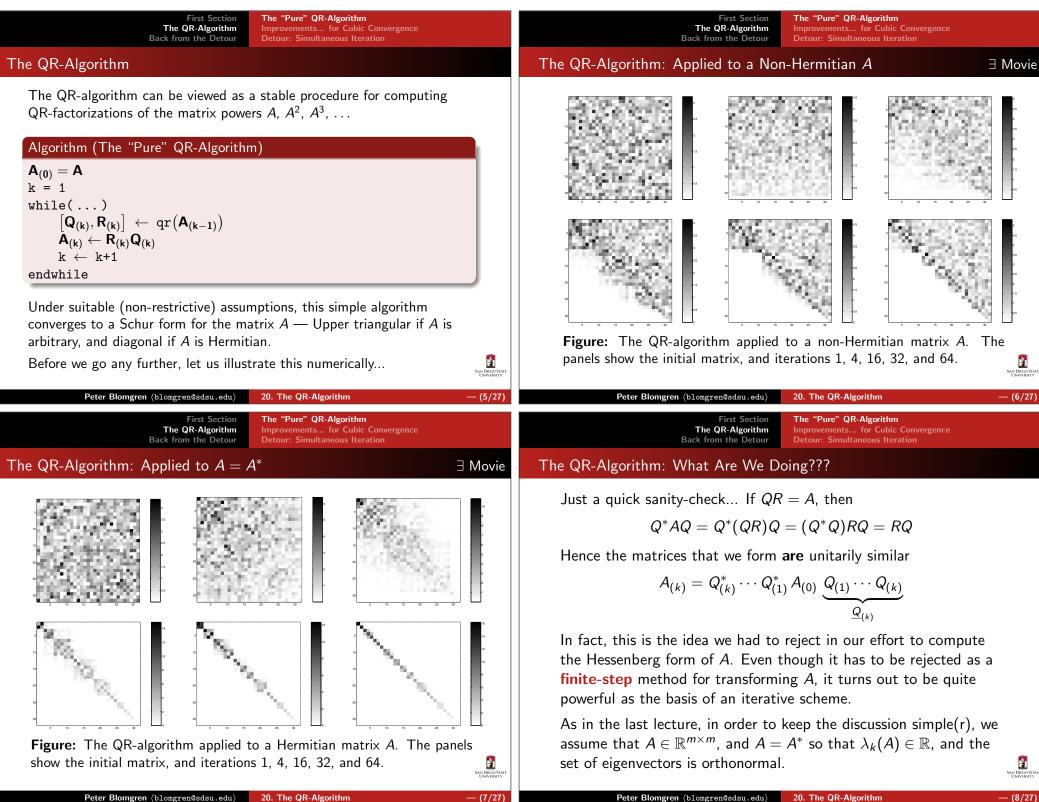
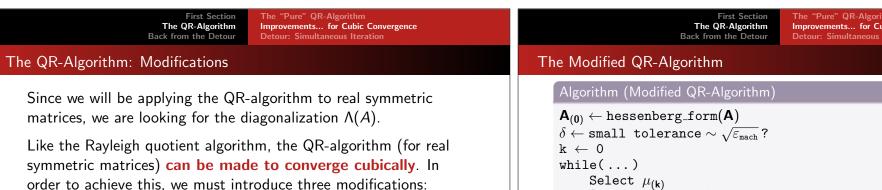
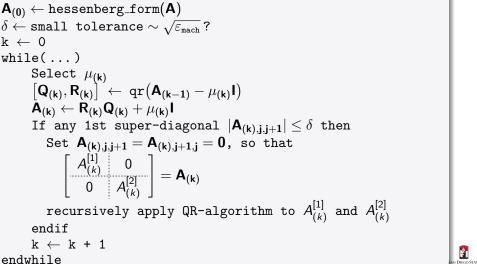
First Section The QR-Algorithm Back from the Detour	First Section The QR-Algorithm Back from the Detour
	Outline
Numerical Matrix Analysis Notes #20 — Eigenvalues The QR-Algorithm	 First Section Recap 2 The QR-Algorithm
Peter Blomgren {blomgren@sdsu.edu}	 The "Pure" QR-Algorithm Improvements for Cubic Convergence Detour: Simultaneous Iteration
Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State University San Diego, CA 92182-7720 http://terminus.sdsu.edu/	 Back from the Detour Simultaneous Iteration ⇔ QR-Algorithm Equivalence Proof Putting it Together: Convergence
Spring 2024 (Revised: April 9, 2024)	See Diras Nat University
Peter Blomgren (blomgren@sdsu.edu) 20. The QR-Algorithm - (1/27)	Peter Blomgren (blomgren@sdsu.edu) 20. The QR-Algorithm
First Section The QR-Algorithm Back from the Detour	First Section The QR-Algorithm Back from the Detour
Recap: Last Time 1 of 2	Recap: Last Time2 of 2
We noted that eigenvalue revealing computations are generally divided into 2 phases; in phase 1 we transform the matrix in into Hessenberg form in a finite number of steps, and in phase 2 we apply a (possibly infinite) number of transformations to transform the Hessenberg matrix into upper triangular form	Phase 1Can be backwardly stably computed using a slightly modified version of the Householder-QR algorithm (making all the reflectors one element shorter, and applying Q_k from the left* and the right.)Phase 2Instead of directly talking about phase 2, we looked at
the nessenberg matrix into upper thangular form	• Rayleigh quotient (eigenvalue estimation).
$\begin{bmatrix} * & * & * & * & * \\ * & * & * & * & * \\ * & * &$	
	• Inverse iteration (eigenvector estimation).
	 Rayleigh quotient iteration (eigenvalue and eigenvector estimation — cubically convergent).
	Next, we look at the QR-algorithm, and make some connections with the ideas above.
Peter Blomgren (blomgren@sdsu.edu) 20. The QR-Algorithm - (3/27)	Peter Blomgren (blomgren@sdsu.edu) 20. The QR-Algorithm

