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Last Time

Theorem (Conditioning of Linear Least Squares Problems)

Let ~b ∈ Cm and A ∈ Cm×n of full rank be given. The least squares
problem, min~x∈Cn ‖~b − A~x‖ has the following 2-norm relative condition

numbers describing the sensitivities of ~y = P~b ∈ range(A) and ~x to

perturbations in ~b and A:

↓ Input, Output → ~y ~x

~b
1

cos θ

κ(A)

η cos θ

A
κ(A)

cos θ
κ(A) +

κ(A)2 tan θ

η

κ(A) =
σ1

σn
∈ [1,∞), cos(θ) =

‖~y‖
‖~b‖

∈ [0, 1] , η =
‖A‖ ‖~x‖
‖A~x‖ ∈ [1, κ(A))
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Deconstructing η...

η =
‖A‖ ‖~x‖
‖A~x‖ ∈ [1, κ(A))

Without loss of generality, rescale ~x so that ‖~x‖ = 1.

Now with A = UΣV ∗, the extreme cases correspond to

~x = ~v1  η =
‖A‖
‖A~v1‖

=
σ1

σ1
= 1,

~x = ~vn  η =
‖A‖
‖A~vn‖

=
σ1

σn
= κ(A).

So, we get the best conditioning of the Least Squares Problem when the formulation
and model conspires such that the projection of the right-hand-side is parallel to the
minor semi-axis of the ellipsoid ASn−1. — “Obviously!”

“But, why?!?” — It’s a bit counter-intuitive: the problem is most sensitive to
perturbations along that semi-axis (by the argument from the previous lecture), so if
we maximize the “signal-to-noise-ratio” (minimizing the relative error along that
semi-axis) by having significant model-action there, we get better behavior. It means
that adding “irrelevant” parts to the model can significantly reduce the accurracy of
the computation. — “Careful Modeling Matters!”
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Solving Least Squares Problems — 4 Approaches

Currently, we have four candidate methods for solving least squares
problems:

• The Normal Equations

~x = (A∗A)−1A∗~b

• Gram-Schmidt Orthogonalization (QR-factorization)

~x = R−1(Q∗~b)

• Householder Triangularization (QR-factorization)

~x = R−1(Q∗~b)

• The Singular Value Decomposition

~x = V (Σ−1(U∗~b))
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Our Test Problem

% The Dimensions of the Problem
m = 100;
n = 15;

% The Time-Vector --- Samples in [0,1]
t = (0:(m-1))’ / (m-1);

% Build the Vandermonde Matrix A
A = [];
for p = 0:(n-1)

A = [ A t.̂p ];
end

% Build the Right-Hand-Side
b = exp(sin(4*t)) / 2006.787453080206;
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2006.787453080206 ???

The normalization

% Build the right-hand side

b = exp(sin(4*t)) / 2006.787453080206;

Is chosen so that the correct (exact) value of the last component is
x15 = 1.

We are trying to compute the 14th degree polynomial p14(t) which fits
exp(sin(4t)) on the interval [0, 1].

Comment: Normalizing problems/results is crucial to make sure that you
are indeed comparing solutions in a fair and unbiased manner, enabling
accurate assessment and meaningful insight.

“The purpose of computation is insight, not numbers.” — Richard Hamming
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Our Test Problem: Visualized
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Figure: The rows of the matrix A,
the columns of the matrix A, and
the vector ~b.
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Finding 2006.787453080206 — Using Maple Warning: Ancient Version of Maple Used

Some Maple Action...

with(linalg);

Digits := 512;

m := 100;

n := 15;

f := (i,j) -> ((i-1)/(m-1))̂(j-1);
A := Matrix(m,n,f);

g := (i) -> exp(sin(4*(i-1)/(m-1)));

b := Vector(100,g);

x := leastsqrs(A,b);

evalf( x[15] );

Gives
x15 = 2006.7874531048518338 . . .

Curious... However, using this value instead didn’t change
anything significantly in the following slides...
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Approximation of Associated Condition Numbers

We use the best available Matlab solution (x = A\b; y = A*x;)
to estimate the dimensionless parameters, and condition numbers

κ(A) cos θ η

cond(A) norm(y) / norm(b) norm(A) * norm(x) / norm(y)

2.27× 1010 0.99999999999426 2.10× 105

↓ Input, Output → ~y ~x

~b 1.00 1.08× 105

A 2.27× 1010 3.10× 1010

Bottom Line: If we get 6 correct digits (error∼ 10−6) in matlab (εmach ∼
10−16) then we are doing as well as we can.
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Householder Triangularization

We have three ways of solving the least squares problem using the
Matlab built-in Householder Triangularization

[Q,R] = qr(A,0);

x = R\(Q’*b);
e1 = abs(x(15)-1);

[∼,R] = qr([A b],0);

QstarB = R(1:n,n+1);

R = R(1:n,1:n);

x = R\QstarB;
e2 = abs(x(15)-1);

x = A\b;
e3 = abs(x(15)-1);

nn

nn

nn

In the first approach, we explicitly form and use the matrix Q.

In the second approach, we extract the “action” Q∗~b, by appending
~b as an additional column in A, and then identifying the appropriate
components of the computed R̃ as R and Q∗~b.

In the third approach, we rely on matlab’s implementation... It uses
Householder triangularization with column pivoting, for maximal
accuracy.
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Householder Triangularization: Errors

The approaches described above gives us the following errors

e1 = 3.16387× 10−7, e2 = 3.16371× 10−7, e3 = 2.18674× 10−7

Implicitly forming Q∗~b improves the result marginally, which means
that the errors introduced in the explicit formation of Q∗~b are small
compared to the errors introduced by the QR-factorization itself.

The Matlab solver, which includes all the bells and whistles,
improves the result a little more;

All three variants are backward stable.

