Numerical Matrix Analysis
 Notes \＃14－Conditioning and Stability： Least Squares Problems：Conditioning

Peter Blomgren
〈blomgren＠sdsu．edu〉
Department of Mathematics and Statistics
Dynamical Systems Group

Computational Sciences Research Center
San Diego State University
San Diego，CA 92182－7720
http：／／terminus．sdsu．edu／

$$
\begin{gathered}
\text { Spring } 2024 \\
\text { (Revised: March 21, 2024) }
\end{gathered}
$$

14．Least Squares Problems：Conditioning

Student Learning Targets，and Objectives
SLOs：Least Squares Problems－Conditioning
Student Learning Targets，and Objectives

Target Derivation of the Four Condition Numbers of the Least Squares Problem

Outline
（1）Student Learning Targets，and Objectives
－SLOs：Least Squares Problems－Conditioning
（2）
Recap
－Backward Stability
（3）Least Squares Problems
－Introduction：Projection，Pseudo－Inverse
－Conditioning
－Dimensionless Parameters：$\kappa(A), \theta$ ，and η
（4）Conditioning of LSQ Problems
－Theorem
－SVD Trickery
－Proof

We looked at a backward stability proof in gory detail．－The technique is quite straight－forward，albeit somewhat tedious．
－We replace the floating point operators \oplus, \ominus, \otimes ，and \varnothing with exact mathematical operations + relative error terms， i．e．$(x \oplus y) \rightsquigarrow(x+y)(1+\epsilon)$ ，where $|\epsilon| \leq \varepsilon_{\text {mach }}$ ．
－Then we interpret the error as perturbations on the appropriate part of the problem formulation（so that that computed solution is the exact solution to a nearby problem）．

As we used the backward substitution algorithm for the detailed backward stability proof；we now turn to least squares problems for a detailed discussion on conditioning．．
．．．and we recall that Accuracy（conditioning，stability），so these are all important pieces in the larger＂numerics jigsaw puzzle．＂

Rewind（Computational Accuracy）

Suppose a backward stable algorithm is applied to solve a problem $f: X \mapsto Y$ with condition number κ in a floating point environment satisfying the floating point representation axiom，and the fundamental axiom of floating point arithmetic．
Then the relative errors satisfy

$$
\frac{\|\tilde{f}(x)-f(x)\|}{\|f(x)\|}=\mathcal{O}\left(\kappa(x) \varepsilon_{\text {mach }}\right) .
$$

14．Least Squares Problems：Conditioning Introduction：Projection，Pseudo－Inverse Conditioning
Dimensionless Parameters：$\kappa(A), \theta$ ，and η

The conditioning of these problems depend on a combination of
（1）The conditioning of square systems of equations
（2）The geometry of orthogonal projections．
The topic is subtle，and has nontrivial implications for the stability（and ultimately，the accuracy）of least squares algorithms．

From our previous discussion of least squares problem we know

$$
\begin{aligned}
& \vec{x}=A^{\dagger} \vec{b}, \\
& A \vec{x} \text { where } A^{\dagger}=\left(A^{*} A\right)^{-1} A^{*}, \text { or } R^{-1} Q^{*}, \text { or } V \Sigma^{-1} U^{*} \\
& \text { where } \vec{y}=P \vec{b}, \quad P=A A^{\dagger}
\end{aligned}
$$

P is the orthogonal projector onto range (A) ，and $A^{\dagger} \in \mathbb{C}^{m \times m}$ is the pseudo－inverse of A ．For this theoretical infinite－precision discussion the choice of implementation／expression for the pseudo－inverse does not matter．

Once again，we return to the least squares problem．

This is easily the most technial lecture of the semester．Grab a bar－ rel of coffee，and enjoy the ride！

We measure everything in the two－norm，and let $\|\cdot\|=\|\cdot\|_{2}$ ；formally we are trying to solve

Given $A \in \mathbb{C}^{m \times n}$ of full rank，$m \geq n, \vec{b} \in \mathbb{C}^{m}$ ， find $\vec{x} \in \mathbb{C}^{n}$ such that $\|\vec{b}-A \vec{x}\|_{2}$ is minimized．

Least Squares Problems．．．Conditioning
Conditioning is the measure of sensitivity of solutions to perturbations in the data．
Our data are

$$
A \in \mathbb{C}^{m \times n}, \quad \text { and } \quad \vec{b} \in \mathbb{C}^{m}
$$

and the solution is either the vector $\vec{x} \in \mathbb{C}^{n}$ ，or the vector $\vec{y}=P \vec{b}$ （depending on our point of view／application）．
We end up with four combinations of input／output－perturbations：