— (4/27)





- 1. Before entering the iteration, A must be reduced to tri-diagonal form (using the "Hessenberg algorithm" (Phase#1)).
- 2. Instead of $A_{(k)}$, the **shifted matrix** $(A_{(k)} \mu_{(k)}I)$ is factored at each step, where $\mu_{(k)}$ is an eigenvalue estimate.
- 3. Whenever possible, and in particular whenever an eigenvalue is found, the problem is "deflated" by breaking $A_{(k)}$ into sub-matrices.



Peter Blomgren (blomgren@sdsu.edu) 20. The QR-Algorithm Peter Blomgren (blomgren@sdsu.edu) — (9/27) 20. The QR-Algorithm First Section The "Pure" QR-Algorithm First Section The "Pure" QR-Algorithm The QR-Algorithm Improvements... for Cubic Convergence The QR-Algorithm Improvements... for Cubic Convergence Back from the Detour Back from the Detour **Detour: Simultaneous Iteration Detour: Simultaneous Iteration**

Ê

Ê

SAN DIEGO

- (11/27)

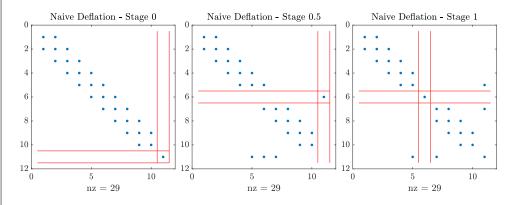
SAN DIEGO S

The Modified QR-Algorithm: Components

- We have already discussed reduction to Hessenberg form. 1.
- We will return to a discussion on selecting the shifts $\mu_{(k)}$. 2.
- 3. We leave the discussion on deflation as "an exercise for the motivated student." (There are many details, e.g. pivoting to split the matrix exactly in "half," to be taken care of to make this step maximally efficient)

For now, we focus the discussion on the "pure" form of the QR-algorithm... We relate the QR-algorithm to another method **simultaneous iteration** — whose behavior is more intuitive.

The Modified QR-Algorithm: Naive Deflation Fails



We will see that the bottom right entry is where we get fastest (cubic) convergence. A naive pivoting strategy which tries to split the matrix into two blocks of equal size fails in that the upper-right and lower-left blocks are not empty. "Some" more work is required.

