Numerical Matrix Analysis

Notes \＃10－Conditioning and Stability Floating Point Arithmetic／Stability

Peter Blomgren

〈blomgren＠sdsu．edu〉
Department of Mathematics and Statistics Dynamical Systems Group
omputational Sciences Research Center
San Diego State University
San Diego，CA 92182－7720
http：／／terminus．sdsu．edu／

$$
\begin{aligned}
& \text { Spring } 2024 \\
& \text { (Revised: January } 18,2024 \text {) }
\end{aligned}
$$

Student Learning Targets，and Objectives －SLOs：Floating Point Arithmetic \＆Stability
Finite Precision
－IEEE Binary Floating Point（from Math $541^{\text {R．IP．}}$ ）
－Non－representable Values－a Source of Errors
Floating Point Arithmetic
－＂Theorem＂and Notation
－Fundamental Axiom of Floating Point Arithmetic
－Example
（4）Stability
－Introduction：What is the＂correct＂answer？
－Accuracy－Absolute and Relative Error
－Stability，and Backward Stability

IEEE Binary Floating Point（from Math 541 R．I．P．） Non－representable Values－a Source of Errors

Finite Precision

Target Floating Point Arithmetic
Objective Know how to express a floating point unmber using the IEEE－785－1985（and successor）standard
Objective Know how to express the limits of the floating point environment using $\varepsilon_{\text {mach }}$ ．
Target Stability
Objective Know the definitions of absolute and relative error．
Objective Know the formal and informal definitions of stable and backward stable algorithms．

The Binary Floating Point Arithmetic Standard 754－1985 （IEEE－The Institute for Electrical and Electronics Engineers） standard specified the following layout for a 64－bit real number：

$$
\mathrm{s}_{10} \mathrm{C}_{9} \ldots \mathrm{c}_{1} \mathrm{C}_{0} \mathrm{~m}_{51} \mathrm{~m}_{50} \ldots \mathrm{~m}_{1} \mathrm{~m}_{0}
$$

Where

Symbol	Bits	Description
s	1	The sign bit $-0=$ positive， $1=$ negative
c	11	The characteristic（exponent）
m	52	The mantissa

$$
r=(-1)^{s} 2^{c-1023}(1+f), \quad c=\sum_{n=0}^{10} c_{n} 2^{n}, \quad f=\sum_{k=0}^{51} \frac{m_{k}}{2^{52-k}}
$$

In order to be able to represent zero，$\pm \infty$ ，and $\mathbf{N a N}$（not－a－number）， the following special signals are defined in the IEEE－754－1985 standard：

Type	S（1 bit）	C（11 bits）	M（52 bits）
signaling NaN	u	$2047(\max)$	$.0 \mathrm{uuuuu}-\mathrm{u}\left(^{*}\right)$
quiet NaN	u	$2047(\max)$	$.1 \mathrm{uuuuu}-\mathrm{u}$
negative infinity	1	$2047(\max)$	$.000000-0$
positive infinity	0	$2047(\max)$	$.000000-0$
negative zero	1	0	$.000000-0$
positive zero	0	0	$.000000-0$
	$(*)$ with at least one 1 bit．		

From http：／／www．freesoft．org／CIE／RFC／1832／32．htm
If you think IEEE－754－1985 is too＂simple．＂There are some interesting additions in the IEEE 754－2008 revision；e．g．fused－multiply－add（fma）operations．
Some environments（e．g．AVX／AVX2／AVX－512 extensions）combine multiple fma op－ erations into a single step，e．g．performing a four－element dot－product on two 128 －bit SIMD registers $a_{0} \times b_{0}+a_{1} \times b_{1}+a_{2} \times b_{2}+a_{3} \times b_{3}$ with single cycle throughput．
Finite Precision
Floating Point Arithmetic Non－representabie Vaiues－a Source of Errors

Examples：Finite Precision

$$
r=(-1)^{s} 2^{c-1023}(1+f), \quad c=\sum_{k=0}^{10} c_{n} 2^{n}, \quad f=\sum_{k=0}^{51} \frac{m_{k}}{2^{52-k}}
$$

