Numerical Matrix Analysis

Notes \＃15－Conditioning and Stability Least Squares Problems：Stability

Peter Blomgren
〈blomgren＠sdsu．edu〉
Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego，CA 92182－7720
http：／／terminus．sdsu．edu／

Spring 2024
（Revised：March 14，2024） UNIVERSITY

Outline

(1) Least Squares Problems

- Recap: Conditioning
- Recap: Solution Strategies
- Experiment: Test Problem
(2) LSQ + Householder Triangularization
- Theorem
- Relative Error
- Comparison with Gram-Schmidt
(3) Conditioning
- Normal Equations vs. Householder QR?!?
- The SVD
- Comments \& Rank-Deficient Problems

Last Time

Theorem (Conditioning of Linear Least Squares Problems)

Let $\vec{b} \in \mathbb{C}^{m}$ and $A \in \mathbb{C}^{m \times n}$ of full rank be given. The least squares problem, $\min _{\vec{x} \in \mathbb{C}^{n}}\|\vec{b}-A \vec{x}\|$ has the following 2-norm relative condition numbers describing the sensitivities of $\vec{y}=P \vec{b} \in \operatorname{range}(A)$ and \vec{x} to perturbations in \vec{b} and A :

\downarrow Input, Output \rightarrow	\vec{y}	\vec{x}
\vec{b}	$\frac{1}{\cos \theta}$	$\frac{\kappa(A)}{\eta \cos \theta}$
A	$\frac{\kappa(A)}{\cos \theta}$	$\kappa(A)+\frac{\kappa(A)^{2} \tan \theta}{\eta}$

$$
\kappa(A)=\frac{\sigma_{1}}{\sigma_{n}} \in[1, \infty), \quad \cos (\theta)=\frac{\|\vec{y}\|}{\|\vec{b}\|} \in[0,1], \quad \eta=\frac{\|A\|\|\vec{x}\|}{\|A \vec{x}\|} \in[1, \kappa(A))
$$

Deconstructing $\eta \ldots$

$$
\eta=\frac{\|A\|\|\vec{x}\|}{\|A \vec{x}\|} \in[1, \kappa(A))
$$

Without loss of generality, rescale \vec{x} so that $\|\vec{x}\|=1$.
Now with $A=U \Sigma V^{*}$, the extreme cases correspond to

$$
\begin{gathered}
\vec{x}=\vec{v}_{1} \quad \rightsquigarrow \quad \eta=\frac{\|A\|}{\left\|A \vec{v}_{1}\right\|}=\frac{\sigma_{1}}{\sigma_{1}}=1, \\
\vec{x}=\vec{v}_{n} \quad \rightsquigarrow \quad \eta=\frac{\|A\|}{\left\|A \overrightarrow{v_{n}}\right\|}=\frac{\sigma_{1}}{\sigma_{n}}=\kappa(A) .
\end{gathered}
$$

So, we get the best conditioning of the Least Squares Problem when the formulation and model conspires such that the projection of the right-hand-side is parallel to the minor semi-axis of the ellipsoid $A \mathbb{S}^{n-1}$.
"But, why?!?" - It's a bit counter-intuitive: the problem is most sensitive to perturbations along that semi-axis (by the argument from the previous lecture), so if we maximize the "signal-to-noise-ratio" (minimizing the relative error along that semi-axis) by having significant model-action there, we get better behavior. It means that adding "irrelevant" parts to the model can significantly reduce the accurracy of the computation.