Êı

- (10/27)

First Section The "Pure" QR-Algorithm The QR-Algorithm Improvements for Cubic Convergence Back from the Detour Detour: Simultaneous Iteration	First SectionThe "Pure" QR-AlgorithmThe QR-AlgorithmImprovements for Cubic ConvergenceBack from the DetourDetour: Simultaneous Iteration
Unnormalized Simultaneous Iteration 1 of 4	Unnormalized Simultaneous Iteration 2 of 4
The Idea: Apply the power iteration to several vectors at once.	Since we are interested in span $(A^k \vec{v}_1^{(0)}, \dots, A^k \vec{v}_n^{(0)})$, <i>i.e.</i> the column-space / span / image of $V_{(k)}$ we compute the reduced QR-factorization
Suppose we have a set of linearly independent vectors $\{v_1^{(0)}, \ldots, v_n^{(0)}\}$, then the spaces spanned by the vectors $\{A^k \vec{v}_1^{(0)}, \ldots, A^k \vec{v}_n^{(0)}\}$ generated by simultaneous power iteration, converge to the space spanned by the <i>n</i> eigenvectors \vec{q}_k corresponding to the <i>n</i> abs-largest eigenvalues $ \lambda_k > 0$, <i>i.e.</i>	$\widehat{Q}_{(k)}\widehat{R}_{(k)} = V_{(k)}.$ We can justify that the columns of $\widehat{Q}_{(k)}$ converge to the eigenvectors \vec{q}_k ; if we write both $\vec{v}_{\ell}^{(0)}$ and $\vec{v}_{\ell}^{(k)}$ in term of the eigenvectors of A
$\lim_{k \to \infty} \operatorname{span} \left(A^k \vec{v}_1^{(0)}, \dots, A^k \vec{v}_n^{(0)} \right) = \operatorname{span} \left(\vec{q}_1, \dots, \vec{q}_n \right).$ In matrix form	$egin{array}{rcl} ec v_\ell^{(0)}&=&a_{1\ell}ec q_1+\dots+a_{m\ell}ec q_m\ ec v_\ell^{(k)}&=&\lambda_1^ka_{1\ell}ec q_1+\dots+\lambda_m^ka_{m\ell}ec q_m. \end{array}$
$V_{(0)} = \left[\begin{array}{c c} \vec{v}_1^{(0)} & \cdots & \vec{v}_n^{(0)} \end{array} ight], V_{(k)} = A^k V_{(0)} = \left[\begin{array}{c c} \vec{v}_1^{(k)} & \cdots & \vec{v}_n^{(k)} \end{array} ight]$	For simplicity (we can discuss eigenvectors rather than invariant eigenspaces) we assume that the first n eigenvalues are distinct, and ordered so that Assumption #1
Source Start UNIVERSITY	$ \lambda_1 > \lambda_2 > \cdots > \lambda_n > \lambda_{n+1} \ge \lambda_{n+2} \ge \cdots \ge \lambda_m $
Peter Blomgren (blomgren@sdsu.edu) 20. The QR-Algorithm	Peter Blomgren (blomgren@sdsu.edu) 20. The QR-Algorithm (14/27)
First Section The "Pure" QR-Algorithm The QR-Algorithm Improvements for Cubic Convergence Back from the Detour Detour: Simultaneous Iteration	First Section The "Pure" QR-Algorithm The QR-Algorithm Improvements for Cubic Convergence Back from the Detour Detour: Simultaneous Iteration
Unnormalized Simultaneous Iteration 3 of 4	Unnormalized Simultaneous Iteration 4 of 4
We need one further assumption before we can state a theorem — Let \widehat{Q} be the $(m \times n)$ matrix whose columns are the eigenvectors \vec{q}_k . We need the following to be true	Theorem Suppose the iteration defined by
Assumption #2	$V_{(0)} = \left \begin{array}{c} \vec{v}_1^{(0)} \\ \cdots \end{array} \right \left \begin{array}{c} \cdots \\ \vec{v}_n^{(0)} \end{array} \right , V_{(k)} = A^k V_{(0)}, \widehat{Q}_{(k)} \widehat{R}_{(k)} = V_{(k)}$
All the leading principal sub-matrices of $\widehat{Q}^* V_{(0)}$ are non-singular.	is carried out, and that the assumptions (see slide 14 and 15) are satisfied. Then, as $k \to \infty$, the columns of the matrices $\widehat{Q}_{(k)}$ converge linearly to the eigenvectors of A $\ \vec{q}_j^{(k)} \mp \vec{q}_j\ = \mathcal{O}(c^k)$ for each $j \in [1, n]$, where $c < 1$ is the constant
A leading principal sub-matrix is anchored in the upper left corner (the m_{11} -element) and is a square matrix of size (1×1) , (2×2) ,, $(n \times n)$.	
With these assumptions we can say something about how the vectors generated by the simultaneous iteration converge to the eigenvectors.	$c = \max_{1 \le k < n} \left \frac{\lambda_{k+1}}{\lambda_k} \right < 1.$