Example \＃3－（The Largest Positive Real Number）

$0,11111111110,111$

$$
\begin{aligned}
r_{3} & =(-1)^{0} \cdot 2^{1023} \cdot\left(1+\frac{1}{2}+\frac{1}{2^{2}}+\cdots+\frac{1}{2^{51}}+\frac{1}{2^{52}}\right) \\
& =2^{1023} \cdot\left(2-\frac{1}{2^{52}}\right) \approx 1.798 \times 10^{308}
\end{aligned}
$$

$$
r=(-1)^{s} 2^{c-1023}(1+f), \quad c=\sum_{k=0}^{10} c_{n} 2^{n}, \quad f=\sum_{k=0}^{51} \frac{m_{k}}{2^{52-k}}
$$

Example \＃1－ 3.0
$0,10000000000,100$

$$
r_{1}=(-1)^{0} \cdot 2^{2^{10}-1023} \cdot\left(1+\frac{1}{2}\right)=1 \cdot 2^{1} \cdot \frac{3}{2}=3.0
$$

Example \＃2－（The Smallest Positive Real Number）

0，00000000000，001

$$
r_{2}=(-1)^{0} \cdot 2^{0-1023} \cdot\left(1+2^{-52}\right) \approx 1.113 \times 10^{-308}
$$

Peter Blomgren 〈blomgren＠sdsu．edu〉	10．Floating Point Arithmetic／Stability	－（6／25）
Finite Precision Floating Point Arithmetic Stability	IEEE Binary Floating Point（from Math 541 R．I．P．） Non－representable Values－a Source of Errors	

That＇s Quite a Range！

In summary，we can represent

$$
\left\{ \pm 0, \quad \pm 1.113 \times 10^{-308}, \quad \pm 1.798 \times 10^{308}, \quad \pm \infty, \quad \mathrm{NaN}\right\}
$$

and a whole bunch of numbers in
$\left(-1.798 \times 10^{308},-1.113 \times 10^{-308}\right) \cup\left(1.113 \times 10^{-308}, 1.798 \times 10^{308}\right)$

Bottom line：Over－or under－flowing is usually not a problem in IEEE floating point arithmetic．

The problem in scientific computing is what we cannot represent．

$$
\begin{array}{r}
\left(2^{53}+2\right)-2^{53}=2 \\
\left(2^{53}+2\right)-\left(2^{53}+1\right)=2 \\
\left(2^{53}+1\right)-2^{53}=0 \\
2^{53}-\left(2^{53}-1\right)=1
\end{array}
$$

```
realmax \(=1.7977 \cdot 10^{308} \quad\) realmin \(=2.2251 \cdot 10^{-308}\)
\(\mathrm{eps}=2.2204 \cdot 10^{-16}\)
```

The smallest not－exactly－representable integer is $\left(2^{53}+1\right)=9,007,199,254,740,993$.

A gap of 2^{-1075} doesn＇t seem too bad．．．
However，the size of the gap depend on the value itself．．．

Consider $r=3.0$
010000000000100
and the next value

01000000000010001

Here，the difference is $2 \cdot 2^{-52}=2^{-51}\left(\sim 10^{-16}\right)$ ．
In general，in the interval［ $2^{n}, 2^{n+1}$ ］the gap is 2^{n-52} ．

There are gaps in the floating－point representation！
Given the representation
001
for the value $v_{1}=2^{-1023}\left(1+2^{-52}\right)$ ，
the next larger floating－point value is
00010
i．e．the value $v_{2}=2^{-1023}\left(1+2^{-51}\right)$
The difference between these two values is $2^{-1023} \cdot 2^{-52}=2^{-1075}$ （ $\sim 10^{-324}$ ）．

