Least Squares Problems LSQ + Householder Triangularization Conditioning

Outline

Ê

SAN DIEGO

Ê

— (2/23)

Least Squares Problems Recap: Conditioning LSQ + Householder Triangularization Recap: Solution Strategies Conditioning Experiment: Test Problem	Least Squares Problems Recap: Conditioning LSQ + Householder Triangularization Recap: Solution Strategies Conditioning Experiment: Test Problem
Solving Least Squares Problems — 4 Approaches	Our Test Problem
Currently, we have four candidate methods for solving least squares problems: • The Normal Equations $\vec{x} = (A^*A)^{-1}A^*\vec{b}$ • Gram-Schmidt Orthogonalization (QR-factorization) $\vec{x} = R^{-1}(Q^*\vec{b})$ • Householder Triangularization (QR-factorization) $\vec{x} = R^{-1}(Q^*\vec{b})$ • The Singular Value Decomposition	<pre>% The Dimensions of the Problem m = 100; n = 15; % The Time-Vector Samples in [0,1] t = (0:(m-1))' / (m-1); % Build the Vandermonde Matrix A A = []; for p = 0:(n-1) A = [A t.^p]; end % Build the Right-Hand-Side b = exp(sin(4*t)) / 2006.787453080206;</pre>
$ec{x} = V(\Sigma^{-1}(U^*ec{b}))$	Son Direct Start UNIVESTY
Peter Blomgren (blomgren@sdsu.edu) 15. Least Squares Problems: Stability - (5/23)	Peter Blomgren (blomgren@sdsu.edu) 15. Least Squares Problems: Stability - (6/23)
Least Squares Problems Recap: Conditioning LSQ + Householder Triangularization Recap: Solution Strategies Conditioning Experiment: Test Problem	Least Squares Problems Recap: Conditioning LSQ + Householder Triangularization Recap: Solution Strategies Conditioning Experiment: Test Problem
2006.787453080206 ???	Our Test Problem: Visualized
The normalization	
<pre>% Build the right-hand side b = exp(sin(4*t)) / 2006.787453080206;</pre>	
Is chosen so that the correct (exact) value of the last component is $x_{15} = 1$	
We are trying to compute the 14 th degree polynomial $p_{14}(t)$ which fits $exp(sin(4t))$ on the interval $[0, 1]$.	14×10^{-4}
Comment: Normalizing problems/results is crucial to make sure that you are indeed comparing solutions in a fair and unbiased manner, enabling accurate assessment and meaningful insight .	Figure: The rows of the matrix A , the columns of the matrix A , and the vector \vec{b} .
"The purpose of computation is insight, not numbers." — Richard Hamming	4 2 0 20 40 60 80 100
Poter Riomaren /hiomaren@sdeu.edu. 15 Less Saugres Problems: Stability(7/23)	Poter Blomgron (blomgron data adu) 15 Loger Squares Probleme: Stability (8/22)

tion Recap: Conditioning tion Recap: Solution Strategies ning Experiment: Test Problem
ndition Numbers
tlab solution (x = A\b; y = A*x;) parameters, and condition numbers $\frac{\eta}{(b) \text{ norm(A) * norm(x) / norm(y)}}$ $26 \qquad 2.10 \times 10^5$ $\frac{\vec{y} \qquad \vec{x}}{1.00 \qquad 1.08 \times 10^5}$
$2.27 \times 10^{10} \qquad 3.10 \times 10^{10}$ ect digits (error ~ 10 ⁻⁶) in matlab (ε_{mach} ~ are doing as well as we can.
du) 15. Least Squares Problems: Stability — (10/23)
tion Recap: Solution Strategies ning Experiment: Test Problem
rrors
ove gives us the following errors 1.16371×10^{-7} , $e_3 = 2.18674 \times 10^{-7}$ wes the result marginally, which means the explicit formation of $Q^*\vec{b}$ are small luced by the QR-factorization itself. Indes all the bells and whistles, pre; rd stable.

