Numerical Matrix Analysis
 Notes \＃17－Systems of Equations Gaussian Elimination \＆Cholesky Factorization

Peter Blomgren

〈blomgren＠sdsu．edu〉
Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego，CA 92182－7720
http：／／terminus．sdsu．edu／

> Spring 2024
> (Revised: March 21, 2024)
Peter Blomgren 〈blomgren＠sdsu．edu〉
17．Gaussian Elim．／Cholesky Factorization
SLOs：Gaussian Elimination \＆Cholesky－Factorization

Outline

Student Learning Targets，and Objectives

Target Gaussian Elimination

Objective The Growth Factor，ρ as a measurement of（in）stability
Objective Worst－case ρ for partial and complete pivoting vs．typical behavior
Target Gaussian Elimination－Special Case
－Hermitian Positive Definite Matrices
－Cholesky FactorizationStudent Learning Targets，and Objectives
－SLOs：Gaussian Elimination \＆Cholesky－Factorization
（2）
Gaussian Elimination
－Last Time．．
－Stability
－Backward Stability？Practical Stability？
（3）Cholesky Factorization
－Hermitian Positive Definite Matrices
－$R^{*} R$－factorization
Reference

Rewind：Last Time
We quickly reviewed a familiar algorithm－Gaussian Elimination．
If we save the multipliers generated by the elimination，we get the
LU－factorization of A ，i．e． $\mathbf{A}=\mathbf{L U}$ ，where L is lower triangular，and U is upper triangular．

In this initial form，GE／LU is completely useless（unstable），we discussed a couple of fixes，some probably familiar，some new．．．

In Partial Pivoting we rearrange the rows of the matrix A（on the fly）in order to move the largest element in the＂active＂column to the diagonal entry－this way we can guarantee that the multiplier is bounded by one

$$
\tilde{I}_{j i}=a_{j i} \oslash a_{i i}=\frac{a_{j i}}{a_{i i}}(1+\epsilon),|\epsilon| \leq \varepsilon_{\text {mach }}, \quad\left|\delta \tilde{l}_{\mathrm{ji}}\right| \leq \varepsilon_{\text {mach }} \ell_{\mathrm{ji}}
$$

We get $\mathrm{PA}=\mathrm{LU}$

＂Gaussian Elimination with partial pivoting is explosively unstable for certain matrices，yet stable in practice．This apparent paradox has a statistical explanation．＂
［Trefethen－\＆－Bau，p．163］
The stability analysis of Gaussian Elimination with Partial Pivoting （GEw／PP）is complicated，consider the example $A=L U$

$$
\left[\begin{array}{cc}
10^{-20} & 1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
10^{20} & 1
\end{array}\right]\left[\begin{array}{cc}
10^{-20} & 1 \\
0 & 1-10^{20}
\end{array}\right]
$$

The likely naively computed \tilde{L} and \tilde{U} are

$$
\left[\begin{array}{cc}
1 & 0 \\
10^{20} & 1
\end{array}\right]\left[\begin{array}{cc}
10^{-20} & 1 \\
0 & -10^{20}
\end{array}\right]=\left[\begin{array}{cc}
10^{-20} & 1 \\
1 & 0
\end{array}\right] \neq A
$$

This behavior is quite generic－instability in Gaussian Elimination （with or without pivoting）can arise if the factors \tilde{L} or \tilde{U} are large compared with A ．

In the previous example we have

$$
\|A\|_{F}=1.7321,\|\tilde{L}\|_{F}=1.0000 \times 10^{20},\|\tilde{U}\|_{F}=1.0000 \times 10^{20}
$$

i．e．the computed factors are 20 orders of magnitude larger than the initial matrix－no wonder we run into problems！

The purpose of pivoting－from the point of view of stability／accuracy－is to make sure that \tilde{L} and \tilde{U} are not too large．

Last Time

Stability
Backward Stability？Practical Stability？

Formal Result：Comments

If we just flash by the previous slide，the result look just like all the other backward stability results．．．BUT！！！take a closer look．．．we have

$$
\frac{\|\delta A\|}{\|L\|\|U\|}=\mathcal{O}\left(\varepsilon_{\text {mach }}\right) .
$$

Usually，the results contain something like

$$
\frac{\|\delta A\|}{\|A\|}=\mathcal{O}\left(\varepsilon_{\text {mach }}\right) .
$$

There is a critical difference here．If $\|L\|\|U\|=\mathcal{O}(\|A\|)$ ，then the theorem states that GE is backward stable．However（like in our previous example），if $\|L\|\|U\| \gg \mathcal{O}(\|A\|)$ ，all bets are off！

