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Student Learning Targets, and Objectives SLOs: Conditioning and Condition Numbers

Student Learning Targets, and Objectives

Target Condition Numbers

Objective Know the definition of, and be able to computer, Absolute and
Relative Condition Numbers

Objective Condition number is the “special” case of continuity

Target Key Conditioning Examples

Objective Cancellation Error
Objective Wilkinson’s Classic Example — Ill-conditioning of root finding
Objective Eigenvalues and Eigenvectors
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Looking Back...
Conditioning Examples

Things We Ignored, or Waved Our Hands At
Conditioning of a Problem — “The Intrinsic Difficulty”

What We Swept Under The Rug...

So far we have not discussed stability in a systematic way...

... unless vigorous hand-waving and “proof by picture” qualifies as
systematic.

We now turn our attention to the issue of stability, and look at
several things:

•Conditioning — sensitivity to perturbations.

•Finite precision floating point arithmetic — representation errors.

•Stability of Algorithms.

Conditioning : Perturbation Behavior of the Mathematical Problem.

Stability : Perturbation Behavior of an Algorithm.
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Looking Back...
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Things We Ignored, or Waved Our Hands At
Conditioning of a Problem — “The Intrinsic Difficulty”

The Condition of a Problem

For us a (linear algebra) problem is a function

f : X → Y

where X ⊆ C
n, and Y ⊆ C

m. Given some input ~x ∈ X , we
produce an answer ~y ∈ Y .

A well-conditioned problem has the property that small perturba-
tions (changes) in ~x leads to small changes in ~y = f (~x).

An ill-conditioned problem has the property that small perturba-
tions (changes) in ~x leads to large changes in ~y = f (~x).

Clearly, we must quantify what “small” and “large” mean...
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Things We Ignored, or Waved Our Hands At
Conditioning of a Problem — “The Intrinsic Difficulty”

Absolute Condition Number

Let δ~x denote a small perturbation of ~x , and let

δf
def
= f (~x + δ~x)− f (~x)

be the corresponding change in f .

The Absolute Condition Number κ̂(~x) of the problem f at ~x is defined:

κ̂(~x) = lim
∆→0

sup
‖δ~x‖≤∆

‖δf ‖

‖δ~x‖

Think: the supremum over small perturbations.
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Things We Ignored, or Waved Our Hands At
Conditioning of a Problem — “The Intrinsic Difficulty”

Absolute Condition Number

Let δ~x denote a small perturbation of ~x , and let

δf
def
= f (~x + δ~x)− f (~x)

be the corresponding change in f .

The Absolute Condition Number κ̂(~x) of the problem f at ~x is defined:

κ̂(~x) = lim
∆→0

sup
‖δ~x‖≤∆

‖δf ‖

‖δ~x‖

Think: the supremum over small perturbations.

For notational convenience we usually drop the limit, and write

κ̂(~x) = sup
δ~x

‖δf ‖

‖δ~x‖

with the understanding that δ~x and δf are infinitesimal.
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Differentiability and the Absolute Condition Number

If f : Cn 7→ C
m is differentiable, we can define the Jacobian

J(~x) =




∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xn

...
...

...
∂fm
∂x1

∂fm
∂x2

. . . ∂fm
∂xn



.

Now, we have
δf = J(~x)δ~x , ‖δ~x‖ → 0,

and we can express the condition number in terms of the Jacobian

κ̂(~x) = ‖J(~x)‖.
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Relative Condition Number

The Relative Condition Number κ(~x) of the problem is defined
as

κ(~x) = lim
∆→0

sup
‖δ~x‖≤∆

[
‖δf ‖

‖f (~x)‖

/
‖δ~x‖

‖~x‖

]
,

or, compactly,

κ(~x) = sup
δ~x

[
‖δf ‖

‖f (~x)‖

/
‖δ~x‖

‖~x‖

]
.

If/When f is differentiable we get

κ(~x) =
‖~x‖

‖f (~x)‖
‖J(~x)‖.
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Absolute vs. Relative Condition Numbers

The relative condition number tends to be the more useful description
of error propagation in numerical analysis.

Part of the reason is that errors introduced due to floating point
arithmetic during computations are relative to the size of the computed
quantities.
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Absolute vs. Relative Condition Numbers

The relative condition number tends to be the more useful description
of error propagation in numerical analysis.

Part of the reason is that errors introduced due to floating point
arithmetic during computations are relative to the size of the computed
quantities.