Any number in the interval $\left(v_{1}, v_{2}\right)$ is not representable！

Peter Blomgren 〈blomgren＠sdsu．edu〉	10．Floating Point Arithmetic／Stability	$-(10 / 25)$

| Finite Precision
 Floating Point Arithmetic
 Stability | IEEE Binary Floating Point（from Math 541 R．I．P．）
 Non－representable Values－a Source of Errors |
| ---: | ---: | ---: |

Something is Missing－Gaps in the Representation
At the other extreme，the difference between

011111111110110

and the next value

011111111110111

is $2^{1023} \cdot 2^{-52}=2^{971} \approx 1.996 \cdot 10^{292}$ ．
That＇s a fairly significant gap！！！（A number large enough to comfortably count all the particles in the universe．．．）
See，e．g．
https：／／physics．stackexchange．com／
questions／47941／dumbed－down－explanation－how－scientists－know－the－number－of－atoms－in－the－universe

It makes more sense to factor the exponent out of the discussion and talk about the relative gap：

Exponent	Gap	Relative Gap（Gap／Exponent）
2^{-1023}	2^{-1075}	$2^{-52} \approx 2.22 \times 10^{-16}$
2^{1}	2^{-51}	2^{-52}
2^{1023}	2^{971}	2^{-52}

Any difference between numbers smaller than the local gap is not representable，e．g．any number in the interval

$$
\left[3.0,3.0+\frac{1}{2^{51}}\right)
$$

is represented by the value 3．0．

Peter Blomgren 〈blomgren＠sdsu．edu〉 10．Floating Point Arithmetic／Stability ＂Theorem＂and Notation
Finite Precision
Floating Point Arithmetic
Fundamental Axiom of Floating Point Arithmetic Example

The Floating Point $\varepsilon_{\text {mach }}$
The relative gap defines $\varepsilon_{\text {mach }}$ ；and
$\forall x \in \mathbb{R}$ ，there exists ε with $|\varepsilon| \leq \varepsilon_{\text {mach }}$ ，such that $f 1(x)=x(1+\varepsilon)$ ．
In 64－bit floating point arithmetic $\varepsilon_{\text {mach }} \approx 2.22 \times 10^{-16}$ ．

In matlab，eps returns this value．

In Python，print（np．finfo（float）．eps）

In C，\＃include＜float． h ＞to define the value of＿DBL EPSILON＿

Peter Blomgren 〈blomgren＠sdsu．edu〉	10．Floating Point Arithmetic／Stability－（13／25）
Finite Precision Floating Point Arithmetic Stability	＂Theorem＂and Notation Fundamental Axiom of Floating Point Arithmetic Example
The Floating Point $\varepsilon_{\text {mach }}$	

Theorem＂

Floating point＂numbers＂represent intervals！

Notation

We let $\mathrm{fl}(x)$ denote the floating point representation of $x \in \mathbb{R}$ ．
Let the symbols \oplus, \ominus, \otimes ，and \oslash denote the floating－point operations：addition，subtraction，multiplication，and division．

The task at hand is to make useful statements about $\tilde{f}(\vec{x})$ ．
Even though $\tilde{f}(\vec{x})$ is affected by many factors－roundoff errors， convergence tolerances，competing processes on the computer＊，etc；we will be able to make（maybe surprisingly）clear statements about $\tilde{f}(\vec{x})$ ．
＊Note that depending on the memory model，the previous state of a mem－ ory location may affect the result in e．g．the case of cancellation errors： If we subtract two 16 －digit numbers with 13 common leading digits，we are left with 3 digits of valid information．We tend to view the remain－ ing 13 digits as＂random．＂But really，there is nothing random about what happens inside the computer（we hope！）－the＂randomness＂will depend on what happened previously．．．

Peter Blomgren 〈blomgren＠sdsu．edu〉	10．Floating Point Arithmetic／Stability－（21／25）
Finite Precision Floating Point Arithmetic Stability	Introduction：What is the＂correct＂answer？ Accuracy－Absolute and Relative Error Stability，and Backward Stability
Interpretation： $\mathcal{O}\left(\varepsilon_{\text {mach }}\right)$	