\downarrow Input，Output \rightarrow	$\vec{y} \in \mathbb{C}^{m}$	$\vec{x} \in \mathbb{C}^{n}$
$\vec{b} \in \mathbb{C}^{m}$	$\kappa(\vec{b} \mapsto \vec{y})$	$\kappa(\vec{b} \mapsto \vec{x})$
$A \in \mathbb{C}^{m \times n}$	$\kappa(A \mapsto \vec{y})$	$\kappa(A \mapsto \vec{x})$

We are going to express all the condition－numbers using three dimensionless parameters $-\kappa(A), \theta$ ，and η
$\kappa(A)$ is our old friend the condition number of the matrix A

$$
\kappa(A)=\frac{\sigma_{1}}{\sigma_{n}} .
$$

θ is the angle between \vec{b} and $\vec{y}=A \vec{x}=P \vec{b}$ ，

Recap	Theorem		
Least Squares Problems			SVD Trickery
:---			
Proof			

Least Squares Problems．．．Conditioning Theorem

Theorem（Conditioning of Least Squares Problems）

Let $\vec{b} \in \mathbb{C}^{m}$ and $A \in \mathbb{C}^{m \times n}$ of full rank be given．
The least squares problem， $\min _{\vec{x} \in \mathbb{C}^{n}}\|\vec{b}-A \vec{x}\|$ has the following 2－norm relative condition numbers describing the sensitivities of \vec{y} and \vec{x} to perturbations in \vec{b} and A ：

\downarrow Input，Output \rightarrow	$\vec{y} \in \mathbb{C}^{m}$	$\vec{x} \in \mathbb{C}^{n}$
$\vec{b} \in \mathbb{C}^{m}$	$\frac{1}{\cos (\theta)}$	$\frac{\kappa(A)}{\eta \cos (\theta)}$
$A \in \mathbb{C}^{m \times n}$	$\frac{\kappa(A)}{\cos (\theta)}$	$\kappa(A)+\frac{\kappa(A)^{2} \tan (\theta)}{\eta}$

The results in the first row are exact，being attained for certain perturbations $\delta \vec{b}$ ，and the results in the second row are upper bounds．
η is a measure of how much $\|\vec{y}\|$ falls short of its maximum value，given $\|A\|$ and $\|\vec{x}\|$ ：（or how misaligned（ $\vec{y}, \vec{x})$ is with（ $\left(\vec{u}_{1}, \vec{v}_{1}\right)$ ）－Implications for＂Model Quality＂）

$$
\eta=\frac{\|A\|\|\vec{x}\|}{\|\vec{y}\|}=\frac{\|A\|\|\vec{x}\|}{\|A \vec{x}\|}=\sigma_{1} \frac{\|\vec{x}\|}{\|A \vec{x}\|} .
$$

These parameters lie in the ranges

$$
\kappa(A) \in[1, \infty), \quad \theta \in\left[0, \frac{\pi}{2}\right], \quad \eta \in[1, \kappa(A)),
$$

and

$$
\underbrace{\cos (\theta)=\frac{\|\vec{y}\|}{\|\vec{b}\|} \in[0,1]}, \quad \theta=\cos ^{-1}\left(\frac{\|\vec{y}\|}{\|\vec{b}\|}\right) .
$$

Usually，this is the quantity of interest；not θ itself．

Peter Blomgren 〈blomgren＠sdsu．edu〉 14．Least Squares Problems：Conditioning

	$\begin{aligned} & \text { Theorem } \\ & \text { SVD Trickery } \\ & \text { Proof } \end{aligned}$	
A Note on the Theorem		
In the special case $m=n$ ，the least squares problem square non－singular problem，with $\theta=0$ ，and the t		
\downarrow Input，Output \rightarrow	\vec{y}	\vec{x}
\vec{b}	1	$\frac{\kappa(A)}{\eta}$
A	0	$\kappa(A)$

Since A is square + full rank，\vec{y} is already in the range，so no projection is needed；hence the condition number is 0 ．

Note：Condition numbers less than 1 are rare，and usually indicate that there is no relation between the input and the output．

We have argued（a long，long time ago）that every matrix has a singular value decomposition．

Let $U \Sigma V^{*}=A$ be the SVD of A ．We can use U and V to get two convenient bases in which we prove the theorem．Since 2－norm perturbations are not changed by a unitary change of basis，the perturbation behavior of A is the same as that of Σ ．
Without loss of generality we can assume that

