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Student Learning Targets, and Objectives SLOs: Stability of Householder QR for A~x = ~b

Student Learning Targets, and Objectives

Target Numerical Indications of (Backward) Stable Algorithms

Objective Explain how forward errors are impacted by the condition
number

Objective Explain how the size of backward errors may indicated
backward stability

Target Backward Stable Solution Strategies

Objective Be able to show backward stability of a solution strategy using
backward stable algorithmic building blocks

Peter Blomgren 〈blomgren@sdsu.edu〉 12. Stability of Householder QR for A~x = ~b — (3/26)

Reference
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Solving A~x = ~b

Floating Point Axioms
Stability Definitions
Accuracy
Householder QR

Reference: Key Floating Point Axioms

Axiom (Floating Point Representation)

∀x ∈ R, there exists ε with |ε| ≤ εmach,
such that fl(x) = x(1 + ε).

Axiom (The Fundamental Axiom of Floating Point Arithmetic)

For all x , y ∈ Fn (where Fn is the set of n-bit floating point
numbers), there exists ε with |ε| ≤ εmach(Fn), such that

x ⊕ y = (x + y)(1 + ε), x ⊖ y = (x − y)(1 + ε),
x ⊗ y = (x ∗ y)(1 + ε), x ⊘ y = (x/y)(1 + ε)

axioms

Jump to: accuracy theorem, HT-QR stability
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Reference: Key Stability Definitions 1 of 2

Definition (Stable Algorithm)

We say that f̃ is a stable algorithm if ∀~x ∈ X

‖f̃ (~x)− f (~̃x)‖
‖f (~̃x)‖

= O(εmach),

for some ~̃x with
‖~̃x − ~x‖
‖~x‖ = O(εmach).

“A stable algorithm gives approximately the right answer, to
approximately the right question.”

Peter Blomgren 〈blomgren@sdsu.edu〉 12. Stability of Householder QR for A~x = ~b — (5/26)

Reference
Stability of Algorithms

Solving A~x = ~b

Floating Point Axioms
Stability Definitions
Accuracy
Householder QR

Reference: Key Stability Definitions 2 of 2

Definition (Backward Stable Algorithm)

An algorithm f̃ is backward stable if ∀~x ∈ X

f̃ (~x) = f (~̃x),

for some ~̃x with
‖~̃x − ~x‖
‖~x‖ = O(εmach).

“A backward stable algorithm gives exactly the right answer,
to approximately the right question.”

Jump to: accuracy theorem.
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Reference: Accuracy — The Goal!

Definition (Accuracy)

We say that the algorithm f̃ is accurate if ∀~x ∈ X

‖f̃ (~x)− f (~x)‖
‖f (~x)‖ = O(εmach).

This is what we want to do — write algorithms that accurately
solve problems!

Last time, we finally tied the inherent difficulty of the problem, the
conditioning, and the quality of the algorithm, the stability
together in a theorem —
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Last Time: Accuracy(stability,conditioning)

Theorem (Computational Accuracy)

Suppose a backward stable algorithm is applied to solve a problem
f : X → Y with condition number κ in a floating point environment
satisfying the floating point representation axiom, and the fundamental
axiom of floating point arithmetic.

Then the relative errors satisfy

‖f̃ (x)− f (x)‖
‖f (x)‖ = O(κ(x)εmach).

Recall: The definition of the relative condition number

κ(~x) = sup
δ~x

[ ‖δf ‖
‖f (~x)‖

/‖δ~x‖
‖~x‖

]

as the ratio of the relative (infinitesimal) change in f induced by an
infinitesimal change in ~x .
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Reference: Algorithm — Householder QR From [Lecture#7]

Algorithm (Householder QR-Factorization, Q∗~b - Version)

1: for k ∈ {1, . . . , n} do
2: ~x ← A(k:m,k)
3: ~vk ← sign(x1)‖~x‖2~e1 + ~x
4: ~vk ← ~vk/‖~vk‖2
5: A(k:m,k:n)← A(k:m,k:n)− 2~vk(~v

∗
k A(k:m,k:n))

6: ~b(k:m)← ~b(k:m)− 2~vk(~v
∗
k
~b(k:m)) /* Compute Q∗~b */

7: end for

A(k:m,k) Denotes the kth thru mth rows, in the kth column of A —
a vector quantity.

A(k:m,k:n) Denotes the kth thru mth rows, in the kth thru nth columns
of A — a matrix quantity.
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The Road Ahead: Stability of Algorithms

With our new toolbox in hand, we re-visit some of the algorithms
previously discussed. This second look will reveal, in a more
rigorous way, why the algorithms perform the way they do...

The Householder Triangularization method of computing the
QR-factorization is a backward stable (HT-QR for short).

