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Stability of Householder Triangularization

Last Time: Stability of Householder Triangularization

— We discussed the stability properties of QR-factorization by House-
holder Triangularization (HT-QR).

— Numerical “evidence” that HT-QR is backward stable.

— Statement (proof by reference to Higham’s Accuracy and
Stability of Numerical Algorithms) that HT-QR is backward
stable

— Showed that solving A~x = ~b using HT-QR and backward substitution
is backward stable, assuming that

(1) QR = A by HT-QR is backward stable

(2) w̃ = Q∗~b is backward stable

(3) R~x = w̃ by back substitution is backward stable

— Today: Explicit proof of (3), and implicit proof of (2).

Peter Blomgren 〈blomgren@sdsu.edu〉 13. Stability of Back Substitution — (3/20)

Looking Back
Backward Stability of Back Substitution

Introduction: Algorithm, Conventions, Axioms, and Theorem
Proof
Comments

Backward Stability of Back Substitution

Back substitution is one of the easiest non-trivial algorithms we study
in numerical linear algebra, and is therefore a good venue for a full
backward stability proof.

The proof for backward stability of Householder triangularization follows
the same pattern, but the details become more cumbersome.

Back-substitution applies to R~x = ~b, where




r11 r12 · · · r1m
r22 r2m

. . .
...

rmm







x1
x2
...
xm


 =




b1
b2
...
bm




Upper (and lower) triangular matrices are generated by, e.g. the
QR-factorization [Notes#6–7], Gaussian elimination [Notes#16–17], and
the Cholesky factorization [Notes#17].
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Algorithm: Back-Substitution

Algorithm (Back-Substitution)

1: xm ← bm/rmm

2: for ℓ ∈ {(m − 1), . . . , 1} do

3: xℓ ←
(
bℓ −

m∑

k=ℓ+1

xk rℓk

)
/rℓℓ

4: end for

Note that the algorithm breaks if rℓℓ = 0 for some ℓ.

For this discussion we make the assumption that bℓ −
∑

(xk rℓk) is
computed as (m − ℓ) subtractions performed in k-increasing order.

Simplification: In the theorem/proof, we use the convention that if the

denominator in a statement like |δriℓ|
|riℓ| ≤ mεmach is zero, we implicitly

assert that the numerator is also zero, as εmach → 0. This can be fully
formalized, but at this stage it unnecessarily complicates the discussion).
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Reference: Key Floating Point Axioms

Floating Point Representation Axiom

∀x ∈ R, there exists ǫ with |ǫ| ≤ ǫmach,
such that fl(x) = x(1 + ǫ).

The Fundamental Axiom of Floating Point Arithmetic

For all x , y ∈ Fn (where Fn is the set of n-bit floating point
numbers), there exists ǫ with |ǫ| ≤ ǫmach, such that

x ⊕ y = (x + y)(1 + ǫ), x ⊖ y = (x − y)(1 + ǫ),
x ⊗ y = (x ∗ y)(1 + ǫ), x ⊘ y = (x/y)(1 + ǫ)

axioms
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Back-Substitution: Backward Stability Theorem

Theorem (Solving an Upper Triangular System R~x = ~b Using
Back-Substitution is Backward Stable)

Let the back-substitution algorithm be applied to R~x = ~b, where
R ∈ Cm×m is upper triangular; ~b, ~x ∈ Cm; in a floating-point
environment satisfying the floating point axioms. The algorithm is
backward stable in the sense that the computed solution x̃ ∈ Cm satisfies

(R + δR)x̃ = ~b

for some upper triangular δR ∈ Cm×m with

‖δR‖
‖R‖ = O(εmach).

Specifically, for each i , ℓ

|δriℓ|
|riℓ|

≤ mεmach +O(ε2mach).
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Proof: m = 1

When m = 1, back substitution terminates in one step

x̃1 = b1 ⊘ r11

The error introduced in this step is captured by

x̃1 =
b1
r11

(1 + ǫ⊘1 ), |ǫ⊘1 | ≤ εmach.

Since we want the express the error in terms of perturbations of R , we
write

x̃1 =
b1

r11(1 + ǫ′1)
, |ǫ′1| ≤ εmach +O(ε2mach).

