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Student Learning Targets, and Objectives SLOs: Least Squares Problems — Conditioning

Student Learning Targets, and Objectives

Target Derivation of the Four Condition Numbers of the Least
Squares Problem
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Recap
Least Squares Problems

Conditioning of LSQ Problems
Backward Stability

Recap: Last Time Backward Stability of Back-Substitution

We looked at a backward stability proof in gory detail. — The
technique is quite straight-forward, albeit somewhat tedious.

— We replace the floating point operators ⊕, ⊖, ⊗, and ⊘
with exact mathematical operations + relative error terms,
i.e. (x ⊕ y) (x + y)(1 + ǫ), where |ǫ| ≤ εmach.

— Then we interpret the error as perturbations on the
appropriate part of the problem formulation (so that that
computed solution is the exact solution to a nearby problem).
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Least Squares Problems

Conditioning of LSQ Problems
Backward Stability

Recap: Last Time

As we used the backward substitution algorithm for the detailed
backward stability proof; we now turn to least squares problems
for a detailed discussion on conditioning...

...and we recall that Accuracy(conditioning,stability), so
these are all important pieces in the larger “numerics jigsaw

puzzle.”

Rewind (Computational Accuracy)

Suppose a backward stable algorithm is applied to solve a problem f : X 7→ Y with
condition number κ in a floating point environment satisfying the floating point
representation axiom, and the fundamental axiom of floating point arithmetic.

Then the relative errors satisfy

‖f̃ (x)− f (x)‖

‖f (x)‖
= O(κ(x)εmach).
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Least Squares Problems
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Introduction: Projection, Pseudo-Inverse
Conditioning
Dimensionless Parameters: κ(A), θ, and η

Least Squares Problems... 1 of 2

Once again, we return to the least squares problem.

b

range(A)
y = Ax = Pb

r = b − Ax   

This is easily the most
technial lecture of the
semester. Grab a bar-
rel of coffee, and enjoy
the ride!

We measure everything in the two-norm, and let ‖ · ‖ = ‖ · ‖2; formally
we are trying to solve

Given A ∈ C
m×n of full rank, m ≥ n, ~b ∈ C

m,
find ~x ∈ C

n such that ‖~b − A~x‖2 is minimized.
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Least Squares Problems... 2 of 2

The conditioning of these problems depend on a combination of

(1) The conditioning of square systems of equations

(2) The geometry of orthogonal projections.

The topic is subtle, and has nontrivial implications for the stability (and
ultimately, the accuracy) of least squares algorithms.

From our previous discussion of least squares problem we know

~x = A†~b, where A† = (A∗A)−1A∗, or R−1Q∗, or VΣ−1U∗

A~x = ~y , where ~y = P~b, P = AA†

P is the orthogonal projector onto range(A), and A† ∈ C
m×m is the

pseudo-inverse of A. For this theoretical infinite-precision discussion the
choice of implementation/expression for the pseudo-inverse does not
matter.
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Dimensionless Parameters: κ(A), θ, and η

Least Squares Problems... Conditioning

Conditioning is the measure of sensitivity of solutions to
perturbations in the data.

Our data are
A ∈ C

m×n, and ~b ∈ C
m,

and the solution is either the vector ~x ∈ C
n, or the vector ~y = P~b

(depending on our point of view / application).

We end up with four combinations of input/output-perturbations:

↓ Input, Output → ~y ∈ C
m ~x ∈ C

n

~b ∈ C
m κ(~b 7→ ~y) κ(~b 7→ ~x)

A ∈ C
m×n κ(A 7→ ~y) κ(A 7→ ~x)
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Dimensionless Parameters: κ(A), θ, and η

Three Dimensionless Parameters 1 of 2

We are going to express all the condition-numbers using three
dimensionless parameters — κ(A), θ, and η

κ(A) is our old friend the condition number of the matrix A

κ(A) =
σ1

σn

.

θ is the angle between ~b and ~y = A~x = P~b,
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Three Dimensionless Parameters 2 of 2

η is a measure of how much ‖~y‖ falls short of its maximum value, given
‖A‖ and ‖~x‖: (or how misaligned (~y,~x) is with (~u1, ~v1). — Implications for “Model Quality”)

η =
‖A‖ ‖~x‖

‖~y‖
=

‖A‖ ‖~x‖

‖A~x‖
= σ1

‖~x‖

‖A~x‖
.

These parameters lie in the ranges

κ(A) ∈ [1,∞), θ ∈
[

0,
π

2

]

, η ∈ [ 1, κ(A) ) ,

and

cos(θ) =
‖~y‖

‖~b‖
∈ [0, 1],

︸ ︷︷ ︸

Usually, this is the quantity
of interest; not θ itself.

