least Squares Problems — (23/23)

	
	1
	Student Learning Targets, and Objectives
	SLOs: QR-Factorization Least Squares Problems

	2
	Recap
	Least Squares Problems
	Problem, Language...
	Problem Set-up: the Vandermonde Matrix
	Formal Statement

	LSQ: The Solution
	Pseudo-Inverse
	The Moore-Penrose Matrix Inverse
	3.5 Algorithms for the LSQ Problem