First, we look at some numerical experiments showcasing this; and
then we combine HT-QR with other backward stable algorithmic
fragments to build a stable solver for our fundamental problem

A~x = ~b.
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Householder Triangularization: Numerics 1 of 3
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Figure: The non-zero pattern of the matrix R.

We generate a matrix A with known QR-factorization, and
compute the Householder QR-factorization using

R = triu(randn(64)); R = np.triu(np.random.rand(64,64))

[Q,∼] = qr(randn(64)); Q, = np.linalg.qr(np.random.rand(64,64))

A = Q*R; A = np.matmul(Q,R)

[Q2,R2] = qr(A); Q2, R2 = np.linalg.qr(A)
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Householder Triangularization: Numerics 2 of 3

It turns out that Q2 and R2 are quite far from Q and R :
norm(Q2-Q) / norm(Q) = 0.003427

norm(R2-R) / norm(R) = 0.000440

It seems like a disaster has occurred, but

norm(A-Q2*R2) / norm(A) = 1.032309e-15

Now consider Q3 and R3

Q3 = Q + 1e-4*randn(64)

R3 = R + 1e-4*randn(64)

norm(Q3-Q) / norm(Q) = 0.001595

norm(R3-R) / norm(R) = 0.000129

norm(A-Q3*R3) / norm(A) = 1.065451e-03
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Householder Triangularization: Numerics 3 of 3

The Moral of the Story

The errors in Q2 and R2 are known as forward errors. Large forward
errors are the result of an ill-conditioned problem and/or an unstable
algorithm. — In our example it is the former

κ(A) = cond(A) = 2.0223e+16. np.linalg.cond

The error in the result of the matrix product Q2R2 is known as the
backward error, or residual.

The fact that the backward error is small suggests that Householder
Triangularization is backward stable.

Note: Due to the specific way the Householder reflections are performed, the algorithm
above may have to be run a couple of times in order to produce (similar) results.
A relative error in Q2 of size ∼ 2 indicates that the initial random Q and R
could not possibly have come from a HT-QR algorithm (due to “sign-flips.”)
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Householder Triangularization: Backward Stability 1 of 3

It turns out that HT-QR is backward stable for all matrices A in any
floating-point environment satisfying the floating point axioms.

The formal result takes the form

Q̃R̃ = A+ δA, δA “small,”

where R̃ is the upper triangular matrix constructed by the HT-QR
algorithm.

Since the HT-QR algorithm does not explicitly compute Q̃ (in the “fast
mode,”) we must define what we mean by Q̃.

Let Q̃k denote the exactly unitary reflector defined by the floating point
vector ṽk

Q̃k = I − 2
ṽk ṽ∗k
ṽ∗k ṽk

.
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Householder Triangularization: Backward Stability 2 of 3

Now, we define Q̃ to be the exactly unitary matrix

Q̃ = Q̃1Q̃2 · · · Q̃n,

this matrix will take the place of the computed Q in our discussion.

This approach is natural since in general the matrix Q is not
formed explicitly, but rather used implicitly to get the action Q∗~b.

With these definitions, we are ready to state the theorem...
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Householder Triangularization: Backward Stability 3 of 3

Theorem (Backward Stability of Householder QR)

Let the QR-factorization A = QR of a matrix A ∈ Cm×n be computed by
Householder triangularization in a floating-point environment satisfying
the floating-point axioms, and let the computed factors Q̃ and R̃ be as
discussed on the previous two slides. Then we have

Q̃R̃ = A+ δA,
‖δA‖
‖A‖ = O(εmach)

for some δA ∈ Cm×n.

The full proof can be found in: —
Nicholas J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed., ISBN
0-89871-521-0, SIAM, Philadelphia, 2002. (pp. 357–361)
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Solving A~x = ~b, Using Householder QR-Factorization 1 of 8

Computing the QR-factorization is not an end in itself. Usually it is one
of the first steps in trying to solve a system of linear equations, a least
squares problem, or an eigenvalue problem.

At this point we know that HT-QR is backward stable, but is that
enough?!? As we have seen, the individual factors Q̃ and R̃ may carry
large forward errors.

The good news is that accuracy of the product Q̃R̃ is sufficient for most
purposes.

We consider the following algorithm for solving A~x = ~b

Algorithm (Solution of a Linear System, A~x = ~b)

1: QR ← A — Compute the QR-factorization by HT-QR

2: ~y ← Q∗~b — Construct Q∗~b by HT-QR

3: ~x ← R−1~y — Solve by back substitution
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Solving A~x = ~b, Using Householder QR-Factorization 2 of 8

It turns out that this algorithm is backward stable. The three steps are
backward stable. For now we state these results without proof, and then
combine them to form the larger result.

We have already expressed the backward stability of HT-QR in a previous
theorem.