θ = cos−1

(

‖~y‖

‖~b‖

)

.
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Theorem
SVD Trickery
Proof

Least Squares Problems... Conditioning Theorem

Theorem (Conditioning of Least Squares Problems)

Let ~b ∈ C
m and A ∈ C

m×n of full rank be given.

The least squares problem, min~x∈Cn ‖~b − A~x‖ has the following 2-norm

relative condition numbers describing the sensitivities of ~y and ~x to

perturbations in ~b and A:

↓ Input, Output → ~y ∈ C
m ~x ∈ C

n

~b ∈ C
m 1

cos(θ)

κ(A)

η cos(θ)

A ∈ C
m×n κ(A)

cos(θ)
κ(A) +

κ(A)2 tan(θ)

η

The results in the first row are exact, being attained for certain

perturbations δ~b, and the results in the second row are upper bounds.
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A Note on the Theorem m = n

In the special case m = n, the least squares problem reduces to a
square non-singular problem, with θ = 0, and the table looks like

↓ Input, Output → ~y ~x

~b 1
κ(A)

η

A 0 κ(A)

Since A is square + full rank, ~y is already in the range, so no
projection is needed; hence the condition number is 0.

Note: Condition numbers less than 1 are rare, and usually indicate
that there is no relation between the input and the output.
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(Massively) Simplifying the Proof Using the SVD

We have argued (a long, long time ago) that every matrix has a
singular value decomposition.

Let UΣV ∗ = A be the SVD of A. We can use U and V to get two
convenient bases in which we prove the theorem. Since 2-norm
perturbations are not changed by a unitary change of basis, the
perturbation behavior of A is the same as that of Σ.

Without loss of generality we can assume that

A =

[

Σ

0

]

=

[

A1

0

]

=

































σ1
σ2

. . .

σn

0 0 . . . 0

.

.

.

.

.

.

.

.

.
0 0 . . . 0
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Moving Along...

Now with

~b =

[
~b1

~b2

]

, ~b1 ∈ C
n, ~b2 ∈ C

m−n

the projection of ~b onto range(A) is trivial

~y = P~b =

[
~b1

~0

]

Now, A~x = ~y has the unique solution ~x = A−1
1

~b1.

We note that the orthogonal projector, and the pseudo-inverse of
A take the forms

P =

[
In×n 0

0 0

]

, A† =
[
A−1
1 0

]
.
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Part#1: Sensitivity of ~y wrt. Perturbations in ~b

~y = P~b is a linear differentiable map; and the Jacobian is P itself,
with ‖P‖ = 1.

For a differentiable map x 7→ f (~x) the condition number is

κ(~x) =
‖J(~x)‖

‖f (~x)‖/‖~x‖
.

Here we have

κ(~b 7→ ~y) =
‖P‖

‖~y‖/‖~b‖
=

1

cos(θ)
. �
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Part#2: Sensitivity of ~x wrt. Perturbations in ~b

~x = A†~b is also linear, with Jacobian J = A†, so

κ(~b 7→ ~x) =
‖A†‖

‖~x‖/‖~b‖
= ‖A†‖

‖~b‖

‖~y‖

‖~y‖

‖~x‖
= ‖A†‖

1

cos(θ)

‖A‖

η

Finally, we recognize κ(A) = σ1 ·
1

σn
= ‖A‖ ‖A†‖ (in this case),

and we have

κ(~b 7→ ~x) =
κ(A)

η cos(θ)
. �

That concludes the “easy” parts of the proof...
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Part#3: Perturbations in A A Help-Result 1 of 4

Perturbations in A affect the least squares problem in two ways

The mapping of Cn onto range(A) is distorted.

range(A) is also altered.

The changes in range(A) introduce a “tilt” of the space; and the
question is what is the maximal tilt δα induced by a perturbation δA?

The image of the unit sphere in R
n, Sn−1 is ASn−1, a hyper-ellipse that

“lies flat” in range(A). (Sn−1 = {~x ∈ R
n : ‖~x‖ = 1})

We grab a point ~p = A~v on the hyper-ellipse (hence ‖~v‖ = 1, since
~v ∈ S

n−1); we introduce a perturbation δ~p ⊥ range(A).

We can express this as a rank-1 matrix perturbation δA = (δ~p)~v∗ ⇔
(δA)~v = δ~p, and ‖δA‖ = ‖δ~p‖.
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Part#3: Perturbations in A A Help-Result 2 of 4

Now, clearly, if we want to maximize the tilt, we should grab the
hyper-ellipse as close to the origin as possible

P
P

Hence, we let ~p = σn~un (the minor semi-axis in ASn−1.)
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Part#3: Perturbations in A A Help-Result 3 of 4

Now, since we have A in a convenient diagonal (Σ) form, ~p is the
last column of A, ~v∗ = (0, 0, . . . , 0, 1), and δA is a perturbation
below the diagonal in this (last) column.

