Numerical Matrix Analysis

Notes #13 — Conditioning and Stability: Stability of Back Substitution

Peter Blomgren (blomgren@sdsu.edu)

Department of Mathematics and Statistics

Dynamical Systems Group Computational Sciences Research Center San Diego State University San Diego, CA 92182-7720

http://terminus.sdsu.edu/

Spring 2024

(Revised: March 7, 2024)

Outline

- 1 Looking Back
 - Stability of Householder Triangularization
- Backward Stability of Back Substitution
 - Introduction: Algorithm, Conventions, Axioms, and Theorem
 - Proof
 - Comments

13. Stability of Back Substitution

Last Time: Stability of Householder Triangularization

- We discussed the stability properties of QR-factorization by Householder Triangularization (HT-QR).
 - Numerical "evidence" that HT-QR is backward stable.
 - Statement (proof by reference to Higham's Accuracy and Stability of Numerical Algorithms) that HT-QR is backward stable
- Showed that solving $A\vec{x} = \vec{b}$ using HT-QR and backward substitution is backward stable, assuming that
 - (1) QR = A by HT-QR is backward stable
 - (2) $\tilde{w} = Q^* \vec{b}$ is backward stable
 - (3) $R\vec{x} = \tilde{w}$ by back substitution is backward stable
 - Today: Explicit proof of (3), and implicit proof of (2).

Backward Stability of Back Substitution

Back substitution is one of the **easiest non-trivial algorithms** we study in numerical linear algebra, and is therefore a good venue for a full backward stability proof.

The proof for backward stability of Householder triangularization follows the same pattern, but the details become more cumbersome.

Back-substitution applies to $R\vec{x} = \vec{b}$, where

$$\begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1m} \\ & r_{22} & & r_{2m} \\ & & \ddots & \vdots \\ & & & r_{mm} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

Upper (and lower) triangular matrices are generated by, e.g. the QR-factorization [Notes#6–7], Gaussian elimination [Notes#16–17], and the Cholesky factorization [Notes#17].

Algorithm: Back-Substitution

Algorithm (Back-Substitution)

1:
$$x_m \leftarrow b_m/r_{mm}$$

2: **for**
$$\ell \in \{(m-1), \ldots, 1\}$$
 do

3:
$$x_{\ell} \leftarrow \left(b_{\ell} - \sum_{k=\ell+1}^{m} x_{k} r_{\ell k}\right) / r_{\ell \ell}$$

4: end for

Note that the algorithm breaks if $r_{\ell\ell}=0$ for some ℓ .

For this discussion we make the assumption that $b_{\ell} - \sum (x_k r_{\ell k})$ is computed as $(m - \ell)$ subtractions performed in k-increasing order.

Simplification: In the theorem/proof, we use the convention that if the denominator in a statement like $\frac{|\delta r_i \epsilon|}{|r_i \epsilon|} \leq m \varepsilon_{\rm mach}$ is zero, we implicitly assert that the numerator is also zero, as $\varepsilon_{\rm mach} \to 0$. This can be fully formalized, but at this stage it unnecessarily complicates the discussion).

Reference: Key Floating Point Axioms

Floating Point Representation Axiom

$$\forall x \in \mathbb{R}$$
, there exists ϵ with $|\epsilon| \le \epsilon_{\text{mach}}$, such that $\mathtt{fl}(x) = x(1 + \epsilon)$.

The Fundamental Axiom of Floating Point Arithmetic For all $x,y\in\mathbb{F}_n$ (where \mathbb{F}_n is the set of n-bit floating point numbers), there exists ϵ with $|\epsilon|\leq\epsilon_{\rm mach}$, such that

$$x \oplus y = (x+y)(1+\epsilon),$$
 $x \ominus y = (x-y)(1+\epsilon),$
 $x \otimes y = (x*y)(1+\epsilon),$ $x \oslash y = (x/y)(1+\epsilon)$

Back-Substitution: Backward Stability Theorem

Theorem (Solving an Upper Triangular System $R\vec{x} = \vec{b}$ Using Back-Substitution is Backward Stable)

Let the back-substitution algorithm be applied to $R\vec{x} = \vec{b}$, where $R \in \mathbb{C}^{m \times m}$ is upper triangular; $\vec{b}, \vec{x} \in \mathbb{C}^m$; in a floating-point environment satisfying the floating point axioms. The algorithm is backward stable in the sense that the computed solution $\tilde{x} \in \mathbb{C}^m$ satisfies

$$(R + \delta R)\tilde{x} = \vec{b}$$

for some upper triangular $\delta R \in \mathbb{C}^{m \times m}$ with

$$\frac{\|\delta R\|}{\|R\|} = \mathcal{O}(\varepsilon_{mach}).$$

Specifically, for each i, ℓ

$$\frac{|\delta r_{i\ell}|}{|r_{i\ell}|} \leq m\varepsilon_{mach} + \mathcal{O}(\varepsilon_{mach}^2).$$