— (11/23)

— (12/23)

Least Squares Problems LSQ + Householder Triangularization Conditioning

Relative Error Comparison with Gram-Schmidt

Theorem

Householder Triangularization: Theorem

Theorem (Finding the Least Squares Solution Using Householder QR-Factorization is Backward Stable)

Let the full-rank least squares problem be solved by Householder triangularization in a floating-point environment satisfying the floating point axioms. This algorithm is backward stable in the sense that the computed solution \tilde{x} has the property

$$\|(A+\delta A)\tilde{x}-\vec{b}\| = \min_{\vec{x}\in\mathbb{C}^n}\|\vec{b}-A\vec{x}\|, \quad \frac{\|\delta A\|}{\|A\|} = \mathcal{O}(\varepsilon_{mach})$$

for some $\delta A \in \mathbb{C}^{m \times n}$. This is true whether $\widehat{Q}^* \vec{b}$ is formed explicitly or implicitly. Further, the theorem is true for Householder triangularization with arbitrary column pivoting.

 Peter Blomgren (blomgren@sdsu.edu)
 15. Least Squares Problems: Stability
 — (13/23)
 Peter Blom

 Least Squares Problems LSQ + Householder Triangularization Conditioning
 Theorem Relative Error Comparison with Gram-Schmidt
 LSQ + Householder

Êı

AN DIEGO S

(15/23)

Modified Gram-Schmidt Orthogonalization

From homework, we have two ways of solving the least squares problem using modified Gram-Schmidt orthogonalization

<pre>[Q,R] = qr_mgs(A); x = R\(Q'*b);</pre>	<pre>[~,R] = qr_mgs([A b]); QstarB = R(1:n,n+1);</pre>
e4 = abs(x(15)-1);	R = R(1:n, 1:n);
nn	$x = R \setminus QstarB;$
nn	e5 = abs(x(15)-1);

• The explicit formation of Q in the first approach suffers from forward errors, and the result is quite disastrous

$$e_4 = 0.03024$$

• If instead we form $Q^*\vec{b}$ implicitly (the second approach), the result is much better

$$e_5 = 2.4854 \times 10^{-8}$$

Relative Error Comparison with Gram-Schmidt

Householder Triangularization: Relative Error

Least Squares Problems Normal Equations vs. Householder QR?!? LSQ + Householder Triangularization The SVD Conditioning Comments & Rank-Deficient Problems	Least Squares Problems Normal Equations vs. Householder QR?!? LSQ + Householder Triangularization The SVD Conditioning Comments & Rank-Deficient Problems
The Singular Value Decomposition	Comments
$\begin{bmatrix} [U,S,V] &= & svd(A,0) \\ x &= & V*(S\setminus(U^* * b)) \\ e^{d} &= & abs(x(15)-1) \end{bmatrix}$ Solving the least squares problem using the SVD is the most expensive, but also the most stable method; here we get our error to be of the same order of magnitude as the other backward stable methods $e_{6} &= & 3.16383 \times 10^{-7} \end{bmatrix}$ $\frac{1}{1000}$ The solution of the full-rank least squares problem by the SVD is backward stable.	 At this point we have four working backward stable approaches to solving the full rank least squares problem Householder triangularization Householder triangularization with column pivoting Modified Gram-Schmidt with implicit Q* b calculation The SVD The differences, in terms of classical norm-wise stability, among these algorithms are minor. For everyday use, select the simplest one — Householder triangularization — as your default algorithm. If you are working in matlab use A\b — Householder triangularization with column pivoting.
Peter Blomgren (blomgren@sdsu.edu) 15. Least Squares Problems: Stability — (21/23)	Peter Blomgren (blomgren@sdsu.edu) 15. Least Squares Problems: Stability — (22/23)
Least Squares Problems LSQ + Householder Triangularization Conditioning Comments & Rank-Deficient Problems	
Rank-Deficient Least Squares Problems	
When $rank(A) < n$, quite possibly with $m < n$, the least squares problem is under-determined . No unique solution exists, unless we add additional constraints.	
Usually, we look for the minimum norm solution \vec{x} ; <i>i.e.</i> among the infinitely many solutions we select the one with smallest norm.	
The solution depends (strongly) on $rank(A)$, and determining numerical rank is non-trivial. Is $10^{-14} = 0$???	
For this class of problems, the only fully stable algorithms are based on the SVD.	
Householder triangularization with column pivoting is stable for "almost all" such problems.	
Rank-deficient least squares problems are a completely different class of problems, and we sweep all the details under the rug	