— (15/27)

First SectionThe "Pure" QR-AlgorithmThe QR-AlgorithmImprovements for Cubic ConvergenceBack from the DetourDetour: Simultaneous Iteration	First Section The "Pure" QR-Algorithm The QR-Algorithm Improvements for Cubic Convergence Back from the Detour Detour: Simultaneous Iteration
Simultaneous Iteration 1 of 2	Simultaneous Iteration 2 of 2
We have a problem: As $k \to \infty$, all the vectors $\vec{v}_1^{(k)}, \ldots, \vec{v}_n^{(k)}$ in the unnormalized simultaneous iteration converge to the same dominant eigenvector $\vec{q}_1(A)$.	Algorithm (Simultaneous Iteration) Let $\widehat{Q}_{(0)} \in \mathbb{R}^{m \times n}$ with orthonormal columns k = 0
Even though $\operatorname{span}\left(\vec{v}_{1}^{(k)},\ldots,\vec{v}_{n}^{(k)}\right)$ converges to something useful, <i>i.e.</i> $\operatorname{span}\left(\vec{q}_{1},\ldots,\vec{q}_{n}\right)$, these vectors constitute a highly ill-conditioned basis (nearly linearly dependent basis) for that space. For practical purposes this approach is useless.	$ \begin{array}{c} \texttt{while()} \\ \textbf{Z}_{(\texttt{k})} \leftarrow \textbf{A} \widehat{\textbf{Q}}_{(\texttt{k}-1)} \\ \begin{bmatrix} \textbf{Q}_{(\texttt{k})}, \textbf{R}_{(\texttt{k})} \end{bmatrix} \leftarrow \texttt{qr}(\textbf{Z}_{(\texttt{k})}) \\ \texttt{k} \leftarrow \texttt{k} + 1 \\ \texttt{endwhile} \end{array} $
The fix is straight-forward:	Clearly, the column spaces / spans / images of $Q_{(k)}$ and $Z_{(k)}$ are the same.
Necessary Improvement We must orthonormalize the basis in every iteration . Instead of	Also, as long as the initial matrices $(\widehat{Q}_{(0)})$ are the same, this algorithm generates the same sequence $Q_{(k)}$ as the unnormalized simultaneous iteration.
forming the sequence $V_{(k)}$, we form a sequence $Z_{(k)}$ with the same column spaces / spans / images, but where $Z_{(k)}$ is orthonormal.	For the price of a QR-factorization per iteration we get a much better conditioned sequence of basis for the space; $\operatorname{span}\left(\vec{z}_{1}^{(k)},\ldots,\vec{z}_{n}^{(k)}\right) \to \operatorname{span}\left(\vec{q}_{1},\ldots,\vec{q}_{n}\right)$.
Peter Blomgren (blomgren@sdsu.edu) 20. The QR-Algorithm - (17/27)	Peter Blomgren (blomgren@sdsu.edu) 20. The QR-Algorithm (18/27)
First SectionSimultaneous Iteration ⇔ QR-AlgorithmThe QR-AlgorithmEquivalence ProofBack from the DetourPutting it Together: Convergence	First Section Simultaneous Iteration ⇔ QR-Algorithm The QR-Algorithm Equivalence Proof Back from the Detour Putting it Together: Convergence
Simultaneous Iteration \Leftrightarrow QR-Algorithm1 of 2	Simultaneous Iteration ⇔ QR-Algorithm2 of 2
The QR-algorithm is equivalent to simultaneous iteration applied to the full set $(n = m)$ of initial vectors, <i>i.e.</i> $Q_{(0)} = I_{m \times m}$. We are now dealing with the full QR-factorizations, so we drop the hats on $Q_{(k)}$, and $R_{(k)}$. Further, let $\underline{Q}_{(k)}$ denote the matrices generated by the simultaneous iteration, and $Q_{(k)}$ be the matrices generated by the QR-algorithm	Theorem The Simultaneous Iteration algorithm and the Pure QR-algorithm generate identical sequences of matrices $\underline{R}_{(k)}$, $\underline{Q}_{(k)}$, and $A^{(k)}$, namely those defined by the QR-factorization of A^k ,
Simultaneous Iteration Pure QR-Algorithm	$\underline{Q}_{(k)}\underline{R}_{(k)} = A^k,$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	together with the projection (similarity relation)
$\frac{\underline{\mathbf{q}}_{(k)} \mathbf{A}_{(k)}^{(k)} - \mathbf{Z}_{(k)}^{(k)}}{A^{(k)}} = (\underline{Q}_{(k)})^* A \underline{Q}_{(k)} = Q_{(1)} Q_{(2)} \cdots Q_{(k)}$	$A^{(k)} = (\underline{Q}_{(k)})^* A \underline{Q}_{(k)}.$
$\underline{R}_{(k)} = R_{(k)}R_{(k-1)}\cdots R_{(1)}$	This is not obvious at first glance, so let's look at the proof
Table: The operations and quantities that define the Simultaneous Iteration algorithm and Pure QR-Algorithm.	This is not obvious at first glance, so let's look at the proof