Introduction: Algorithm, Conventions, Axioms, and Theorem **Proof**Comments

Proof: m=1

When m = 1, back substitution terminates in one step

$$\tilde{x}_1 = b_1 \oslash r_{11}$$

The error introduced in this step is captured by

$$ilde{x}_1 = rac{b_1}{r_{11}}(1+\epsilon_1^{\oslash}), \quad |\epsilon_1^{\oslash}| \leq arepsilon_{\mathsf{mach}}.$$

Since we want the express the error in terms of **perturbations of** R, we write

$$ilde{x}_1 = rac{b_1}{r_{11}(1+\epsilon_1')}, \quad |\epsilon_1'| \leq arepsilon_{\mathsf{mach}} + \mathcal{O}(arepsilon_{\mathsf{mach}}^2).$$

Hence.

$$(r_{11} + \delta r_{11})\tilde{x}_1 = b_1, \quad \frac{|\delta r_{11}|}{|r_{11}|} \leq \varepsilon_{\mathsf{mach}} + \mathcal{O}(\varepsilon_{\mathsf{mach}}^2) = \mathcal{O}(\varepsilon_{\mathsf{mach}}).$$

Introduction: Algorithm, Conventions, Axioms, and Theorem
Proof
Comments

A Note on $(1+\epsilon)$ and $1/(1+\epsilon')$

In backward stability proofs we frequently need to move terms of the type $(1+\epsilon)$ from/to the numerator to/from the denominator.

We do this because we want to express all the floating point errors as perturbations to a specific part of the expression, e.g. the matrix R in the instance of backward substitution.

When ϵ is small, we can set

$$\epsilon' = rac{-\epsilon}{1+\epsilon} \sim -\epsilon(1-\epsilon+\mathcal{O}(\epsilon^2)) = -\epsilon+\mathcal{O}(\epsilon^2)$$

and thus (discarding $\mathcal{O}(\epsilon^2)$ -terms)

$$1 + \epsilon' = \frac{1 + \epsilon}{1 + \epsilon} - \frac{\epsilon}{1 + \epsilon} = \frac{1 + \epsilon - \epsilon}{1 + \epsilon} = \frac{1}{1 + \epsilon} \implies \frac{1}{1 + \epsilon'} = 1 + \epsilon.$$

Bottom line: we can move $(1+\epsilon)$ terms (where $|\epsilon| \leq \varepsilon_{\rm mach} \ll 1$) between the numerator and denominator, and only introduce errors of the order $\mathcal{O}(\varepsilon_{\rm mach}^2)$, i.e. $|\epsilon'| \leq \varepsilon_{\rm mach} + \mathcal{O}(\varepsilon_{\rm mach}^2)$.

Proof: m=2

1 of 2

Step one (which computes \tilde{x}_2) is exactly like the m=1 case:

$$ilde{x}_2 = rac{b_2}{r_{22}(1+\epsilon_1^{\oslash})}, \quad |\epsilon_1| \leq arepsilon_{\sf mach} + \mathcal{O}(arepsilon_{\sf mach}^2).$$

The second step is defined by

$$\tilde{x}_1 = (b_1 \ominus (\tilde{x}_2 \otimes r_{12})) \oslash r_{11}.$$

We get

$$egin{array}{lcl} ilde{x}_1 &=& \left(b_1 \ominus \left(ilde{x}_2 r_{12} (1 + \epsilon_2^{\otimes})
ight)
ight) \oslash r_{11} \ &=& \left(b_1 - ilde{x}_2 r_{12} (1 + \epsilon_2^{\otimes})
ight) (1 + \epsilon_3^{\ominus}) \oslash r_{11} \ &=& rac{ \left(b_1 - ilde{x}_2 r_{12} (1 + \epsilon_2^{\otimes})
ight) (1 + \epsilon_3^{\ominus}) (1 + \epsilon_4^{\ominus}) }{r_{11}} \end{array}$$

Proof: m = 2

2 of 2

As before, we can shift the $(1+\epsilon_3^{\ominus})$ and $(1+\epsilon_4^{\oslash})$ terms to the denominator

$$ilde{\mathbf{x}}_1 = rac{b_1 - ilde{\mathbf{x}}_2 r_{12} (1 + \epsilon_2^\otimes)}{r_{11} (1 + \epsilon_3'^\ominus) (1 + \epsilon_4'^\ominus)} = rac{b_1 - ilde{\mathbf{x}}_2 \mathbf{r}_{12} (1 + \epsilon_2^\otimes)}{\mathbf{r}_{11} (1 + 2\epsilon_5^\ominus)}$$

where $|\epsilon_{3,4}'|, |\epsilon_5| \leq \varepsilon_{\mathsf{mach}} + \mathcal{O}(\varepsilon_{\mathsf{mach}}^2)$.