Another reason is that even if the absolute condition number is small, the
relative condition number can still be large, if ‖f (~x)‖

‖~x‖ is small. Here, a

small absolute perturbation of f (~x) may make the result f (~x + δ~x)
almost completely independent of f (~x), i.e. completely dominated by the
perturbation.
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Absolute vs. Relative Condition Numbers

The relative condition number tends to be the more useful description
of error propagation in numerical analysis.

Part of the reason is that errors introduced due to floating point
arithmetic during computations are relative to the size of the computed
quantities.

Another reason is that even if the absolute condition number is small, the
relative condition number can still be large, if ‖f (~x)‖

‖~x‖ is small. Here, a

small absolute perturbation of f (~x) may make the result f (~x + δ~x)
almost completely independent of f (~x), i.e. completely dominated by the
perturbation.

Rules of Thumb: If κ ∼ 1, 10, 102 then it is “small,” and the problem
is well-conditioned; if κ ∼ 1010 → 1016 then it is
“large,” and the problem is ill-conditioned.
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Looking Back...
Conditioning Examples

Cancellation; Polynomial Roots; Matrix Eigenvalues
Conditioning of Fundamental Linear Algebra Operations

Example: Quantifying “Cancellation Error” 1 of 2

We consider the problem f : C2 → C defined by

f (~x) = x1 − x2, ~x =

[
x1

x2

]
∈ C

2

The Jacobian of f is

J(~x) =

[
∂f

∂x1

∂f

∂x2

]
=

[
1 −1

]
.
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Example: Quantifying “Cancellation Error” 1 of 2

We consider the problem f : C2 → C defined by

f (~x) = x1 − x2, ~x =

[
x1

x2

]
∈ C

2

The Jacobian of f is

J(~x) =

[
∂f

∂x1

∂f

∂x2

]
=

[
1 −1

]
.

If we use the ∞-norm, we have ‖J(~x)‖∞ = 2, and

κ(~x) =
‖J(~x)‖∞

‖f (~x)‖/‖~x‖∞
=

2 max{|x1|, |x2|}

|x1 − x2|
.

Now, if x1 ≈ x2, the problem is clearly ill-conditioned; otherwise it is
well-conditioned.
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Example: Quantifying “Cancellation Error” 2 of 2

log
10

(κ) for Subtraction
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Wilkinson’s Classic Example : Root Finding 1 of 4

Finding the roots of a polynomial given the polynomial coefficients is a
classic example of an ill-conditioned problem, e.g.

x2 − 2x + 1 = (x − 1)2

x2 − 2x + 0.9999 = (x − 0.99)(x − 1.01)
x2 − 2x + 0.999999 = (x − 0.999)(x − 1.001)

Here, a perturbation of 10−4 (10−6) in one coefficient moved both roots
10−2 (10−3).
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Wilkinson’s Classic Example : Root Finding 1 of 4

Finding the roots of a polynomial given the polynomial coefficients is a
classic example of an ill-conditioned problem, e.g.

x2 − 2x + 1 = (x − 1)2

x2 − 2x + 0.9999 = (x − 0.99)(x − 1.01)
x2 − 2x + 0.999999 = (x − 0.999)(x − 1.001)

Here, a perturbation of 10−4 (10−6) in one coefficient moved both roots
10−2 (10−3).

The roots change ∝
√

δ(coeff), and since

lim
δ(coeff)ց0

δ(roots)

δ(coeff)
= lim

δ(coeff)ց0

√
δ(coeff)

δ(coeff)
= lim

δ(coeff)ց0

1√
δ(coeff)

→∞

the condition number is: κ =∞.
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Wilkinson’s Classic Example 2 of 4

Even when the roots are single (distinct), polynomial root-finding
is ill-conditioned:

If the ith coefficient ai of a polynomial p(x) is perturbed by δai ,
the perturbation of the jth root xj is

δxj = −
(δai )x

i
j

p′(xj)
, and κji =

|aix
i−1
j |

|p′(xj)|

where κji is the condition number of xj with respect to
perturbation of the coefficient ai .

This number can be very large.
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Wilkinson’s Classic Example : Root Finding 3 of 4

The classic example is the roots of Wilkinson’s polynomial

p(x) =

20∏

i=1

(x − i) = a0 + a1x + · · ·+ a19x
19 + x20

with the unperturbed roots {1, 2, . . . , 19, 20}.

It turns out that the most sensitive root is r15 = 15, and it is most
sensitive to perturbations in a15 ≈ −1.67× 109, with
κ15,15 ≈ 4.6602× 1012.