Theorem（LU－Factorization without（explicit）Pivoting）

Let the factorization $A=L U$ of a non－singular matrix $A \in \mathbb{C}^{m \times m}$ be computed by Gaussian Elimination without pivoting in a floating point environment satisfying the floating point axioms．If A has an LU－factorization，then for $\varepsilon_{\text {mach }}$ small enough，the factorization completes successfully in floating point arithmetic（no zero pivots ã ${ }_{i i}$ are encountered），and the computed matrices \tilde{L} ，and \tilde{U} satisfy

$$
\tilde{L} \tilde{U}=A+\delta A, \quad \frac{\|\delta A\|}{\|L\|\|U\|}=\mathcal{O}\left(\varepsilon_{\text {mach }}\right)
$$

for some $\delta A \in \mathbb{C}^{m \times m}$

Note that we can make the theorem apply to GEw／Pivoting by applying it to the＂pre－pivoted matrix：＂$A:=P A[Q]$ ．

Peter Blomgren 〈blomgren＠sdsu．edu〉 17．Gaussian Elim．／Cholesky Factorization

Without pivoting，both $\|L\|$ and $\|U\|$ can be unbounded，and GEw／o Pivoting is unstable by any standard．

Consider GEw／PP．By construction $\left|\ell_{i j}\right| \leq 1$ ，so that $\|L\|=\mathcal{O}(1)$ in any norm（this is true for all the pivoting schemes we have discussed）．We now focus our attention to U ；essentially GE w／PP is backward stable provided $\|U\|=\mathcal{O}(\|A\|)$ ．

The following quantity turns out to be very useful：

Definition（Growth Factor）

The growth factor of A（and the algorithm）is defined as the ratio

$$
\rho=\frac{\max _{i, j}\left|u_{i j}\right|}{\max _{i, j}\left|a_{i j}\right|}
$$

Last Tim
Backward Stability？Practical Stability？

Curious

The number of matrices with large growth factors is very small－if we select a random matrix in $\mathbb{C}^{m \times m}$ it turns out that a practical bound on ρ_{PP} is given by \sqrt{m} ．This is illustrated below．
＂Despite worst－case examples，GEw／PP is utterly stable in practice． Large factors U like the one in the worst－case scenario never seem to appear in real applications．In 50 years of computing no matrix problems that excite explosive instability are known to have arisen under natural circumstances．＂
［Trefethen－\＆－Bau（1997），p．166］

In＂Matrix Computations＂by Golub \＆Van－Loan，the upper bounds for the growth factors for partial and complete pivoting are given as

$$
\rho_{\mathrm{PP}} \leq 2^{m-1}, \quad \rho_{\mathrm{CP}} \leq 1.8 m^{\left(\frac{\mathrm{n} m}{4}\right)} .
$$

Curious．．．

Figure：The corresponding values for $\rho_{p p}$ are $\geq\left\{2,8,16,128,10^{3}, 10^{4}, 10^{6}, 10^{9}, 10^{13}, 10^{18}\right.$ ， $\left.10^{26}, 10^{38}, 10^{54}, 10^{76}, 10^{108}, 10^{153}, 10^{217}, 10^{307}, 10^{435}, 10^{616}, 10^{871}, 10^{1232}, 10^{1743}\right\}$ ，whereas in this $(m \in\{2, \ldots, 5792\})$ range，$\rho_{c p}<2.6 \cdot 10^{8}$ ；and $\sqrt{m} \leq 77$ ．

Figure：The growth factors for GEw／PP for 500 random matrices ranging in size from (2×2) to (1448×1448) ．The blue line（left panel）corresponds to the practical bound \sqrt{m} ；and the red line（right panel only）corresponds to the worst－case bound for complete pivoting，$\rho_{c p}$ ．

17．Gaussian Elim．／Cholesky Factorization
Gaussian Elimination
Cholesky Factorization
Reference

ast Time

Backward Stability？Practical Stability？
GE w／PP Bottom Line

The bottom line is that GEw／PP works well＂almost always．＂

It is almost impossible to prove any useful result in this context．

Vigorous hand－waving and numerical recovery of the probability density functions for the growth－factor vs．the matrix size can be used to get indications that the number of matrices with large growth factors is exponentially small in a probabilistic sense．

See e．g．Trefethen－\＆－Bau pp．166－170，for some discussion．

We now turn our attention to application of Gaussian Elimination／ LU－Factorization to a special class of matrices－