Hence,

(r11 + δr11)x̃1 = b1,
|δr11|
|r11|

≤ εmach +O(ε2mach) = O(εmach).
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A Note on (1 + ǫ) and 1/(1 + ǫ′)

In backward stability proofs we frequently need to move terms of the
type (1 + ǫ) from/to the numerator to/from the denominator.

We do this because we want to express all the floating point errors as
perturbations to a specific part of the expression, e.g. the matrix R in the
instance of backward substitution.

When ǫ is small, we can set

ǫ′ =
−ǫ
1 + ǫ

∼ −ǫ(1− ǫ+O(ǫ2)) = −ǫ+O(ǫ2)

and thus
(
discarding O

(
ǫ2
)
-terms

)

1 + ǫ′ =
1 + ǫ

1 + ǫ
− ǫ

1 + ǫ
=

1 + ǫ− ǫ

1 + ǫ
=

1

1 + ǫ
⇒ 1

1+ ǫ′
= 1+ ǫ.

Bottom line: we can move (1 + ǫ) terms (where |ǫ| ≤ εmach ≪ 1)
between the numerator and denominator, and only introduce errors of the
order O(ε2mach), i.e. |ǫ′| ≤ εmach +O(ε2mach).
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Proof: m = 2 1 of 2

Step one (which computes x̃2) is exactly like the m = 1 case:

x̃2 =
b2

r22(1 + ǫ⊘1 )
, |ǫ1| ≤ εmach +O(ε2mach).

The second step is defined by

x̃1 = (b1 ⊖ (x̃2 ⊗ r12))⊘ r11.

We get

x̃1 = (b1 ⊖ (x̃2r12(1 + ǫ⊗2 )))⊘ r11

= (b1 − x̃2r12(1 + ǫ⊗2 ))(1 + ǫ⊖3 )⊘ r11

=
(b1 − x̃2r12(1 + ǫ⊗2 ))(1 + ǫ⊖3 )(1 + ǫ⊘4 )

r11
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Proof: m = 2 2 of 2

As before, we can shift the (1 + ǫ⊖3 ) and (1 + ǫ⊘4 ) terms to the
denominator

x̃1 =
b1 − x̃2r12(1 + ǫ⊗2 )

r11(1 + ǫ′⊖3 )(1 + ǫ′⊘4 )
=

b1 − x̃2r12(1+ ǫ⊗2 )

r11(1+ 2ǫ⊖,⊘
5 )

where |ǫ′3,4|, |ǫ5| ≤ εmach +O(ε2mach).

Now
(R + δR)x̃ = ~b

since r11 is perturbed by the factor (1+ 2ǫ⊖,⊘
5 ), r12 by the factor

(1+ ǫ⊗2 ), and r22 by the factor (1 + ǫ⊘1 ). The entries satisfy

[
|δr11|/|r11| |δr12|/|r12|

|δr22|/|r22|

]
=

[
2|ǫ⊖,⊘

5 | |ǫ⊗2 |
|ǫ⊘1 |

]
≤
[

2 1
1

]
εmach+O(ε2mach)

Thus ‖δR‖/‖R‖ = O(εmach).
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Proof: m = 3 1 of 3

The first two steps are as before, and we get





x̃3 = b3 ⊘ r33 =
b3

r33(1 + ǫ⊘1 )

x̃2 = (b2 ⊖ (x̃3 ⊗ r23))⊘ r22 =
b2 − x̃3r23(1 + ǫ⊗2 )

r22(1 + 2ǫ⊘,⊖
3 )

where superscipts on ǫs indicate the source operation; now

[
2|ǫ3| |ǫ2|

|ǫ1|

]
≤
[
2 1

1

]
εmach +O(ε2mach)

We take a deep breath, and write down the third step

x̃1 = [(b1 ⊖ (x̃2 ⊗ r12))⊖ (x̃3 ⊗ r13)]⊘ r11
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Proof: m = 3 2 of 3

We expand the two ⊗ operations, and write

x̃1 =
[
(b1 ⊖ x̃2r12(1 + ǫ⊗4 ))⊖ x̃3r13(1 + ǫ⊗5 )

