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Last Time: Stability of Householder Triangularization

— We discussed the stability properties of QR-factorization by House-
holder Triangularization (HT-QR).

—  Numerical “evidence” that HT-QR is backward stable.

— Statement (proof by reference to Higham's Accuracy and
Stability of Numerical Algorithms) that HT-QR is backward
stable

—  Showed that solving AX = b using HT-QR and backward substitution
is backward stable, assuming that

(1) QR = A by HT-QR is backward stable
(2) W = Q*b is backward stable
(3) RX = w by back substitution is backward stable

— Today: Explicit proof of (3), and implicit proof of (2).
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Backward Stability of Back Substitution

Back substitution is one of the easiest non-trivial algorithms we study
in numerical linear algebra, and is therefore a good venue for a full
backward stability proof.

The proof for backward stability of Householder triangularization follows
the same pattern, but the details become more cumbersome.

Back-substitution applies to RX = b, where

ni h2 - fm X1 by
2 Mm X2 bo
Fmm Xm bm

Upper (and lower) triangular matrices are generated by, e.g. the
QR-factorization [NoTes#6-7], Gaussian elimination [NoTes#16-17], and
the Cholesky factorization [NoTes#17].
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Algorithm: Back-Substitution

Algorithm (Back-Substitution)
10 Xm < bm/Fmm
2: for Le{(m—1),...,1} do

m
Xxp < | by — E Xirek | [ ree
k=l+1

w

4: end for

Note that the algorithm breaks if ryp = 0 for some ¢.

For this discussion we make the assumption that by — > (xkrek) is
computed as (m — £) subtractions performed in k-increasing order.

Simplification: In the theorem/proof, we use the convention that if the
denominator in a statement like % < MEmach is zero, we implicitly
assert that the numerator is also zero, as €,.c, — 0. This can be fully

formalized, but at this stage it unnecessarily complicates the discussion).
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Reference: Key Floating Point Axioms

Floating Point Representation Axiom

Vx € R, there exists € with |e| < €.,
such that £1(x) = x(1 + ¢).

The Fundamental Axiom of Floating Point Arithmetic

For all x,y € T, (where T, is the set of n-bit floating point
numbers), there exists € with |e| < €., such that

x@y=((x+y)(l+e), xoy=(x-y)(l+e),
x@y=(x*xy)(l+e), x0y=(x/y)(1l+e)
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Back-Substitution: Backward Stability Theorem

Theorem (Solving an Upper Triangular System RX = b Using
Back-Substitution is Backward Stable)

Let the back-substitution algorithm be applied to RX = b, where

R € C™*™ js upper triangular, 5,)? € C™; in a floating-point
environment satisfying the floating point axioms. The algorithm is
backward stable in the sense that the computed solution X € C™ satisfies

(R+6R)X =b

for some upper triangular 6R € C™*™ with

[9R]l
——= = O(Emach)-
IRIl "

Specifically, for each i,/

‘(5!"@'
‘ri;| < MEpach + O(E?nach)'

U
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Proof: m=1
When m = 1, back substitution terminates in one step
fi=bon
The error introduced in this step is captured by

. by
X = o —(1+ ¢ 9, |61 | < €mach-
11

Since we want the express the error in terms of perturbations of R, we

write
% = r11(1b:-efl)’ |€1] < Emach + O(E2eh)-
Hence,
(1 +dm)* = by, [0ru| < mach + O(E0en) = OEmacn)-
]
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A Note on (14 ¢€) and 1/(1+¢€)

In backward stability proofs we frequently need to move terms of the
type (1 + €) from/to the numerator to/from the denominator.

We do this because we want to express all the floating point errors as
perturbations to a specific part of the expression, e.g. the matrix R in the
instance of backward substitution.

When € is small, we can set

r__—¢ . 2y _ 2
=1 €(1 — e+ O(e)) e+ O(€)

and thus (discarding O(¢?) -terms)

, l+e e l+e—¢e 1 N 1 1
T 1l4e l14e  14e  1l4e 1+¢ '

1+e¢

Bottom line: we can move (1 + ¢) terms (where |¢] < €paen < 1)
between the numerator and denominator, and only introduce errors of the
order O(£2...), i.e. |€'| < emaen + O(£2.1)- ..

mach L
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Step one (which computes %) is exactly like the m =1 case:

. by 2
X2 = —""—"—""51 €1 S Emac + O Emac .
r22(1 + €1®) | | h ( h)

The second step is defined by
1= (b1 6 (% ® r2)) @ ni.
We get
% = (b0 ((n2(l+€)))om
= (b1 —%rn2(l1+€¢))1+€5) 2

(b1 — %or1a(1+€5))(1 + €5)(1 + €7)
ni
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Proof: m=2 2 of 2

As before, we can shift the (1 + €5') and (1 + €5 ) terms to the
denominator

. by — )?2!’12(1 + 6?) . by — )?2!‘12(1 + E?)