Definition（Hermitian Positive Definite）

$A \in \mathbb{C}^{m \times m}$ is Hermitian Positive Definite if $A=A^{*}$ ，and

$$
\vec{x}^{*} A \vec{x}>0, \quad \forall \vec{x} \in \mathbb{C}^{m}-\{\overrightarrow{0}\} .
$$

This type of matrices show up many applications－due to symmetry （reciprocity）in physical systems．
My favorite application is optimization［MATH 693A］，where we constantly build second order models

$$
m_{k}(\vec{p})=f\left(\vec{x}_{k}\right)+\vec{p} \nabla f\left(\vec{x}_{k}\right)+\frac{1}{2} \vec{p}^{*} B_{k} \vec{p}_{k}
$$

where the matrix $B_{k} \approx \nabla^{2} f\left(\vec{x}_{k}\right)$ is symmetric（Hermitian）positive definite．

Where
$\beta=\sqrt{\alpha}, \quad \overrightarrow{0}$ is the zero－vector，$\quad\left(B-w w^{\prime} / a\right) \equiv\left(B-\vec{w} \vec{w}^{*} / \alpha\right)$,

$$
I(n-1) \text { is the }(n-1) \times(n-1) \text {-identity matrix }
$$

Before moving forward，we check the matrix identity．．．

Let $A \in \mathbb{C}^{m \times m}$ be HPD．
－$\lambda(A) \in \mathbb{R}^{+}$
－Eigenvectors that correspond to distinct eigenvalues of a Hermitian matrix are orthogonal（For general matrixes we only get linear independence）．
－$\forall X \in \mathbb{C}^{m \times n}, m \geq n, \operatorname{rank}(X)=n ; X^{*} A X$ is also HPD．
－By selecting $X \in \mathbb{C}^{m \times n}$ to be a matrix with a 1 in each column，and zeros everywhere else，we can write any（ $n \times n$ ） principal sub－matrix of A in the form $X^{*} A X$ ．It follows that every principal sub－matrix of A must be HPD，and in particular $a_{i i} \in \mathbb{R}^{+}$．

Multiplying the first two matrices，and then third together gives

as desired．

It can be shown（see slides 31－32）that the sub－matrix $\left(B-\vec{w} \vec{w}^{*} / \alpha\right)$ is also HPD．

We can now define the Cholesky Factorization recursively：

$$
R^{(n)}=\left[\begin{array}{cc}
\beta & \vec{w}^{*} / \beta \\
\overrightarrow{0} & { }_{\mathrm{R}(n-1)}
\end{array}\right]
$$

Where $R(n-1)=R^{(n-1)}$ is the Cholesky factor R associated with $\left(B-\vec{w} \vec{w}^{*} / \alpha\right)$ ，i．e．$\left[R^{(n-1)}\right]^{*}\left[R^{(n-1)}\right]=\left(B-\vec{w} \vec{w}^{*} / \alpha\right)$ ．

A note on the implementation（next slide）：Since we only need to compute one of the triangular parts（it＇s Hermitian，remember？！？）of the factorization，the Cholesky factorization uses about $1 / 2$ the operations of a general $L U$－factorization．

Theorem

Every HPD matrix $A \in \mathbb{C}^{m \times m}$ has a unique Cholesky factorization．
The existence follows from the argument on slides 31－32，and uniqueness from the algorithm．
Compared with standard Gaussian elimination／LU－factorization we are saving about half the operations since we only form the upper triangular part R

Cholesky $R^{*} R$ Factorization	$\frac{m^{3}}{3}$
LU－Factorization	$\frac{2 m^{3}}{3}$
QR：Householder	$\frac{4 m^{3}}{3}$
QR：Gram－Schmidt	$2 m^{3}$
SVD	$13 m^{3}$

\％Cholesky Factorization of an m－by－m matrix A
for $\mathrm{i}=1: \mathrm{m}$
$\%$
$\%$
$A(i, i) \quad=\operatorname{sqrt}(A(i, i))$ ；
$A(i,(i+1): m)=A(i,(i+1): m) / A(i, i) ;$
\％compute the upper triangular part of $B-\vec{w} \vec{w}^{*} / \alpha$
$\%$
for $j=(i+1): m$
$A(j, j: m)=A(j, j: m)-A(i, j: m) * A(i, j) \prime ;$ end
\％
\％We zero out the sub－diagonal elements，since
$\%$ the answer is an upper triangular matrix．
\％
$A((i+1): m, i)=\operatorname{zeros}(m-i, 1) ;$
end