]
⊘ r11

We introduce error bounds for the ⊖ operations

x̃1 =
[
(b1 − x̃2r12(1 + ǫ⊗4 ))(1 + ǫ⊖6 )− x̃3r13(1 + ǫ⊗5 )

]
(1 + ǫ⊖7 )⊘ r11

Finally, we convert ⊘ to a mathematical division with a perturbation ǫ8;
and move both the (1 + ǫ7,8) expressions to the denominator

x̃1 =

(
b1 − x̃2r12(1 + ǫ⊗4 )

)
(1+ ǫ⊖6 )− x̃3r13(1 + ǫ⊗5 )

r11(1 + ǫ′⊖7 )(1 + ǫ′⊘8 )

As it stands, we have introduced a perturbation in b1. This was not our
intention, so we ship (1 + ǫ⊖6 ) to the denominator as well...
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Proof: m = 3 3 of 3

We now have an expression with perturbations in only r1ℓ:

x̃1 =
b1 − x̃2r12(1 + ǫ⊗4 )− x̃3r13(1 + ǫ⊗5 )(1+ ǫ′⊖6 )

r11(1+ ǫ′⊖6 )(1 + ǫ′⊖7 )(1 + ǫ′⊘8 )

where |ǫ4,5| ≤ εmach, and |ǫ′6,7,8| ≤ εmach +O(ε2mach).

If we collect the limits on the relative sizes of the perturbations
|δriℓ|/|riℓ| we get the following 6 relations



|δr11|/|r11| |δr12|/|r12| |δr13|/|r13|

|δr22|/|r22| |δr23|/|r23|
|δr33|/|r33|


 ≤




3 1 2
2 1

1


 εmach+O(ε2mach)

We are now ready to identify the pattern for general values of m...
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Proof: General m 1 of 4

The division by rii induces perturbations δrii only, since we always
immediately shift that (1 + ǫ∗)-term to the denominator
1/(1 + ǫ′∗), hence the perturbation pattern is of the form

⊘  In×nεmach +O(ε2mach)

The multiplications x̃i rℓi induces perturbations δrℓi of relative size
≤ εmach, the perturbation pattern is of the form

⊗  




0 1 1 . . . 1
0 1 . . . 1

. . .
. . .

...
0 1

0



εmach
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Proof: General m 2 of 4

The most complicated contribution comes from the subtractions
(and this is where the order of evaluation has an effect on the
answer) — in computing x̃k

rk,k is perturbed by (1 + ǫ′∗)
m−k

rk,k+1 is perturbed by 0
rk,k+2 is perturbed by (1 + ǫ′∗)
rk,k+3 is perturbed by (1 + ǫ′∗)

2

...
rk,m is perturbed by (1 + ǫ′∗)

m−k−1

See next slide for the pattern.
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Proof: General m 3 of 4

⊖  




(m − 1) 0 1 2 3 . . . (m − 2)
. . .

. . .
. . .

. . .
. . .

...
4 0 1 2 3

3 0 1 2
2 0 1

1 0
0




εmach+O(ε2mach)

Putting all this together gives...
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Proof: General m — Collecting It All 4 of 4

|δR |
|R | ≤




m 1 2 3 4 . . . (m − 1)
. . .

. . .
. . .

. . .
. . .

...
5 1 2 3 4

4 1 2 3
3 1 2

2 1
1




εmach +O(ε2mach)

Which completes the proof. �
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Comments

This is the standard approach for a backward stability analysis.

Errors introduced by the floating point operations ⊕, ⊖, ⊗, and ⊘
(in accordance with the axiom) are reinterpreted as errors in the
initial data / or “problem.”

Where appropriate, errors ∼ O(εmach) are freely moved between
numerators and denominators.

Perturbations of order O(εmach) are accumulated additively, e.g.

(1 + ǫ1)(1 + ǫ2) = (1 + 2ǫ3) +O(ε2mach)

where |ǫ1,2,3| ≤ εmach.
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Least Squares Problems

Next, we turn our attention back to least squares problems.

— We take a detailed look at the conditioning of least squares
problems; it is a subtle topic and has nontrivial implications
for the stability (and ultimately, the accuracy) of least
squares algorithms.

— Further, this will serve as our main example on de-
tailed conditioning analysis (as Back-substitution served
as the main example on detailed backward stability analysis).
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