Peter Blomgren \langle blomgren＠sdsu．edu〉	14．Least Squares Problems：Conditioning	$-(13 / 30)$
Recap	Theorem Least Squares Problems SVD Trickery Conditioning of LSQ Problems	Proof

Part\＃1：Sensitivity of \vec{y} wrt．Perturbations in \vec{b}
$\vec{y}=P \vec{b}$ is a linear differentiable map；and the Jacobian is P itself， with $\|P\|=1$ ．

For a differentiable map $x \mapsto f(\vec{x})$ the condition number is

$$
\kappa(\vec{x})=\frac{\|J(\vec{x})\|}{\|f(\vec{x})\| /\|\vec{x}\|}
$$

Here we have

$$
\kappa(\vec{b} \mapsto \vec{y})=\frac{\|P\|}{\|\vec{y}\| /\|\vec{b}\|}=\frac{1}{\cos (\theta)}
$$

Now with

$$
\vec{b}=\left[\begin{array}{c}
\vec{b}_{1} \\
\cdots \cdots \\
\vec{b}_{2}
\end{array}\right], \quad \vec{b}_{1} \in \mathbb{C}^{n}, \quad \vec{b}_{2} \in \mathbb{C}^{m-n}
$$

the projection of \vec{b} onto range (A) is trivial

$$
\vec{y}=P \vec{b}=\left[\begin{array}{c}
\vec{b}_{1} \\
\cdots \overrightarrow{0}
\end{array}\right]
$$

Now，$A \vec{x}=\vec{y}$ has the unique solution $\vec{x}=A_{1}^{-1} \vec{b}_{1}$ ．
We note that the orthogonal projector，and the pseudo－inverse of A take the forms

$$
P=\left[\begin{array}{c:c}
I_{n \times n} & 0 \\
\hdashline 0 & 0
\end{array}\right], \quad A^{\dagger}=\left[\begin{array}{c:c}
A_{1}^{-1} & 0
\end{array}\right] .
$$

Part\＃2：Sensitivity of \vec{x} wrt．Perturbations in \vec{b}
$\vec{x}=A^{\dagger} \vec{b}$ is also linear，with Jacobian $J=A^{\dagger}$ ，so

$$
\kappa(\vec{b} \mapsto \vec{x})=\frac{\left\|A^{\dagger}\right\|}{\|\vec{x}\| /\|\vec{b}\|}=\left\|A^{\dagger}\right\| \frac{\|\vec{b}\|}{\|\vec{y}\|} \frac{\|\vec{y}\|}{\|\vec{x}\|}=\left\|A^{\dagger}\right\| \frac{1}{\cos (\theta)} \frac{\|A\|}{\eta}
$$

Finally，we recognize $\kappa(A)=\sigma_{1} \cdot \frac{1}{\sigma_{n}}=\|A\|\left\|A^{\dagger}\right\|$（in this case）， and we have

$$
\kappa(\vec{b} \mapsto \vec{x})=\frac{\kappa(A)}{\eta \cos (\theta)} .
$$

That concludes the＂easy＂parts of the proof．．．

Perturbations in A affect the least squares problem in two ways
－The mapping of \mathbb{C}^{n} onto range (A) is distorted．
－range (A) is also altered．
The changes in range (A) introduce a＂tilt＂of the space；and the question is what is the maximal tilt $\delta \alpha$ induced by a perturbation δA ？

The image of the unit sphere in $\mathbb{R}^{n}, \mathbb{S}^{n-1}$ is $A \mathbb{S}^{n-1}$ ，a hyper－ellipse that ＂lies flat＂in range（ A ）．
$\left(\mathbb{S}^{n-1}=\left\{\vec{x} \in \mathbb{R}^{n}:\|\vec{x}\|=1\right\}\right)$
We grab a point $\vec{p}=A \vec{v}$ on the hyper－ellipse（hence $\|\vec{v}\|=1$ ，since $\vec{v} \in \mathbb{S}^{n-1}$ ）；we introduce a perturbation $\delta \vec{p} \perp$ range (A) ．

We can express this as a rank－1 matrix perturbation $\delta A=(\delta \vec{p}) \vec{v}^{*} \Leftrightarrow$ $(\delta A) \vec{v}=\delta \vec{p}$ ，and $\|\delta A\|=\|\delta \vec{p}\|$ ．

14．Least Squares Problems：Conditioning

SVD
Proof

A Help－Result

3 of 4

Now，clearly，if we want to maximize the tilt，we should grab the hyper－ellipse as close to the origin as possible