Now

$$(R + \delta R)\tilde{x} = \vec{b}$$

since $\mathbf{r_{11}}$ is perturbed by the factor $(\mathbf{1}+\mathbf{2}\epsilon_5^{\ominus,\oslash})$, $\mathbf{r_{12}}$ by the factor $(\mathbf{1}+\epsilon_2^{\otimes})$, and $\mathbf{r_{22}}$ by the factor $(\mathbf{1}+\epsilon_1^{\ominus})$. The entries satisfy

$$\left[\begin{array}{cc} |\delta \textit{r}_{11}|/|\textit{r}_{11}| & |\delta \textit{r}_{12}|/|\textit{r}_{12}| \\ |\delta \textit{r}_{22}|/|\textit{r}_{22}| \end{array}\right] = \left[\begin{array}{cc} 2|\epsilon_5^{\ominus,\oslash}| & |\epsilon_2^{\otimes}| \\ & |\epsilon_1^{\ominus}| \end{array}\right] \leq \left[\begin{array}{cc} 2 & 1 \\ & 1 \end{array}\right] \varepsilon_{\mathsf{mach}} + \mathcal{O}(\varepsilon_{\mathsf{mach}}^2)$$

Thus $\|\delta R\|/\|R\| = \mathcal{O}(\varepsilon_{\mathsf{mach}})$.

Introduction: Algorithm, Conventions, Axioms, and Theorem Proof Comments

Proof: m = 3

1 of 3

The first two steps are as before, and we get

$$\begin{cases} \tilde{x}_{3} = b_{3} \oslash r_{33} = \frac{b_{3}}{r_{33}(1 + \epsilon_{1}^{\varnothing})} \\ \tilde{x}_{2} = (b_{2} \ominus (\tilde{x}_{3} \otimes r_{23})) \oslash r_{22} = \frac{b_{2} - \tilde{x}_{3}r_{23}(1 + \epsilon_{2}^{\otimes})}{r_{22}(1 + 2\epsilon_{3}^{\varnothing,\ominus})} \end{cases}$$

where superscipts on ϵs indicate the source operation; now

$$\left[egin{array}{c|c} 2|\epsilon_3| & |\epsilon_2| \ & |\epsilon_1| \end{array}
ight] \leq \left[egin{array}{c|c} 2 & 1 \ & 1 \end{array}
ight]arepsilon_{\sf mach} + \mathcal{O}(arepsilon_{\sf mach}^2)$$

We take a deep breath, and write down the third step

$$\tilde{x}_1 = [(b_1 \ominus (\tilde{x}_2 \otimes r_{12})) \ominus (\tilde{x}_3 \otimes r_{13})] \oslash r_{11}$$

Proof: m = 3

2 of 3

We expand the two \otimes operations, and write

$$ilde{x}_1 = \left[(b_1 \ominus ilde{x}_2 r_{12} (1 + \epsilon_4^{\otimes})) \ominus ilde{x}_3 r_{13} (1 + \epsilon_5^{\otimes}) \right] \oslash r_{11}$$

We introduce error bounds for the \ominus operations

$$\tilde{x}_1 = \left[(b_1 - \tilde{x}_2 r_{12} (1 + \epsilon_4^{\otimes})) (1 + \epsilon_6^{\ominus}) - \tilde{x}_3 r_{13} (1 + \epsilon_5^{\otimes}) \right] (1 + \epsilon_7^{\ominus}) \oslash r_{11}$$

Finally, we convert \oslash to a mathematical division with a perturbation ϵ_8 ; and move both the $(1+\epsilon_{7,8})$ expressions to the denominator

$$\tilde{\mathbf{x}}_1 = \frac{\left(\mathbf{b_1} - \tilde{\mathbf{x}}_2 r_{12}(1 + \epsilon_4^{\otimes})\right) (1 + \epsilon_6^{\ominus}) - \tilde{\mathbf{x}}_3 r_{13}(1 + \epsilon_5^{\otimes})}{r_{11}(1 + \epsilon_7^{\prime\ominus}) (1 + \epsilon_8^{\prime\otimes})}$$

As it stands, we have introduced a perturbation in b_1 . This was not our intention, so we ship $(1 + \epsilon_6^{\ominus})$ to the denominator as well...