~p =



























0
.
..
0
σn

0
.
.
.
0



























, δ~p =



























0
.
..
0
0

δpn+1

.

.

.
δpm



























, δA =



























0
0

. . .

0
0 0 . . . δAn+1,n

.

.

.
.
.
.

.

.

.
0 0 . . . δAm,n



























the tilting angle induced by this perturbation is

tan(δα) =
‖δ~p‖

σn
.
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Part#3: Perturbations in A A Help-Result 4 of 4

We have

tan(δα) =
‖δ~p‖

σn
.

Further,

‖δ~p‖ = ‖δA‖, δα ≤ tan(δα),

Hence,

δα ≤
‖δA‖

σn
=

‖δA‖

‖A‖
κ(A). δα ≤

‖δA‖

‖A‖
κ(A)

We are now ready to proceed with the proof...
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Part#3: Sensitivity of ~y wrt. Perturbations in A 1 of 2

Since ~y is the orthogonal projec-
tion of ~b onto range(A), it is

determined by ~b and range(A)
alone. Therefore we can study
changes on ~y induced by tiltings
δα of range(A).

No matter how we tilt range(A), ~y ∈ range(A) must be orthogonal to

(~b − ~y) ∈ range(A)⊥. — As range(A) varies, the point ~y moves along a

sphere of radius ‖~b‖/2 centered at the point ~b/2.
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Part#3: Sensitivity of ~y wrt. Perturbations in A 2 of 2

Tilting range(A) in the plane ~0-~b-~y by an angle δα changes the angle

“2θ” at the central point ~b/2 by 2δα.

The corresponding change δ~y , is the base of an isosceles triangle with
central angle 2δα, and edge length ‖~b‖/2. Hence, ‖δ~y‖ = ‖~b‖ sin(δα)

Tilting range(A) in any other plane results in a similar geometry in a
different plane and perturbations smaller by a factor as small as sin θ.

For arbitrary perturbations we have

‖δ~y‖ ≤ ‖~b‖ sin(δα) ≤ ‖~b‖ δα

Combining with previous results give us κ(A 7→ ~y)

‖δ~y‖ ≤ ‖~b‖
‖δA‖

‖A‖
κ(A) =

‖~y‖

cos(θ)

‖δA‖

‖A‖
κ(A) ⇔

‖δ~y‖

‖~y‖

/

‖δA‖

‖A‖
≤

κ(A)

cos(θ)
. �

Peter Blomgren 〈blomgren@sdsu.edu〉 14. Least Squares Problems: Conditioning — (22/30)



Recap
Least Squares Problems

Conditioning of LSQ Problems

Theorem
SVD Trickery
Proof

Part#4: Sensitivity of ~x wrt. Perturbations in A 1 of 5

We now analyze the most interesting relationship of the theorem; the
sensitivity of the least squares solution to perturbations in A.

We write perturbations in two parts

δA =

[
δA1

δA2

]

, δA1 ∈ C
n×n, δA2 ∈ C

(m−n)×n

First, we look at the effects of δA1: these perturbations change the
mapping of A in its range, but does not change range(A) itself, and
hence not ~y . We get

(A1 + δA1)~x = ~b1

The condition number for this operation is simply (as before)

κ(A1 7→ ~x) =
‖δ~x‖

‖~x‖

/
‖δA1‖

‖A1‖
≤ κ(A1) = κ(A)
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Part#4: Sensitivity of ~x wrt. Perturbations in A 2 of 5

Next, we consider the effects of δA2. This perturbation tilts
range(A) without changing the mapping of A within this space.

The point vector ~b1, and the point ~y = [~b∗1
~0∗]∗ are perturbed, but

A1 is not. This corresponds to perturbing ~b1 in ~x = A−1
1

~b1, for
which the condition number takes the form

κ =
‖δ~x‖

‖~x‖

/
‖δ~b1‖

‖~b1‖
≤

κ(A1)

η(A1, ~x)
=

κ(A)

η

since...

‖δ~x‖

‖~x‖

/
‖δ~b1‖

‖~b1‖
≤

‖J(~x)‖

‖~x‖ / ‖~b1‖
=

‖A−1
1 ‖ ‖~b1‖

‖~x‖
=

1

σn

‖A1~x‖

‖~x‖
=

σ1

σn

‖A1~x‖

‖A1‖ ‖~x‖
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Part#4: Sensitivity of ~x wrt. Perturbations in A 3 of 5

In order to close this argument out, we must relate δ~b1 to δA2...