Solving Least Squares Problems - 4 Approaches

Currently, we have four candidate methods for solving least squares problems:

- The Normal Equations

$$
\vec{x}=\left(A^{*} A\right)^{-1} A^{*} \vec{b}
$$

- Gram-Schmidt Orthogonalization (QR-factorization)

$$
\vec{x}=R^{-1}\left(Q^{*} \vec{b}\right)
$$

- Householder Triangularization (QR-factorization)

$$
\vec{x}=R^{-1}\left(Q^{*} \vec{b}\right)
$$

- The Singular Value Decomposition

$$
\vec{x}=V\left(\Sigma^{-1}\left(U^{*} \vec{b}\right)\right)
$$

Our Test Problem

```
\% The Dimensions of the Problem
m = 100;
\(\mathrm{n}=15\);
\% The Time-Vector --- Samples in [0,1]
\(\mathrm{t}=(0:(\mathrm{m}-1))^{\prime} /(\mathrm{m}-1)\);
\% Build the Vandermonde Matrix A
\(\mathrm{A}=[]\);
for \(p=0:(n-1)\)
    \(A=[\mathrm{A}\) t. p\(]\);
end
\% Build the Right-Hand-Side
\(b=\exp (\sin (4 * t)) / 2006.787453080206\);
```


2006.787453080206 ???

The normalization
\% Build the right-hand side
b $=\exp (\sin (4 * t)) / 2006.787453080206 ;$
Is chosen so that the correct (exact) value of the last component is $x_{15}=1$.
We are trying to compute the $14^{\text {th }}$ degree polynomial $p_{14}(t)$ which fits $\exp (\sin (4 t))$ on the interval $[0,1]$.

Comment: Normalizing problems/results is crucial to make sure that you are indeed comparing solutions in a fair and unbiased manner, enabling accurate assessment and meaningful insight.
"The purpose of computation is insight, not numbers." - Richard Hamming

Our Test Problem: Visualized

Figure: The rows of the matrix A, the columns of the matrix A, and the vector \vec{b}.

Finding 2006.787453080206 — Using Maple

Some Maple Action...

```
with(linalg);
Digits := 512;
m := 100;
n := 15;
f := (i,j) -> ((i-1)/(m-1))^(j-1);
A := Matrix(m,n,f);
g := (i) -> exp(sin(4*(i-1)/(m-1)));
b := Vector(100,g);
x := leastsqrs(A,b);
evalf( x[15] );
```

Gives

$$
x_{15}=2006.7874531048518338 \ldots
$$

Curious... However, using this value instead didn't change anything significantly in the following slides...

Approximation of Associated Condition Numbers

We use the best available Matlab solution ($\mathrm{x}=\mathrm{A} \backslash \mathrm{b}$; $\mathrm{y}=\mathrm{A} * \mathrm{x}$;) to estimate the dimensionless parameters, and condition numbers

$\kappa(\mathbf{A})$	$\cos \theta$	η
$\operatorname{cond}(\mathrm{A})$	$\operatorname{norm}(\mathrm{y}) / \operatorname{norm}(\mathrm{b})$	$\operatorname{norm}(\mathrm{A}) * \operatorname{norm}(\mathrm{x}) / \operatorname{norm}(\mathrm{y})$
2.27×10^{10}	0.99999999999426	2.10×10^{5}

\downarrow Input, Output \rightarrow	\vec{y}	\vec{x}
\vec{b}	1.00	1.08×10^{5}
A	2.27×10^{10}	$3.10 \times \mathbf{1 0}^{10}$

Bottom Line: If we get 6 correct digits (error $\sim 10^{-6}$) in matlab ($\varepsilon_{\text {mach }} \sim$ 10^{-16}) then we are doing as well as we can.

Householder Triangularization

We have three ways of solving the least squares problem using the Matlab built-in Householder Triangularization

```
[Q,R] = qr(A,0);
x = R\(Q'*b);
e1 = abs(x(15)-1);
```

```
[~,R] = qr([A b],0);
QstarB = R(1:n,n+1);
R = R(1:n,1:n);
x = R\QstarB;
e2 = abs(x(15)-1);
```

```
x = A\b;
e3 = abs(x(15)-1);
```

- In the first approach, we explicitly form and use the matrix Q.
- In the second approach, we extract the "action" $Q^{*} \vec{b}$, by appending \vec{b} as an additional column in A, and then identifying the appropriate components of the computed \tilde{R} as R and $Q^{*} \vec{b}$.
- In the third approach, we rely on matlab's implementation... It uses Householder triangularization with column pivoting, for maximal accuracy.

