Numerical Matrix Analysis Notes #10 — Conditioning and Stability Floating Point Arithmetic / Stability

> Peter Blomgren (blomgren@sdsu.edu)

Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State University San Diego, CA 92182-7720

http://terminus.sdsu.edu/

Spring 2024

(Revised: January 18, 2024)

- (1/25)

Outline

- 1 Student Learning Targets, and Objectives
 - SLOs: Floating Point Arithmetic & Stability
- 2 Finite Precision
 - IEEE Binary Floating Point (from Math 541^{R.I.P.})
 - Non-representable Values a Source of Errors
- Is Floating Point Arithmetic
 - "Theorem" and Notation
 - Fundamental Axiom of Floating Point Arithmetic
 - Example
- 4 Stability
 - Introduction: What is the "correct" answer?
 - Accuracy Absolute and Relative Error
 - Stability, and Backward Stability

- (2/25)

Student Learning Targets, and Objectives

Target Floating Point Arithmetic

Objective Know how to express a floating point unmber using the IEEE-785-1985 (and successor) standard Objective Know how to express the limits of the floating point environment using ε_{mach} .

Target Stability

Objective Know the definitions of absolute and relative error. Objective Know the formal and informal definitions of stable and backward stable algorithms.

- (3/25)

IEEE Binary Floating Point (from Math 541^{R.I.P.}) Non-representable Values — a Source of Errors

Finite Precision

A 64-bit real number, double

The **Binary Floating Point Arithmetic Standard** 754-1985 (IEEE — The Institute for Electrical and Electronics Engineers) standard specified the following layout for a 64-bit real number:

$s\,c_{10}\,c_9\,\ldots\,c_1\,c_0\,m_{51}\,m_{50}\,\ldots\,m_1\,m_0$

Where

Symbol	Bits	Description
5	1	The sign bit — $0=$ positive, $1=$ negative
с	11	The characteristic (exponent)
т	52	The mantissa

$$r = (-1)^{s} 2^{c-1023} (1+f), \quad c = \sum_{n=0}^{10} c_n 2^n, \quad f = \sum_{k=0}^{51} \frac{m_k}{2^{52-k}}$$

- (4/25)

IEEE Binary Floating Point (from Math 541^{R.I.P.}) Non-representable Values — a Source of Errors

IEEE-754-1985 Special Signals

In order to be able to represent **zero**, $\pm\infty$, and **NaN** (not-a-number), the following special signals are defined in the IEEE-754-1985 standard:

Туре	S (1 bit)	C (11 bits)	M (52 bits)
signaling NaN	u	2047 (max)	.0uuuuu—u (*)
quiet NaN	u	2047 (max)	.1uuuuu—u
negative infinity	1	2047 (max)	.000000—0
positive infinity	0	2047 (max)	.000000—0
negative zero	1	0	.000000—0
positive zero	0	0	.000000—0

(*) with at least one 1 bit.

From http://www.freesoft.org/CIE/RFC/1832/32.htm

If you think IEEE-754-1985 is too "simple." There are some interesting additions in the IEEE 754-2008 revision; e.g. fused-multiply-add (fma) operations.

Some environments (e.g. AVX/AVX2/AVX-512 extensions) combine multiple fma operations into a single step, e.g. performing a four-element dot-product on two 128-bit SIMD registers $a_0 \times b_0 + a_1 \times b_1 + a_2 \times b_2 + a_3 \times b_3$ with single cycle throughput.

 Finite Precision
 IEEE Binary Floating Point (from Math 541^{R.I.P.})

 Floating Point Arithmetic
 Non-representable Values — a Source of Errors

Examples: Finite Precision

$$r = (-1)^{s} 2^{c-1023} (1+f), \quad c = \sum_{k=0}^{10} c_n 2^n, \quad f = \sum_{k=0}^{51} \frac{m_k}{2^{52-k}}$$

Example #1 — 3.0

$$r_1 = (-1)^0 \cdot 2^{2^{10} - 1023} \cdot \left(1 + \frac{1}{2}\right) = 1 \cdot 2^1 \cdot \frac{3}{2} = 3.0$$

Example #2 — (The Smallest Positive Real Number)

$$r_2 = (-1)^0 \cdot 2^{0-1023} \cdot (1+2^{-52}) \approx 1.113 imes 10^{-308}$$

- (6/25)

IEEE Binary Floating Point (from Math 541^{R.I.P.}) Non-representable Values — a Source of Errors

SAN DIEGO STAT

- (7/25)

Examples: Finite Precision

$$r = (-1)^{s} 2^{c-1023} (1+f), \quad c = \sum_{k=0}^{10} c_n 2^n, \quad f = \sum_{k=0}^{51} \frac{m_k}{2^{52-k}}$$

Example #3 — (The Largest Positive Real Number)

$$r_{3} = (-1)^{0} \cdot 2^{1023} \cdot \left(1 + \frac{1}{2} + \frac{1}{2^{2}} + \dots + \frac{1}{2^{51}} + \frac{1}{2^{52}}\right)$$
$$= 2^{1023} \cdot \left(2 - \frac{1}{2^{52}}\right) \approx 1.798 \times 10^{308}$$

IEEE Binary Floating Point (from Math 541^{R.I.P.}) Non-representable Values — a Source of Errors

That's Quite a Range!