Peter Blomgren 〈blomgren＠sdsu．edu〉	17．Gaussian Elim．／Cholesky Factorization	- （26／35）
Gaussian Elimination Cholesky Factorization Reference	Hermitian Positive Definite Matrices $R^{*} R$－factorization	
Cholesky Factorization：Stability		1 of 2

Usually when we see this table

Cholesky $R^{*} R$ Factorization	$\frac{m^{3}}{3}$
LU－Factorization	$\frac{2 m^{3}}{3}$
QR：Householder	$\frac{4 m^{3}}{3}$
QR：Gram－Schmidt	$2 m^{3}$
SVD	$13 m^{3}$

we note that with increased cost comes increased stability．The Cholesky factorization is the one pleasant exception！
All the subtle things that can go wrong in general LU－factorization （Gaussian elimination）are safe in the Cholesky factorization context！
Cholesky factorization is always backward stable！ （For HPD matrices，that is．）

Use Gaussian Elimination with Partial Pivoting，create plots like TB－Figure－22．1，and TB－ Figure－22．2
－For matrices with random，normally distributed $N(0,1)$ entries：
6．5．1 Growth factor ρ for GE w／PP．（TB－Figure－22．1）－Use at least 1，024 matrices with varying sizes（up to at least $2,048 \times 2,048$ matrices）
6．5．2 Probability density of ρ ．（TB－Figure－22．2）－Use at least 1，048，576 matrices of each $(m \times m)$ size，$m \in\{8,16,32,64\}$ ．
－For matrices with random，uniformly distributed in $[0,1]$ entries
6．5．3 Growth factor ρ for GE w／PP．（variant of TB－Figure－22．1）－Use at least 1,024 matrices with varying size（up to at least $2,048 \times 2,048$ matrices）
6．5．4 Probability density of ρ ．（variant of TB－Figure－22．2）－Use at least $1,048,576$ matrices of each $(m \times m)$ size，$m \in\{8,16,32,64\}$ ．
－6．5．5 Comment on similarities／differences of normally vs．uniformly distributed matrix entries．

Hint：For computational efficiency，use built－in／library LU－factorizations with partial pivoting－lu（）or scipy．linalg．lu（）－read the fine documentation．

If A is HPD，and X is a non－singular matrix，then $B=X^{*} A X$ is also HPD：since X is non－singular $\vec{x} \neq 0 \Rightarrow X \vec{x} \neq 0$ ，hence

$$
\forall \vec{x} \neq 0, \quad \vec{x}^{*} B \vec{x}=\vec{x}^{*} X^{*} A X \vec{x}=(X \vec{x})^{*} A(X \vec{x})>0
$$

Now，with the representation

$$
A=\left[\begin{array}{cc}
\beta^{2} & \vec{w}^{*} \\
\vec{w} & { }^{\mathrm{B}} \\
&
\end{array}\right]
$$

We select

$$
\begin{aligned}
X=\left[\begin{array}{cc}
1 / \beta & -\vec{w}^{*} / \beta^{2} \\
\overrightarrow{0} & \boxed{I^{(n-1)}}
\end{array}\right], \quad X^{*}=\left[\begin{array}{cc}
1 / \beta & \overrightarrow{0}^{*} \\
-\vec{w} / \beta^{2} & \left.\begin{array}{c}
\mathrm{I}(\mathrm{n}-1) \\
\hline
\end{array}\right] \\
& \text { Peter Blomgren 〈blomgrenबsdsu.edu〉 }
\end{array}\right. \text { 17. Gaussian Elim. / Cholesky Factorization }
\end{aligned}
$$

Gaussian Elimination

Reference

Now，
$X^{*} A X=\left[\begin{array}{cc}1 / \beta & \overrightarrow{0}^{*} \\ -\vec{w} / \beta^{2} & { }_{\mathrm{I}(n-1)}\end{array}\right]\left[\begin{array}{cc}\beta^{2} & \vec{w}^{*} \\ \vec{W} & { }^{\mathrm{B}}\end{array}\right]\left[\begin{array}{cc}1 / \beta & -\vec{w}^{*} / \beta^{2} \\ \overrightarrow{0} & \begin{array}{c}\mathrm{I}(\mathrm{n-1)}\end{array}\end{array}\right]$

It now follows from the definition（use $\vec{x} \neq 0$ such that $x_{1}=0$ ）
that $B-\vec{w} \vec{w}^{*} / \beta^{2}$ is also HPD．