The figure on the next slide shows the distribution of roots of 100
randomly perturbed Wilkinson polynomials. The coefficients have
been perturbed ãi = (1 + 10−10ri )ai , where ri is drawn from the
N(0, 1) distribution (mean zero, variance 1).
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Wilkinson’s Classic Example : Root Finding 4 of 4
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Polynomial Roots: Comments

It turns out that polynomial rootfinding does not have to be as
ill-conditioned as we have described. The ill-conditioning as
described is largely associated with the unfortunate choice of
basis:

{
xk

}
k=0,1,...

(the standard polynomial basis).

Using, e.g. the orthonormal Chebyshev polynomial basis
{Tn(x) }n=0,1,... can improve the conditioning significantly.

[L.N. Trefethen 2012], Six Myths of Polynomial Interpolation and
Quadrature, Mathematics Today 47, no. 4, pp. 184–188.

[L.N. Trefethen 2013], Approximation Theory and Approximation
Practice, Society for Industrial and Applied Mathematics.
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Eigenvalues of a Non-Symmetric Matrix

Consider the two matrices

A1 =

[
1 1000
0 1

]
, and A2 =

[
1 1000

10−3 1

]
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Eigenvalues of a Non-Symmetric Matrix

Consider the two matrices

A1 =

[
1 1000
0 1

]
, and A2 =

[
1 1000

10−3 1

]

The eigenvalues and eigenvectors of A1 are

λ(A1) = {1, 1}, ~u1 =

[
1
0

]
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Eigenvalues of a Non-Symmetric Matrix

Consider the two matrices

A1 =

[
1 1000
0 1

]
, and A2 =

[
1 1000

10−3 1

]

The eigenvalues and eigenvectors of A1 are

λ(A1) = {1, 1}, ~u1 =

[
1
0

]

The eigenvalues and eigenvectors of A2 are

λ(A2) = {2, 0}, ~u1 =

[

0.99999950000037
0.00099999950000

]

, ~u2 =

[

−0.99999950000037
0.00099999950000

]

Clearly, this problem is quite ill-conditioned. When A is symmetric, then
the eigenvalues are better conditioned, with κ(λi ) = ‖A‖2/|λi |.
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Conditioning of Fundamental Linear Algebra Operations

Next, we take a closer look at the conditioning of the basic
building blocks of linear algebra, and note that these are at least in
some sense different things...

[An operation/function]
— Matrix-Vector multiplication, ~y ← A~x

[A mathematical “object”]
— The Matrix, A ∈ C

m×n

[A mathematical “problem”]

— The System of Equations, A~x = ~b
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Conditioning of Matrix-Vector Multiplication 1 of 4

Let A ∈ C
m×n, ~x ∈ C

n, and consider the product A~x . For now, consider
perturbations δ~x only.

From the definition of the condition number we have

κ(~x) = sup
δ~x

[
‖A(~x + δ~x)− A~x‖

‖A~x‖

/
‖δ~x‖

‖~x‖

]
= sup

δ~x

[
‖Aδ~x‖

‖δ~x‖

/
‖A~x‖

‖~x‖

]

that is

κ(~x) = ‖A‖
‖~x‖

‖A~x‖

If A is square and non-singular, we can use the fact‡ that ‖~x‖
‖A~x‖ ≤ ‖A

−1‖

and get a bound independent of ~x

κ(~x) ≤ ‖A‖ ‖A−1‖

‡ ‖~x‖ = ‖A−1A~x‖ ≤ ‖A−1‖ ‖A~x‖.
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Conditioning of Matrix-Vector Multiplication 2 of 4

Theorem (Conditioning of Matrix-Vector Multiplication)

Let A ∈ C
m×m be non-singular and consider the equation A~x = ~b. The

problem of computing ~b, given ~x , has condition number

κ = ‖A‖
‖~x‖

‖~b‖
≤ ‖A‖ ‖A−1‖

with respect to perturbations in ~x . The problem of computing ~x , given ~b
(A−1~b = ~x), has condition number

κ = ‖A−1‖
‖~b‖

‖~x‖
≤ ‖A−1‖ ‖A‖

with respect to perturbations in ~b. If ‖ · ‖ = ‖ · ‖2 equalities hold if ~x is a
multiple of a right singular vector of A corresponding to the minimal
singular value σm, and if ~b is a multiple of a left singular vector of A
corresponding to the maximal singular value σ1.
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Conditioning of Matrix-Vector Multiplication 3 of 4

Note: If A ∈ C
m×n is a full-rank (m ≥ n) non-square matrix, then the

previously stated results hold with A−1 replaced by the pseudo-
inverse, e.g.

A† = (A∗A)−1A∗

I.e.