In summary, we can represent

 $\left\{\,\pm\,0,\quad\pm1.113\times10^{-308},\quad\pm1.798\times10^{308},\quad\pm\infty,\quad\text{NaN}\right\}$

and a whole bunch of numbers in

$$(-1.798 \times 10^{308}, -1.113 \times 10^{-308}) \cup (1.113 \times 10^{-308}, 1.798 \times 10^{308})$$

Bottom line: Over- or under-flowing is usually not a problem in IEEE floating point arithmetic.

The problem in scientific computing is what we cannot represent.

- (8/25)

IEEE Binary Floating Point (from Math 541^{R.I.P.}) Non-representable Values — a Source of Errors

Fun with Matlab...

...Integers

$$\begin{split} \texttt{realmax} = 1.7977 \cdot 10^{308} \quad \texttt{realmin} = 2.2251 \cdot 10^{-308} \\ \texttt{eps} = 2.2204 \cdot 10^{-16} \end{split}$$

The smallest not-exactly-representable integer is $(2^{53} + 1) = 9,007,199,254,740,993.$

— (9/25)

 Finite Precision
 IEEE Binary Floating Point (from Math 541^{R.I.P.})

 Floating Point Arithmetic
 Non-representable Values — a Source of Errors

Something is Missing — Gaps in the Representation

1 of 3

There are gaps in the floating-point representation!

Given the representation

for the value $v_1 = 2^{-1023}(1 + 2^{-52})$,

the next larger floating-point value is

i.e. the value $v_2 = 2^{-1023}(1+2^{-51})$

The difference between these two values is $2^{-1023} \cdot 2^{-52} = 2^{-1075}$ (~ 10^{-324}).

Any number in the interval (v_1, v_2) is not representable!

-(10/25)

 Finite Precision
 IEEE Binary Floating Point (from Math 541^{R.I.P.})

 Floating Point Arithmetic
 Non-representable Values — a Source of Errors

Something is Missing — Gaps in the Representation

2 of 3

A gap of 2^{-1075} doesn't seem too bad...

However, the size of the gap depend on the value itself...

Consider r = 3.0

and the next value

Here, the difference is $2 \cdot 2^{-52} = 2^{-51}$ (~ 10^{-16}).

In general, in the interval $[2^n, 2^{n+1}]$ the gap is 2^{n-52} .

-(11/25)

Finite Precision Floating Point Arithmetic Stability Non-representable Values — a Source of Errors

Something is Missing — Gaps in the Representation

3 of 3

At the other extreme, the difference between

and the next value

is
$$2^{1023} \cdot 2^{-52} = 2^{971} \approx 1.996 \cdot 10^{292}$$
.

That's a fairly significant gap!!! (A number large enough to comfortably count all the particles in the universe...)

See, e.g.

 $https://physics.stackexchange.com/\ \dots$

questions/47941/dumbed-down-explanation-how-scientists-know-the-number-of-atoms-in-the-universed statement of the statement

— (12/25)

 Finite Precision
 IEEE Binary Floating Point (from Math 541^{R.I.P.})

 Floating Point Arithmetic
 Non-representable Values — a Source of Errors

The Relative Gap

It makes more sense to factor the exponent out of the discussion and talk about the relative gap:

Exponent	Gap	Relative Gap (Gap/Exponent)
2^{-1023}	2^{-1075}	$2^{-52}pprox 2.22 imes 10^{-16}$
2 ¹	2 ⁻⁵¹	2 ⁻⁵²
2 ¹⁰²³	2 ⁹⁷¹	2 ⁻⁵²

Any difference between numbers smaller than the local gap is not representable, *e.g.* any number in the interval

$$\left[3.0,\, 3.0 + \frac{1}{2^{51}} \right)$$

is represented by the value 3.0.

— (13/25)

Finite Precision	"Theorem" and Notation
Floating Point Arithmetic	Fundamental Axiom of Floating Point Arithmetic
Stability	Example

The Floating Point "Theorem"

"Theorem"

Floating point "numbers" represent intervals!