Householder Triangularization: Errors

The approaches described above gives us the following errors $e_{1}=3.16387 \times 10^{-7}, e_{2}=3.16371 \times 10^{-7}, e_{3}=2.18674 \times 10^{-7}$

Implicitly forming $Q^{*} \vec{b}$ improves the result marginally, which means that the errors introduced in the explicit formation of $Q^{*} \vec{b}$ are small compared to the errors introduced by the QR-factorization itself.

The Matlab solver, which includes all the bells and whistles, improves the result a little more;

All three variants are backward stable.

Householder Triangularization: Theorem

Theorem (Finding the Least Squares Solution Using Householder QR-Factorization is Backward Stable)

Let the full-rank least squares problem be solved by Householder triangularization in a floating-point environment satisfying the floating point axioms. This algorithm is backward stable in the sense that the computed solution \tilde{x} has the property

$$
\|(A+\delta A) \tilde{x}-\vec{b}\|=\min _{\vec{x} \in \mathbb{C}^{n}}\|\vec{b}-A \vec{x}\|, \quad \frac{\|\delta A\|}{\|A\|}=\mathcal{O}\left(\varepsilon_{\text {mach }}\right)
$$

for some $\delta A \in \mathbb{C}^{m \times n}$. This is true whether $\widehat{Q}^{*} \vec{b}$ is formed explicitly or implicitly. Further, the theorem is true for Householder triangularization with arbitrary column pivoting.

Householder Triangularization: Relative Error

Figure: The relative error $(p(x)-b(x)) / b(x)$ on the interval $[0,1]$.

Modified Gram-Schmidt Orthogonalization

From homework, we have two ways of solving the least squares problem using modified Gram-Schmidt orthogonalization

```
[Q,R] = qr_mgs(A);
x = R\(Q'*b);
e4 = abs(x(15)-1);
```

```
[~,R] = qr.mgs([A b]);
QstarB = R(1:n,n+1);
R = R(1:n,1:n);
x = R\QstarB;
e5 = abs(x(15)-1);
```

- The explicit formation of Q in the first approach suffers from forward errors, and the result is quite disastrous

$$
e_{4}=0.03024
$$

- If instead we form $Q^{*} \vec{b}$ implicitly (the second approach), the result is much better

$$
e_{5}=2.4854 \times 10^{-8}
$$

Modified Gram-Schmidt Orthogonalization: Comments and Theorem

The fact that $e_{5}<e_{1,2,3}$ in this example is not an indication of anything in particular - it is just luck.

The following is a provable result:

Theorem

The solution of the full-rank least squares problem by modified Gram-Schmidt orthogonalization is also backward stable, provided that $Q^{*} \vec{b}$ is formed implicitly, as indicated on the previous slide.

For "Fun" Only: Classical Gram-Schmidt Orthogonalization

We have two ways of solving the least squares problem using classical Gram-Schmidt orthogonalization

```
[Q,R] = qr_cgs(A);
x = R\ (Q'*b);
e4 = abs(x(15)-1);
```

```
[~,R] = qr_cgs([A b]);
QstarB = R(1:n,n+1);
R = R(1:n,1:n);
x = R\QstarB;
e5 = abs(x(15)-1);
```

- Bad Things[TM] Happen

$$
\begin{aligned}
& e_{4}=0.999385013507972 \\
& e_{5}=0.999385013507972
\end{aligned}
$$

Normal Equations

Even though the condition number for the least squares problem

$$
\kappa_{\mathrm{LS}}=\kappa(A)+\frac{\kappa(\mathbf{A})^{2} \tan \theta}{\eta}
$$

contains $\kappa(A)^{2}$, we have successfully found the solution with ~ 6 correct digits.
Using the normal equations $\tilde{x}=\left(A^{*} A\right)^{-1}\left(A^{*} \vec{b}\right)$, we are subject to the full "force" of $\kappa(A)^{2}$, since

$$
\kappa\left(A^{*} A\right) \sim \kappa(A) \kappa\left(A^{*}\right) \sim \kappa(\mathbf{A})^{2} .
$$