The vector ~b1 is ~y expressed in the coordinates of range(A).
Therefore, the only changes in ~y that are realized as changes in ~b1
are those that are parallel to range(A).
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Part#4: Sensitivity of ~x wrt. Perturbations in A 4 of 5

• If range(A) is tilted by δα in the ~0-~b-~y plane, the resulting per-
turbation δ~y is not parallel to range(A), but at an angle

(
π
2 − θ

)
,

therefore
‖δ~b1‖ = ‖δ~y‖ sin θ ≤ ‖~b‖ δα sin θ.

• If range(A) is tilted in a direction orthogonal to the ~0-~b-~y plane,
δ~y is parallel to range(A), and we get ‖δ~y‖ ≤ ‖~b‖ δα sin θ, and
since ‖δ~b1‖ ≤ ‖δ~y‖, we have

‖δ~b1‖ ≤ ‖~b‖ δα sin θ, same argument as for κ(A 7→ ~y).

We now have all the pieces to the puzzle... all we need is a bit of
glue!
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Part#4: Sensitivity of ~x wrt. Perturbations in A 5 of 5

Since ‖~b1‖ = ‖~b‖ cos(θ) we can rewrite the previous inequality as

‖δ~b1‖

‖~b1‖
≤ δα tan(θ).

using the final result on slide 20 in the form

δα ‖A‖

‖δA‖
≤ κ(A)

we have

‖δ~x‖

‖~x‖

/

‖δA2‖

‖A‖
=

‖δ~b1‖

‖~b1‖

κ(A)

η

‖A‖

‖δA2‖
≤

tan(θ)κ(A)

η

δα ‖A‖

‖δA‖
≤

tan(θ)κ(A)2

η

Adding this to the contribution from δA1 gives us

κ(A 7→ ~x) = κ(A) +
tan(θ)κ(A)2

η
. �
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One Final Comment

Clearly, finding the least squares solution ~x is a tough problem:

— The condition number contains the square of the condition
number of the matrix A:

κ(A 7→ ~x) = κ(A) +
tan(θ)κ(A)2

η
.

— Even for moderately ill-conditioned matrices, the least
squares problem quickly becomes very ill-conditioned.

Next time we connect the conditioning results derived here with
the stability (or lack thereof) of some numerical algorithms applied
to the least squares problem.
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Homework #6 Due Date in Canvas/Gradescope

TB-18.1: see Trefethen-&-Bau for problem statement

PB-14.1: Consider the vector ~x ∈ R
101 consisting of equi-spaced points in the

interval [0, 1], e.g. x = linspace(0,1,101)’; and let Ak ∈ R
101×(k+1)

be the matrix consisting of columns formed by component-wize powers
{0, . . . , k} of the x-values (a Vandermonde Matrix). Let cℓ = κ(Aℓ)
be components of the vector ~c containing the collection of condition
numbers for these matrices. Let ℓ ∈ {0, . . . , L}, and make L large
enough that you see something interesting.

Plot ~c (use a log scale)

We could use these matrices (Ak) to least-squares-fit
polynomials (of matching degree k) to some data-set with 101
measurements. Is it necessarily better to have more model
parameters (i.e. fitting a higher degree polynomial)? — Discuss.

Warning: Definitions/Implementations may vary —
 https://en.wikipedia.org/wiki/Vandermonde matrix

 https://www.mathworks.com/help/matlab/ref/vander.html

 https://numpy.org/doc/stable/reference/generated/numpy.vander.html

Peter Blomgren 〈blomgren@sdsu.edu〉 14. Least Squares Problems: Conditioning — (29/30)

https://en.wikipedia.org/wiki/Vandermonde_matrix
https://www.mathworks.com/help/matlab/ref/vander.html
https://numpy.org/doc/stable/reference/generated/numpy.vander.html


Recap
Least Squares Problems

Conditioning of LSQ Problems

Theorem
SVD Trickery
Proof

Homework AI-Policy Spring 2024

AI-era Policies — SPRING 2024

AI-3 Documented: Students can use AI in any manner for this

assessment or deliverable, but they must provide appropriate

documentation for all AI use.

This applies to ALL MATH-543 WORK during the SPRING 2024
semester.

The goal is to leverage existing tools and resources to generate HIGH
QUALITY SOLUTIONS to all assessments.

You MUST document what tools you use and HOW they were used
(including prompts); AND how results were VALIDATED.

BE PREPARED to DISCUSS homework solutions and AI-strategies. Par-
ticipation in the in-class discussions will be an essential component
of the grade for each assessment.
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