Peter Blomgren 〈blomgren@sdsu.edu〉 15. Least Squares Problems: Stability — (12/23)



Least Squares Problems
LSQ + Householder Triangularization

Conditioning

Theorem
Relative Error
Comparison with Gram-Schmidt

Householder Triangularization: Theorem

Theorem (Finding the Least Squares Solution Using Householder
QR-Factorization is Backward Stable)

Let the full-rank least squares problem be solved by Householder
triangularization in a floating-point environment satisfying the
floating point axioms. This algorithm is backward stable in the
sense that the computed solution x̃ has the property

‖(A+ δA)x̃ − ~b‖ = min
~x∈Cn

‖~b − A~x‖, ‖δA‖
‖A‖ = O(εmach)

for some δA ∈ Cm×n. This is true whether Q̂∗~b is formed explicitly
or implicitly. Further, the theorem is true for Householder
triangularization with arbitrary column pivoting.
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Householder Triangularization: Relative Error
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Figure: The relative error (p(x)− b(x))/b(x) on the interval [0, 1].
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Modified Gram-Schmidt Orthogonalization

From homework, we have two ways of solving the least squares
problem using modified Gram-Schmidt orthogonalization

[Q,R] = qr mgs(A);

x = R\(Q’*b);
e4 = abs(x(15)-1);

nn

nn

[∼,R] = qr mgs([A b]);

QstarB = R(1:n,n+1);

R = R(1:n,1:n);

x = R\QstarB;
e5 = abs(x(15)-1);

The explicit formation of Q in the first approach suffers from
forward errors, and the result is quite disastrous

e4 = 0.03024

If instead we form Q∗~b implicitly (the second approach), the
result is much better

e5 = 2.4854× 10−8
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Modified Gram-Schmidt Orthogonalization: Comments and Theorem

The fact that e5 < e1,2,3 in this example is not an indication of
anything in particular — it is just luck.

The following is a provable result:

Theorem

The solution of the full-rank least squares problem by modified
Gram-Schmidt orthogonalization is also backward stable, provided
that Q∗~b is formed implicitly, as indicated on the previous slide.
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For “Fun” Only: Classical Gram-Schmidt Orthogonalization

We have two ways of solving the least squares problem using
classical Gram-Schmidt orthogonalization

[Q,R] = qr cgs(A);

x = R\(Q’*b);
e4 = abs(x(15)-1);

nn

nn

[∼,R] = qr cgs([A b]);

QstarB = R(1:n,n+1);

R = R(1:n,1:n);

x = R\QstarB;
e5 = abs(x(15)-1);

Bad Things[TM] Happen

e4 = 0.999385013507972

e5 = 0.999385013507972
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Normal Equations

Even though the condition number for the least squares problem

κLS = κ(A) +
κ(A)2 tan θ

η

contains κ(A)2, we have successfully found the solution with ∼ 6 correct
digits.

Using the normal equations x̃ = (A∗A)−1(A∗~b), we are subject to the
full “force” of κ(A)2, since

κ(A∗A) ∼ κ(A)κ(A∗) ∼ κ(A)2.

Matlab “barks” at us, if we try — x = (A’*A)\(A’*b);
Warning: Matrix is close to singular or badly scaled.

Results may be inaccurate. RCOND = 1.512821e-19.

and |x̃15 − x15| = 1.678.
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Normal Equations: What Happened?!?

Even though the worst-case conditioning for the least squares
problem is κ(A)2, that is almost never realized.

In our test problem

tan θ ∼ 3× 10−6, η ∼ 2× 105

so, whereas

κ(A)2 = 5.16× 1020,
κ(A)2 tan θ

η
= 3.10× 1010.

For A∗A there are no mitigating factors, and

κest(A
∗A) = 2.0× 1018 underestimate using the cond() command

so
κest(A

∗A) · εmach = 4.4× 102
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Normal Equations: Theorem

Theorem

The solution of the full-rank least squares problem via the normal
equations is unstable. Stability can be achieved, however, by
restriction to a class of problems in which κ(A) is uniformly

bounded above or
tan θ

η
is uniformly bounded below.

Bottom Line: The normal equations only work for “easy” least
squares problems, a.k.a. ”Friendly Homework prob-
lems.”
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The Singular Value Decomposition

[U,S,V] = svd(A,0);

x = V*(S\(U’*b));
e6 = abs(x(15)-1)

Solving the least squares problem using the SVD is the most
expensive, but also the most stable method; here we get our error
to be of the same order of magnitude as the other backward stable
methods

e6 = 3.16383× 10−7

Theorem

The solution of the full-rank least squares problem by the SVD is
backward stable.
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Comments

At this point we have four working backward stable approaches to solving
the full rank least squares problem

• Householder triangularization

• Householder triangularization with column pivoting

• Modified Gram-Schmidt with implicit Q∗~b calculation

• The SVD

The differences, in terms of classical norm-wise stability, among these
algorithms are minor.

For everyday use, select the simplest one — Householder triangularization
— as your default algorithm. If you are working in matlab use A\~b —
Householder triangularization with column pivoting.
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Rank-Deficient Least Squares Problems

When rank(A) < n, quite possibly with m < n, the least squares
problem is under-determined.

No unique solution exists, unless we add additional constraints.
Usually, we look for the minimum norm solution ~x ; i.e. among
the infinitely many solutions we select the one with smallest norm.

The solution depends (strongly) on rank(A), and determining
numerical rank is non-trivial. Is 10−14 = 0???

For this class of problems, the only fully stable algorithms are
based on the SVD.

Householder triangularization with column pivoting is stable for
“almost all” such problems.

Rank-deficient least squares problems are a completely different
class of problems, and we sweep all the details under the rug...
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