Hence，we let $\vec{p}=\sigma_{n} \vec{u}_{n}$（the minor semi－axis in $A \mathbb{S}^{n-1}$ ．）
\(\left.\begin{array}{|r|l|}Recap \& Theorem

Least Squares Problems\end{array}\right)\)| SVD Trickery |
| :--- |
| Proof |

A Help－Result

Now，since we have A in a convenient diagonal (Σ) form，\vec{p} is the last column of $A, \vec{v}^{*}=(0,0, \ldots, 0,1)$ ，and δA is a perturbation below the diagonal in this（last）column．

$$
\vec{p}=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
\sigma_{n} \\
\hdashline 0 \\
\vdots \\
0
\end{array}\right], \quad \delta \vec{p}=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
0 \\
\hdashline \delta p_{n+1} \\
\vdots \\
\delta p_{m}
\end{array}\right], \quad \delta A=\left[\begin{array}{cccc}
0 & & & \\
& 0 & & \\
& & \ddots & 0 \\
\cdots & & \cdots & \cdots \\
\hline 0 & 0 & \cdots A_{n+1, n} \\
\vdots & \vdots & & \vdots \\
0 & 0 & \ldots & \delta A_{m, n}
\end{array}\right]
$$

the tilting angle induced by this perturbation is

$$
\tan (\delta \alpha)=\frac{\|\delta \vec{p}\|}{\sigma_{n}} .
$$

No matter how we tilt range $(A), \vec{y} \in \operatorname{range}(A)$ must be orthogonal to $(\vec{b}-\vec{y}) \in \operatorname{range}(A)^{\perp}$ ．－As range (A) varies，the point \vec{y} moves along a sphere of radius $\|\vec{b}\| / 2$ centered at the point $\vec{b} / 2$ ．

14．Least Squares Problems：Conditioning
Since \vec{y} is the orthogonal projec－ tion of \vec{b} onto range (A) ，it is determined by \vec{b} and range (A) alone．Therefore we can study changes on \vec{y} induced by tiltings $\delta \alpha$ of range（ A ）．

Tilting range (A) in the plane $\overrightarrow{0}-\vec{b}-\vec{y}$ by an angle $\delta \alpha$ changes the angle ＂ 2θ＂at the central point $\vec{b} / 2$ by $2 \delta \alpha$ ．
The corresponding change $\delta \vec{y}$ ，is the base of an isosceles triangle with central angle $2 \delta \alpha$ ，and edge length $\|\vec{b}\| / 2$ ．Hence，$\|\delta \vec{y}\|=\|\vec{b}\| \sin (\delta \alpha)$
Tilting range (A) in any other plane results in a similar geometry in a different plane and perturbations smaller by a factor as small as $\sin \theta$ ．
For arbitrary perturbations we have

$$
\|\delta \vec{y}\| \leq\|\vec{b}\| \sin (\delta \alpha) \leq\|\vec{b}\| \delta \alpha
$$

Combining with previous results give us $\kappa(A \mapsto \vec{y})$

$$
\|\delta \vec{y}\| \leq\|\vec{b}\| \frac{\|\delta A\|}{\|A\|} \kappa(A)=\frac{\|\vec{y}\|}{\cos (\theta)} \frac{\|\delta A\|}{\|A\|} \kappa(A) \quad \Leftrightarrow \quad \frac{\|\delta \vec{y}\|}{\|\vec{y}\|} / \frac{\|\delta A\|}{\|A\|} \leq \frac{\kappa(A)}{\cos (\theta)}
$$

Peter Blomgren 〈blomgren＠sdsu．edu〉
14．Least Squares Problems：Conditioning

We now analyze the most interesting relationship of the theorem；the sensitivity of the least squares solution to perturbations in A ．
We write perturbations in two parts

$$
\delta A=\left[\begin{array}{c}
\delta A_{1} \\
\hdashline \delta A_{2}^{-}
\end{array}\right], \quad \delta A_{1} \in \mathbb{C}^{n \times n}, \delta A_{2} \in \mathbb{C}^{(m-n) \times n}
$$

First，we look at the effects of δA_{1} ：these perturbations change the mapping of A in its range，but does not change range (A) itself，and hence not \vec{y} ．We get

$$
\left(A_{1}+\delta A_{1}\right) \vec{x}=\vec{b}_{1}
$$

The condition number for this operation is simply（as before）

$$
\kappa\left(A_{1} \mapsto \vec{x}\right)=\frac{\|\delta \vec{x}\|}{\|\vec{x}\|} / \frac{\left\|\delta A_{1}\right\|}{\left\|A_{1}\right\|} \leq \kappa\left(A_{1}\right)=\kappa(A)
$$