κ ≤ ‖A‖ ‖A†‖

With this particular pseudo-inverse we have

κ ≤ ‖A‖2 ‖(A
∗A)−1A∗‖2 ≤ ‖A‖2 ‖(A

∗A)−1‖2 ‖A
∗‖2

= σ1
1

σ2
n

σ1 =

[
σ1

σn

]2
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Conditioning of Matrix-Vector Multiplication 4 of 4

Approach Pseudo-inverse Conditioning‡

Normal Equations A† = (A∗A)−1A∗ κ(~x |δ~b) ≤ (σ1/σn)2

QR-Factorization A† = R−1Q∗ κ(~x |δ~b) ≤ (σ1/σn)

SVD A† = VΣU∗ κ(~x |δ~b) ≤ (σ1/σn)

This shows that the solution strategy involving the normal
equations is subject to a larger condition number than the QR or
SVD approaches.

‡ Conditioning of solving for ~x = A†~b, wrt. δ~b.
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The Condition Number of a Matrix

The product ‖A‖ ‖A−1‖ is ubiquitous in numerical analysis, and
has its own name — the condition number of the matrix A;

κ(A) = ‖A‖ ‖A−1‖, relative to the norm ‖ · ‖.

In this instance, the condition number is attached to the matrix A,
not (as earlier) to a problem.
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The Condition Number of a Matrix

The product ‖A‖ ‖A−1‖ is ubiquitous in numerical analysis, and
has its own name — the condition number of the matrix A;

κ(A) = ‖A‖ ‖A−1‖, relative to the norm ‖ · ‖.

In this instance, the condition number is attached to the matrix A,
not (as earlier) to a problem.

If κ(A) is small the matrix is well-conditioned, otherwise
ill-conditioned.

If ‖ · ‖ = ‖ · ‖2, then

‖A‖ = σ1, ‖A−1‖ = 1/σm, thus κ(A) =
σ1

σm
.

When A is singular, κ(A) =∞.
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The Condition Number of a Matrix: Comments

Geometrically κ(A) is the eccentricity of the hyper-ellipse ASn−1

— the ratio of the major and minor semi-axes.

In many problems this ratio is referred to as the separation of
scales.

In Ordinary Differential Equations, the term stiffness is used.

Since 1 ≤ κ(A) ≤ ∞, it is sometimes more convenient to compute
the reciprocal condition number 1/κ(A). If 1/κ(A) ∼ 10−d then
application of A (or A−1) to a vector will roughly result in a loss of
d significant digits of accuracy.

For non-square A ∈ C
m×n (m ≥ n) of full rank, the most useful

generalization of the condition number is

κ(A) =
σ1

σn
.
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Condition of a System of Equations 1 of 2

We have considered A~x = ~b where A was fixed, and we perturbed
either ~x or ~b and looked at the effect on ~b or ~x .

Now, let’s perturb A 7→ A + δA, while holding ~b fixed, and study
the effect on ~x , we must have

(A + δA)(~x + δ~x) = ~b

A~x + δA~x + Aδ~x + δAδ~x = ~b expanded

δA~x + Aδ~x + δAδ~x = 0 used A~x = ~b
δA~x + Aδ~x = 0 dropped doubly infinitesimal term

Now,
δ~x = −A−1(δA~x).
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Condition of a System of Equations 2 of 2

From δ~x = −A−1(δA~x) we get

‖δ~x‖ ≤ ‖A−1‖ ‖δA‖ ‖~x‖

‖δ~x‖

‖~x‖
≤ ‖A−1‖ ‖δA‖

‖A‖

‖A‖︸︷︷︸
1

‖δ~x‖

‖~x‖

/
‖δA‖

‖A‖
≤ ‖A−1‖ ‖A‖

Hence, the condition number of the problem of computing
~x = A−1~b, with respect to perturbations in A, is bounded by κ(A).

From the earlier discussion, we know that the condition number of
the problem of computing ~x = A−1~b, with respect to perturbations
in ~b, is bounded by κ(A).
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Homework #5 Due Date in Canvas/Gradescope

Homework #5: Trefethen-&-Bau-12.3(a,b,c)

Note for HW#4: Please, don’t print any (80× 80)-matrices!
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Homework AI-Policy Spring 2024

AI-era Policies — SPRING 2024

AI-3 Documented: Students can use AI in any manner for this
assessment or deliverable, but they must provide appropriate
documentation for all AI use.

This applies to ALL MATH-543 WORK during the SPRING 2024
semester.

The goal is to leverage existing tools and resources to generate HIGH
QUALITY SOLUTIONS to all assessments.

You MUST document what tools you use and HOW they were used
(including prompts); AND how results were VALIDATED.

BE PREPARED to DISCUSS homework solutions and AI-strategies. Par-
ticipation in the in-class discussions will be an essential component
of the grade for each assessment.
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