Proof: m = 3

3 of 3

We now have an expression with perturbations in only $r_{1\ell}$:

$$ilde{x}_1 = rac{b_1 - ilde{x}_2 r_{12} (1 + \epsilon_{oldsymbol{4}}^\otimes) - ilde{x}_3 r_{13} (1 + \epsilon_{oldsymbol{5}}^\otimes) (1 + \epsilon_{oldsymbol{6}}^{\prime\ominus})}{r_{11} (1 + \epsilon_{oldsymbol{6}}^{\prime\ominus}) (1 + \epsilon_{oldsymbol{7}}^{\prime\ominus}) (1 + \epsilon_{oldsymbol{8}}^{\prime\ominus})}$$

where $|\epsilon_{4,5}| \leq \varepsilon_{\text{mach}}$, and $|\epsilon'_{6,7,8}| \leq \varepsilon_{\text{mach}} + \mathcal{O}(\varepsilon_{\text{mach}}^2)$.

If we collect the limits on the relative sizes of the perturbations $|\delta r_{i\ell}|/|r_{i\ell}|$ we get the following 6 relations

$$\begin{bmatrix} |\delta \textit{r}_{11}|/|\textit{r}_{11}| & |\delta \textit{r}_{12}|/|\textit{r}_{12}| & |\delta \textit{r}_{13}|/|\textit{r}_{13}| \\ |\delta \textit{r}_{22}|/|\textit{r}_{22}| & |\delta \textit{r}_{23}|/|\textit{r}_{23}| \\ & |\delta \textit{r}_{33}|/|\textit{r}_{33}| \end{bmatrix} \leq \begin{bmatrix} 3 & 1 & 2 \\ & 2 & 1 \\ & & 1 \end{bmatrix} \varepsilon_{\mathsf{mach}} + \mathcal{O}(\varepsilon_{\mathsf{mach}}^2)$$

We are now ready to identify the pattern for general values of m...

Proof: General m

1 of 4

The division by r_{ii} induces perturbations δr_{ii} only, since we always immediately shift that $(1+\epsilon_*)$ -term to the denominator $1/(1+\epsilon_*')$, hence the perturbation pattern is of the form

$$\oslash \longrightarrow I_{n \times n} \varepsilon_{\mathsf{mach}} + \mathcal{O}(\varepsilon_{\mathsf{mach}}^2)$$

The multiplications $\tilde{x}_i r_{\ell i}$ induces perturbations $\delta r_{\ell i}$ of relative size $\leq \varepsilon_{\rm mach}$, the perturbation pattern is of the form

$$\otimes \quad \rightsquigarrow \quad \begin{bmatrix} 0 & 1 & 1 & \dots & 1 \\ & 0 & 1 & \dots & 1 \\ & & \ddots & \ddots & \vdots \\ & & & 0 & 1 \\ & & & & 0 \end{bmatrix} \varepsilon_{\mathsf{mach}}$$

Proof

Comments

Proof: General m

2 of 4

The most complicated contribution comes from the subtractions (and this is where the order of evaluation has an effect on the answer) — in computing \tilde{x}_k

$$egin{array}{lll} r_{k,k} & ext{is perturbed by} & (1+\epsilon_*')^{m-k} \ r_{k,k+1} & ext{is perturbed by} & 0 \ r_{k,k+2} & ext{is perturbed by} & (1+\epsilon_*') \ r_{k,k+3} & ext{is perturbed by} & (1+\epsilon_*')^2 \ & & ext{} \ \vdots \ r_{k,m} & ext{is perturbed by} & (1+\epsilon_*')^{m-k-1} \ \end{array}$$

See next slide for the pattern.

Introduction: Algorithm, Conventions, Axioms, and Theorem **Proof**Comments

Proof: General m

3 of 4

Putting all this together gives...

Introduction: Algorithm, Conventions, Axioms, and Theorem

Proof

Comments

Proof: General m — Collecting It All

Which completes the proof. \Box

Comments

This is the standard approach for a backward stability analysis.

Errors introduced by the floating point operations \oplus , \ominus , \otimes , and \oslash (in accordance with the axiom) are **reinterpreted** as errors in the initial data / or "problem."

Where appropriate, errors $\sim \mathcal{O}(\varepsilon_{\text{mach}})$ are freely moved between numerators and denominators.

Perturbations of order $\mathcal{O}(arepsilon_{ ext{mach}})$ are accumulated additively, e.g.

$$(1+\epsilon_1)(1+\epsilon_2) = (1+2\epsilon_3) + \mathcal{O}(\varepsilon_{\scriptscriptstyle \mathsf{mach}}^2)$$

where $|\epsilon_{1,2,3}| \leq \varepsilon_{\text{mach}}$.

Introduction: Algorithm, Conventions, Axioms, and Theorem Proof
Comments

Least Squares Problems

Next, we turn our attention back to least squares problems.

- We take a detailed look at the conditioning of least squares problems; it is a subtle topic and has nontrivial implications for the stability (and ultimately, the accuracy) of least squares algorithms.
- Further, this will serve as our main example on detailed conditioning analysis (as Back-substitution served as the main example on detailed backward stability analysis).