Matlab "barks" at us, if we try - $\mathrm{x}=\left(\mathrm{A}^{\prime} * \mathrm{~A}\right) \backslash\left(\mathrm{A}^{\prime} * \mathrm{~b}\right)$;

```
Warning: Matrix is close to singular or badly scaled.
    Results may be inaccurate. RCOND = 1.512821e-19.
```

and $\left|\tilde{\mathrm{x}}_{15}-\mathrm{x}_{15}\right|=1.678$.

Normal Equations: What Happened?!?

Even though the worst-case conditioning for the least squares problem is $\kappa(A)^{2}$, that is almost never realized.
In our test problem

$$
\tan \theta \sim 3 \times 10^{-6}, \quad \eta \sim 2 \times 10^{5}
$$

so, whereas

$$
\kappa(A)^{2}=5.16 \times 10^{20}, \quad \frac{\kappa(A)^{2} \tan \theta}{\eta}=3.10 \times 10^{10}
$$

For $A^{*} A$ there are no mitigating factors, and

$$
\kappa_{\text {est }}\left(A^{*} A\right)=2.0 \times 10^{18} \quad \text { underestimate using the cond }() \text { command }
$$

so

$$
\kappa_{\text {est }}\left(A^{*} A\right) \cdot \varepsilon_{\text {mach }}=4.4 \times 10^{2}
$$

Normal Equations: Theorem

Theorem

The solution of the full-rank least squares problem via the normal equations is unstable. Stability can be achieved, however, by restriction to a class of problems in which $\kappa(A)$ is uniformly bounded above or $\frac{\tan \theta}{\eta}$ is uniformly bounded below.

Bottom Line: The normal equations only work for "easy" least squares problems, a.k.a. "Friendly Homework problems."

The Singular Value Decomposition

$$
\begin{aligned}
& {[\mathrm{U}, \mathrm{~S}, \mathrm{~V}]=\operatorname{svd}(\mathrm{A}, 0) ;} \\
& \mathrm{x}=\mathrm{V} *(\mathrm{~S} \backslash(\mathrm{U} \cdot * \mathrm{~b})) ; \\
& \mathrm{e} 6=\operatorname{abs}(\mathrm{x}(15)-1)
\end{aligned}
$$

Solving the least squares problem using the SVD is the most expensive, but also the most stable method; here we get our error to be of the same order of magnitude as the other backward stable methods

$$
e_{6}=3.16383 \times 10^{-7}
$$

Theorem

The solution of the full-rank least squares problem by the SVD is backward stable.

Comments

At this point we have four working backward stable approaches to solving the full rank least squares problem

- Householder triangularization
- Householder triangularization with column pivoting
- Modified Gram-Schmidt with implicit $Q^{*} \vec{b}$ calculation
- The SVD

The differences, in terms of classical norm-wise stability, among these algorithms are minor.

For everyday use, select the simplest one - Householder triangularization - as your default algorithm. If you are working in matlab use $A \backslash \vec{b}$ Householder triangularization with column pivoting.

Rank-Deficient Least Squares Problems

When $\operatorname{rank}(A)<n$, quite possibly with $m<n$, the least squares problem is under-determined.
No unique solution exists, unless we add additional constraints. Usually, we look for the minimum norm solution \vec{x}; i.e. among the infinitely many solutions we select the one with smallest norm.
The solution depends (strongly) on $\operatorname{rank}(A)$, and determining numerical rank is non-trivial. Is $10^{-14}=0$???

For this class of problems, the only fully stable algorithms are based on the SVD.

Householder triangularization with column pivoting is stable for "almost all" such problems.
Rank-deficient least squares problems are a completely different class of problems, and we sweep all the details under the rug...