In order to close this argument out，we must relate $\delta \vec{b}_{1}$ to $\delta A_{2} \ldots$

The vector \vec{b}_{1} is \vec{y} expressed in the coordinates of range (A) ． Therefore，the only changes in \vec{y} that are realized as changes in \vec{b}_{1} are those that are parallel to range (A) ．
－If range (A) is tilted by $\delta \alpha$ in the $\overrightarrow{0}-\vec{b}-\vec{y}$ plane，the resulting per－ turbation $\delta \vec{y}$ is not parallel to range (A) ，but at an angle $\left(\frac{\pi}{2}-\theta\right)$ ， therefore

$$
\left\|\delta \overrightarrow{b_{1}}\right\|=\|\delta \vec{y}\| \sin \theta \leq\|\vec{b}\| \delta \alpha \sin \theta
$$

－If range (A) is tilted in a direction orthogonal to the $\overrightarrow{0}-\vec{b}-\vec{y}$ plane， $\delta \vec{y}$ is parallel to range (A) ，and we get $\|\delta \vec{y}\| \leq\|\vec{b}\| \delta \alpha \sin \theta$ ，and since $\left\|\delta \vec{b}_{1}\right\| \leq\|\delta \vec{y}\|$ ，we have

$$
\left\|\delta \vec{b}_{1}\right\| \leq\|\vec{b}\| \delta \alpha \sin \theta, \quad \text { same argument as for } \kappa(A \mapsto \vec{y}) .
$$

We now have all the pieces to the puzzle．．．all we need is a bit of glue！

Since $\left\|\vec{b}_{1}\right\|=\|\vec{b}\| \cos (\theta)$ we can rewrite the previous inequality as

$$
\frac{\left\|\delta \overrightarrow{b_{1}}\right\|}{\left\|\overrightarrow{b_{1}}\right\|} \leq \delta \alpha \tan (\theta)
$$

using the final result on slide 20 in the form

$$
\frac{\delta \alpha\|A\|}{\|\delta A\|} \leq \kappa(A)
$$

we have

$$
\frac{\|\delta \vec{x}\|}{\|\vec{x}\|} / \frac{\left\|\delta A_{2}\right\|}{\|A\|}=\frac{\left\|\delta \vec{b}_{1}\right\|}{\left\|\vec{b}_{1}\right\|} \frac{\kappa(A)}{\eta} \frac{\|A\|}{\left\|\delta A_{2}\right\|} \leq \frac{\tan (\theta) \kappa(A)}{\eta} \frac{\delta \alpha\|A\|}{\|\delta A\|} \leq \frac{\tan (\theta) \kappa(A)^{2}}{\eta}
$$

Adding this to the contribution from δA_{1} gives us

Peter Blomgren 〈blomgren＠sdsu．edu〉
14．Least Squares Problems：Conditioning
Recap
Least Squares Problems
Conditioning of LSQ Problems

```
Theorem
```

Conditioning of LSQ Problems
Proof
One Final Comment

Clearly，finding the least squares solution \vec{x} is a tough problem：
－The condition number contains the square of the condition number of the matrix A ：

$$
\kappa(A \mapsto \vec{x})=\kappa(A)+\frac{\tan (\theta) \kappa(A)^{2}}{\eta} .
$$

－Even for moderately ill－conditioned matrices，the least squares problem quickly becomes very ill－conditioned．

Next time we connect the conditioning results derived here with the stability（or lack thereof）of some numerical algorithms applied to the least squares problem．

AI－era Policies－SPRING 2024

AI－3 Documented：Students can use AI in any manner for this assessment or deliverable，but they must provide appropriate documentation for all AI use．
This applies to ALL MATH－543 WORK during the SPRING 2024 semester．
The goal is to leverage existing tools and resources to generate HIGH QUALITY SOLUTIONS to all assessments．
You MUST document what tools you use and HOW they were used （including prompts）；AND how results were VALIDATED．

BE PREPARED to DISCUSS homework solutions and Al－strategies．Par－ ticipation in the in－class discussions will be an essential component of the grade for each assessment．

[^0]
[^0]: Warning：Definitions／Implementations may vary－
 \longrightarrow https：／／en．wikipedia．org／wiki／Vandermonde＿matrix
 \leadsto https：／／www．mathworks．com／help／matlab／ref／vander．html
 \rightarrow https：／／numpy．org／doc／stable／reference／generated／numpy．vander．html