Notation

We let fl(x) denote the floating point representation of $x \in \mathbb{R}$.

Let the symbols \oplus , \ominus , \otimes , and \oslash denote the floating-point operations: addition, subtraction, multiplication, and division.

— (14/<u>25</u>)

|--|

The Floating Point ε_{mach}

The relative gap defines ε_{mach} ; and

 $\forall x \in \mathbb{R}$, there exists ε with $|\varepsilon| \leq \varepsilon_{\text{mach}}$, such that $\mathtt{fl}(x) = x(1 + \varepsilon)$.

In 64-bit floating point arithmetic $\varepsilon_{\text{mach}} \approx 2.22 \times 10^{-16}$.

In matlab, eps returns this value.

In Python, print(np.finfo(float).eps)

In C, #include <float.h> to define the value of __DBL_EPSILON__

— (15/25)

Finite Precision "Theorem" and Notation Floating Point Arithmetic Stability Example
--

 ε_{mach}

— (16/25)

Floating Point Arithmetic

All floating-point operations are performed up to some precision, *i.e.*

$$x \oplus y = \texttt{fl}(x + y), \qquad x \ominus y = \texttt{fl}(x - y), x \otimes y = \texttt{fl}(x * y), \qquad x \otimes y = \texttt{fl}(x/y)$$

This paired with our definition of $\varepsilon_{\rm mach}$ gives us

Axiom (The Fundamental Axiom of Floating Point Arithmetic)

For an *n*-bit floating point environment — For all $x, y \in \mathbb{F}_{64}$ (where \mathbb{F}_{64} is the set of 64-bit floating point numbers), there exists ε with $|\varepsilon| \leq \varepsilon_{mach}(\mathbb{F}_{64})$, such that

 $egin{aligned} &x\oplus y=(x+y)(1+arepsilon), & x\oplus y=(x-y)(1+arepsilon), \ &x\otimes y=(x*y)(1+arepsilon), & x\otimes y=(x/y)(1+arepsilon) \end{aligned}$

That is every operation of floating point arithmetic is exact up to a relative error of size at most ε_{mach} .

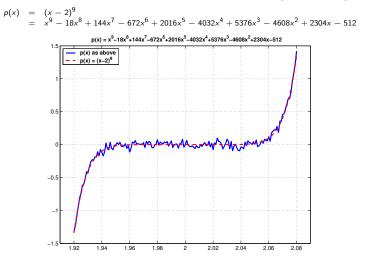
Example: Floating Point Error

Scaled by 10¹⁰

SAN DIEGO STAT

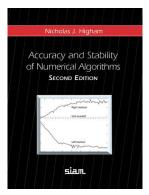
— (17/25)

Consider the following polynomial on the interval [1.92, 2.08]:



Introduction: What is the "correct" answer? Accuracy — Absolute and Relative Error Stability, and Backward Stability

Stability



680 pages of details...

— (18/25)

 Finite Precision
 Introduction: What is the "correct" answer?

 Floating Point Arithmetic
 Accuracy — Absolute and Relative Error

 Stability
 Stability, and Backward Stability

Stability: Introduction

With the knowledge that "(floating point) errors happen," we have to re-define the concept of the "right answer."

Previously, in the context of **conditioning** we defined a mathematical problem as a map

 $f:X\mapsto Y$

where $X \subseteq \mathbb{C}^n$ is the set of data (input), and $Y \subseteq \mathbb{C}^m$ is the set of solutions.

— (19/25)

Stability: Introduction

2 of 3

We now define an implementation of an **algorithm** — on a floating-point device, where \mathbb{F} satisfies the fundamental axiom of floating point arithmetic — as another map

$$\tilde{f}: X \mapsto Y$$

i.e. $\tilde{f}(\vec{x}) \in Y$ is a numerical solution of the problem.

Wiki-History: Pentium FDIV bug (\approx 1994)

The Pentium FDIV bug was a bug in Intel's original Pentium FPU. Certain FP division operations performed with these processors would produce incorrect results. According to Intel, there were a few missing entries in the lookup table used by the divide operation algorithm.

Although encountering the flaw was extremely rare in practice (*Byte Magazine* estimated that 1 in 9 billion FP divides with random parameters would produce inaccurate results), both the flaw and Intel's initial handling of the matter were heavily criticized. Intel ultimately recalled the defective processors.

— (20/25)

Introduction: What is the "correct" answer? Accuracy — Absolute and Relative Error Stability, and Backward Stability

The task at hand is to make **useful** statements about $\tilde{f}(\vec{x})$.