Since all floating point errors are functions of $\varepsilon_{\text {mach }}$（the relative error in each operation is bounded by $\varepsilon_{\text {mach }}$ ），the relative error of the algorithm must be a function of $\varepsilon_{\text {mach }}$ ：

$$
\frac{\|\tilde{f}(\vec{x})-f(\vec{x})\|}{\|f(\vec{x})\|}=e\left(\varepsilon_{\text {mach }}\right)
$$

The statement

$$
e\left(\varepsilon_{\text {mach }}\right)=\mathcal{O}\left(\varepsilon_{\text {mach }}\right)
$$

means that $\exists C \in \mathbb{R}^{+}$such that

$$
e\left(\varepsilon_{\text {mach }}\right) \leq C \varepsilon_{\text {mach }}, \quad \text { as } \quad \varepsilon_{\text {mach }} \searrow 0
$$

In practice $\varepsilon_{\text {mach }}$ is fixed；the notation means that if we were to decrease $\varepsilon_{\text {mach }}$ ，then our error would decrease at least proportionally to $\varepsilon_{\text {mach }}$ ．

```
Finite Precision

The absolute error of a computation is
\[
\|\tilde{f}(\vec{x})-f(\vec{x})\|
\]
and the relative error is
\[
\frac{\|\tilde{f}(\vec{x})-f(\vec{x})\|}{\|f(\vec{x})\|}
\]
this latter quantity will be our standard measure of error．
If \(\tilde{f}\) is a good algorithm，we expect the relative error to be small，of the order \(\varepsilon_{\text {mach }}\) ．We say that \(\tilde{f}\) is accurate if \(\forall \vec{x} \in X\)
\[
\frac{\|\tilde{f}(\vec{x})-f(\vec{x})\|}{\|f(\vec{x})\|}=\mathcal{O}\left(\varepsilon_{\text {maxn }}\right)
\]
\begin{tabular}{|c|c|c|c|}
\hline & Peter Blomgren 〈blomgren＠sdsu．edu〉 & 10．Floating Point Arithmetic／Stability & －（22／25） \\
\hline & Finite Precision Floating Point Arithmetic Stability & \begin{tabular}{l}
Introduction：What is the＂correct＂answer？ \\
Accuracy－Absolute and Relative Error \\
Stability，and Backward Stability
\end{tabular} & \\
\hline Stability & & & \\
\hline
\end{tabular}

If the problem \(f: X \mapsto Y\) is ill－conditioned，then the accuracy goal
\[
\frac{\|\tilde{f}(\vec{x})-f(\vec{x})\|}{\|f(\vec{x})\|}=\mathcal{O}\left(\varepsilon_{\text {mach }}\right)
\]
may be unreasonably ambitious．Instead we aim for stability．
We say that \(\tilde{f}\) is a stable algorithm if \(\forall \vec{x} \in X\)
\[
\frac{\|\tilde{f}(\vec{x})-f(\tilde{\tilde{x}})\|}{\|f(\tilde{x})\|}=\mathcal{O}\left(\varepsilon_{\text {mach }}\right)
\]
for some \(\tilde{\vec{x}}\) with
\[
\frac{\|\tilde{x}-\vec{x}\|}{\|\vec{x}\|}=\mathcal{O}\left(\varepsilon_{\text {mach }}\right)
\]
＂A stable algorithm gives approximately the right answer，to ap－ proximately the right question．＂

For many algorithms we can tighten this somewhat vague concept of stability.
An algorithm \(\tilde{f}\) is backward stable if \(\forall \vec{x} \in X\)
\[
\tilde{f}(\vec{x})=f(\tilde{\vec{x}})
\]
for some \(\tilde{\tilde{x}}\) with
\[
\frac{\|\tilde{\tilde{x}}-\vec{x}\|}{\|\vec{x}\|}=\mathcal{O}\left(\varepsilon_{\text {mach }}\right)
\]
"A backward stable algorithm gives exactly the right answer, to approximately the right question."

Next: Examples of stable and unstable algorithms;
Stability of Householder triangularization.```