r11(1+e3 )(1+€4 ) I’11(1+2656’®)

where |€3 4| |€5| < Emach T O( mach)
Now

(R+6R)X =b
since ry7 is perturbed by the factor (1 + 265@’@), r12 by the factor
(1 +€3), and rap by the factor (1 + €7). The entries satisfy

Oral/lmal [0mal/|n2| | _ T 2les™?| |€2\
|0r22|/| 22 7]

|<[? 1] om0t

Thus [[0R[|/[IRIl = O(emach)- W2
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The first two steps are as before, and we get

. b3
X3 = b3orms = ———7
r33(1 + 61®)
- - b2 —)”(3r23 1+6®
5 = (o (B®mn3)omn = ( 2)

r22(1 + 26?’6)

where superscipts on es indicate the source operation; now

|: 2‘63| ‘62| :| S |: 2 i :|€mach +O(€iach)

le1]

We take a deep breath, and write down the third step
X1 = [(bl © (>~<2 ® r12)) S ()?3 X r13)] @ N1
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Proof: m=3 20of 3

We expand the two ® operations, and write
%1=[(b1©%r2(1+€})) © X3nz(1 + €
1= [(bh ©X%n2(1+¢;)) © X3rs(l+ € )] © n1
We introduce error bounds for the & operations
)?1 = [(bl — )?2[‘12(1 + 6?))(1 + 666) — )?3[’13(1 —+ 6?)] (1 + 676) (%) ni

Finally, we convert © to a mathematical division with a perturbation eg;
and move both the (1 + ¢7,5) expressions to the denominator

% — (bl — )"(2r12(1 + 6?))(1 + 669) - )?3r13(1 + 6?)
1 m(l+ 7)1+ )

As it stands, we have introduced a perturbation in b;. This was not our
intention, so we ship (1 + €f’) to the denominator as well...
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Proof: m=3 30of 3

We now have an expression with perturbations in only rqp:

% = b1 — )?2[‘12(1 + 6?) — )?3/’13(1 + Eg@)(l + 6/6@)
rmi(l+e)(1+e7)(1+€g)

where |e4 5] < €paen, and 16{57778\ < Emacn + O(E2.,).

If we collect the limits on the relative sizes of the perturbations
|0rie|/|rie| we get the following 6 relations

|6r1l/|ma| [0r2l/|r2| [6ri3]/[ns| 312
|6r22l/[r22| [0r3|/|r3| | < 2 1 | EmentO(e2,)
|6r33] /| rs3] 1

We are now ready to identify the pattern for general values of m...
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Proof: General m 1of 4

The division by r;; induces perturbations dr; only, since we always
immediately shift that (1 + €,)-term to the denominator
1/(1 4 €,), hence the perturbation pattern is of the form

@ ~ langmaCh + O(Eiach)

The multiplications X;ry; induces perturbations dry; of relative size
< Emach, the perturbation pattern is of the form

0o 1 1 ... 1]
o 1 ... 1
® Emach
0 1
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Proof: General m 2 of 4

The most complicated contribution comes from the subtractions
(and this is where the order of evaluation has an effect on the
answer) — in computing X

Ik k is perturbed by (14 ¢.)™ K

rk,k+1 is perturbed by 0

rkk+2 is perturbed by (1 +¢€,)
(1+¢€)2

re,k+3 is perturbed by

rem  is perturbed by (1 +¢€,)m k1

See next slide for the pattern.
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Proof: General m

Putting all this together gives...

Peter Blomgren (blomgren@sdsu.edu)

Introduction: Algorithm, Conventions, Axioms, and Theorem
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Comments
30f4

3 (m-2)
1 2 3 )
0 1 2 6mach+0(€mach)
2 0 1

1 0

O -
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Backward Stability of Back Substitution E;‘m]ems
Proof: General m — Collecting It All 4 of 4
[m 1 2 3 4 (m—1)
R 5 1 3 4
RS 4 1 2 3 Emacr + O(E2,c1)
1 2
2 1
. 1 -

Which completes the proof. [
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Comments

This is the standard approach for a backward stability analysis.

Errors introduced by the floating point operations &, &, ®, and @
(in accordance with the axiom) are reinterpreted as errors in the
initial data / or “problem.”

Where appropriate, errors ~ O(g.) are freely moved between
numerators and denominators.

Perturbations of order O(&,,.,) are accumulated additively, e.g.
(1+e)(1+e)=(1+26)+0O(2,,)

where |€123] < Emach-
;
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Least Squares Problems

Next, we turn our attention back to least squares problems.

— We take a detailed look at the conditioning of least squares
problems; it is a subtle topic and has nontrivial implications
for the stability (and ultimately, the accuracy) of least
squares algorithms.

— Further, this will serve as our main example on de-
tailed conditioning analysis (as Back-substitution served
as the main example on detailed backward stability analysis).
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