Even though $\tilde{f}(\vec{x})$ is affected by many factors — roundoff errors, convergence tolerances, competing processes on the computer^{*}, etc; we will be able to make (maybe surprisingly) clear statements about $\tilde{f}(\vec{x})$.

* Note that depending on the memory model, the previous state of a memory location *may* affect the result in *e.g.* the case of cancellation errors: If we subtract two 16-digit numbers with 13 common leading digits, we are left with 3 digits of valid information. We tend to view the remaining 13 digits as "random." But really, there is nothing random about what happens inside the computer (we hope!) — the "randomness" will depend on what happened previously...

— (21/25)

 Finite Precision
 Introduction: What is the "correct" answer?

 Floating Point Arithmetic
 Accuracy — Absolute and Relative Error

 Stability
 Stability, and Backward Stability

Accuracy

The absolute error of a computation is

 $\|\tilde{f}(\vec{x}) - f(\vec{x})\|$

and the relative error is

$$\frac{\|\tilde{f}(\vec{x}) - f(\vec{x})\|}{\|f(\vec{x})\|}$$

this latter quantity will be our standard measure of error. If \tilde{f} is a good algorithm, we expect the relative error to be small, of the order $\varepsilon_{\text{mach}}$. We say that \tilde{f} is accurate if $\forall \vec{x} \in X$

$$rac{\| ilde{f}(ec{x})-f(ec{x})\|}{\|f(ec{x})\|}=\mathcal{O}(arepsilon_{\mathsf{mach}})$$

 Finite Precision
 Introduction: What is the "correct" answer?

 Floating Point Arithmetic
 Accuracy — Absolute and Relative Error

 Stability
 Stability

Interpretation: $\mathcal{O}(\varepsilon_{mach})$

Since all floating point errors are functions of ε_{mach} (the relative error in each operation is bounded by ε_{mach}), the relative error of the algorithm must be a function of ε_{mach} :

$$rac{\| ilde{f}(ec{x})-f(ec{x})\|}{\|f(ec{x})\|}= extbf{e}(arepsilon_{ extsf{mach}})$$

The statement

$$e(arepsilon_{\mathsf{mach}}) = \mathcal{O}(arepsilon_{\mathsf{mach}})$$

means that $\exists C \in \mathbb{R}^+$ such that

$$e(arepsilon_{ extsf{mach}}) \leq Carepsilon_{ extsf{mach}}, \quad extsf{as} \quad arepsilon_{ extsf{mach}} \searrow 0$$

In practice $\varepsilon_{\rm mach}$ is fixed; the notation means that if we were to decrease $\varepsilon_{\rm mach}$, then our error would decrease at least proportionally to $\varepsilon_{\rm mach}$.

— (23/25)

Finite Precision	Introduction: What is the "correct" answer?
Floating Point Arithmetic	Accuracy — Absolute and Relative Error
Stability	Stability, and Backward Stability

Stability

If the **problem** $f : X \mapsto Y$ is ill-conditioned, then the accuracy goal $\frac{\|\tilde{f}(\vec{x}) - f(\vec{x})\|}{\|f(\vec{x})\|} = \mathcal{O}(\varepsilon_{\text{mach}})$

may be unreasonably ambitious. Instead we aim for stability.

We say that \tilde{f} is a **stable algorithm** if $\forall \vec{x} \in X$

$$\frac{|\tilde{f}(\vec{x}) - f(\tilde{\vec{x}})\|}{\|f(\tilde{\vec{x}})\|} = \mathcal{O}(\varepsilon_{\mathsf{mach}})$$

for some $\tilde{\vec{x}}$ with

$$rac{ert ec x - ec x ert}{ert ec x ert} = \mathcal{O}(arepsilon_{\mathsf{mach}})$$

"A stable algorithm gives approximately the right answer, to approximately the right question."

— (24/25)

Finite Precision	Introduction: What is the "correct" answer?
Floating Point Arithmetic	Accuracy — Absolute and Relative Error
Stability	Stability, and Backward Stability

Backward Stability

For many algorithms we can tighten this somewhat vague concept of stability.

An algorithm \tilde{f} is **backward stable** if $\forall \vec{x} \in X$

$$\tilde{f}(\vec{x}) = f(\tilde{\vec{x}})$$

for some
$$\tilde{\vec{x}}$$
 with

$$rac{\|ec{m{x}}-m{x}\|}{\|ec{m{x}}\|} = \mathcal{O}(arepsilon_{\mathsf{mach}})$$

"A backward stable algorithm gives exactly the right answer, to approximately the right question."

Next: Examples of stable and unstable algorithms; Stability of Householder triangularization.

— (25/25)