The second step computes Q̃∗~b, due to floating-point errors, the result ỹ
is not equal to ~y = Q̃∗~b, but the operation is backward stable

(Q̃ + δQ)ỹ = ~b, ‖δQ‖ = O(εmach).

The solution x̃ of the back substitution in the third step satisfies

(R̃ + δR)x̃ = ỹ ,
‖δR‖
‖R̃‖

= O(εmach).
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Solving A~x = ~b, Using Householder QR-Factorization 3 of 8

With these unproven (for now) building blocks, we are ready to
state and prove the following theorem

Theorem

The three step algorithm described above for solving A~x = ~b is
backward stable, satisfying

(A+∆A)x̃ = ~b,
‖∆A‖
‖A‖ = O(εmach),

for some ∆A ∈ Cm×m.
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Solving A~x = ~b, Using Householder QR-Factorization 4 of 8

Proof: From step#2 and step#3 we have

(Q̃ + δQ)ỹ = ~b, and (R̃ + δR)x̃ = ỹ ,

combining the two gives

~b = (Q̃+δQ)(R̃+δR)x̃ =
[
Q̃R̃ + (δQ)R̃ + Q̃(δR) + (δQ)(δR)

]
x̃ .

Now, using the result for step#1

Q̃R̃ = A+ δA

we get

~b =


A+ δA+ (δQ)R̃ + Q̃(δR) + (δQ)(δR)︸ ︷︷ ︸

∆A


 x̃ .
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Solving A~x = ~b, Using Householder QR-Factorization 5 of 8

Next, we must show that the perturbation

∆A = δA+ (δQ)R̃+ Q̃(δR) + (δQ)(δR)

is small relative to A.

Since Q̃R̃ = A+ δA, and Q̃ is unitary we have R̃ = Q̃∗(A+ δA)

‖R̃‖
‖A‖ ≤ ‖Q̃

∗‖‖A+ δA‖
‖A‖ = O(1), εmach → 0.

Hence, the relative size of the second term is bounded

‖(δQ)R̃‖
‖A‖ ≤ ‖(δQ)‖‖R̃‖‖A‖ = O(εmach).
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Solving A~x = ~b, Using Householder QR-Factorization 6 of 8

Now, consider the third term

∆A = δA+ (δQ)R̃ + Q̃(δR) + (δQ)(δR)

‖Q̃(δR)‖
‖A‖ ≤ ‖Q̃‖ ‖(δR)‖‖A‖ = ‖Q̃‖ ‖(δR)‖

‖R̃‖
‖R̃‖
‖A‖ .

Since

‖Q̃‖ = O(1), ‖(δR)‖
‖R̃‖

= O(εmach), and
‖R̃‖
‖A‖ = O(1),

we have
‖Q̃(δR)‖
‖A‖ = O(εmach).
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Solving A~x = ~b, Using Householder QR-Factorization 7 of 8

Finally, the fourth term

∆A = δA+ (δQ)R̃ + Q̃(δR) + (δQ)(δR)

‖(δQ)(δR)‖
‖A‖ ≤ ‖(δQ)‖ ‖(δR)‖‖A‖

We know

‖(δQ)‖ = O(εmach), and
‖(δR)‖
‖A‖ = O(εmach)

So,
‖(δQ)(δR)‖
‖A‖ = O(ε2mach)
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Solving A~x = ~b, Using Householder QR-Factorization 8 of 8

We collect our findings, and note that as required

‖∆A‖
‖A‖ ≤

‖δA‖
‖A‖ +

‖(δQ)R̃‖
‖A‖ +

‖Q̃(δR)‖
‖A‖ +

‖(δQ)(δR)‖
‖A‖ = O(εmach).

This completes the proof. �

If we combine this result with the accuracy theorem we showed last
time, we get the following result about the accuracy of solutions
of A~x = ~b using the Householder-Triangularization +
Back-substitution algorithm:
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Accuracy of the Solution to A~x = ~b using Householder QR and Back-substitution

Theorem (Accuracy of the Solution to A~x = ~b using Householder
QR-factorization and Back-substitution)

The solution x̃ computed by the Householder-Triangularization +
Back-substitution algorithm satisfies

‖x̃ − ~x‖
‖~x‖ = O(κ(A)εmach)
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Patching Some Holes...

We have left three major holes in the argument — the statement,
without∗ proof, that the individual steps are backward stable.

It is instructive to see at least one such proof from “scratch.” —
Next, we turn our attention to step-3, the back-substitution
algorithm.

Even though back substitution is one of the easiest problems of
numerical linear algebra, the stability proof is quite lengthy... and
provides the general structure / workflow for all such proofs.  
That will be our next order of business in [Lecture#13].

∗ For step-1 (the QR-factorization), we have “proof by reference.”
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