— (19/27)

First Section Simultaneous Iteration ⇔ QR-Algorithm The QR-Algorithm Equivalence Proof Back from the Detour Putting it Together: Convergence
Equivalence of Simultaneous Iteration and QR-Algorithm 2 of 3
Next we consider $k \ge 1$ for QR-Alg: We verify the first part of the theorem by the sequence $A^{k} \stackrel{\text{(1)}}{=} A\underline{Q}_{(k-1)}\underline{R}_{(k-1)} \stackrel{\text{(2)}}{=} \underline{Q}_{(k-1)}A^{(k-1)}\underline{R}_{(k-1)} \stackrel{\text{(3)}}{=} \underline{Q}_{(k)}\underline{R}_{(k)}$ [1] Follows from the inductive hypothesis $A^{k-1} = \underline{Q}_{(k-1)}\underline{R}_{(k-1)}$ [2] From the inductive hypothesis $A^{(k-1)} = (\underline{Q}_{(k-1)})^{*}A\underline{Q}_{(k-1)}$, multiplied from the left by $\underline{Q}_{(k-1)}$. [3] From $Q_{(k)}R_{(k)} = A^{(k-1)}$, $\underline{Q}_{(k)} = Q_{(1)}Q_{(2)}\cdots Q_{(k)}$, and
$\underline{R}_{(k)} = R_{(k)}R_{(k-1)}\cdots R_{(1)}$
See Diros Start University
Peter Blomgren (blomgren@sdsu.edu) 20. The QR-Algorithm - (22/27)
First Section Simultaneous Iteration ⇔ QR-Algorithm The QR-Algorithm Equivalence Proof Back from the Detour Putting it Together: Convergence
Convergence of the QR-Algorithm 1 of 2
 Let's put together the pieces of the "QR-Algorithm Jigsaw Puzzle" The relations (from the theorem) [i] Q_(k)R_(k) = A^k, tell us why we expect to find the eigenvectors — the QR-Algorithm constructs orthonormal bases for successive powers of A^k [ii] A^(k) = (Q_(k))*AQ_(k) explain why we find the eigenvalues — the diagonal elements of A^(k) are the Rayleigh coefficients of A corresponding to the columns of Q_(k). As the columns converge to eigenvectors, the Rayleigh coefficients converge ("quadratically faster") to the corresponding eigenvalues. Since Q_(k) converge to an orthonormal matrix, the off-diagonal elements in A^(k) must converge to zero.

First SectionSimultaneous Iteration \Leftrightarrow QR-AlgorithmThe QR-AlgorithmEquivalence ProofBack from the DetourPutting it Together: Convergence	First SectionSimultaneous Iteration \Leftrightarrow QR-AlgorithmThe QR-AlgorithmEquivalence ProofBack from the DetourPutting it Together: Convergence
Convergence of the QR-Algorithm 2 of 2	Building for the Final Spring 2024
Theorem Let the pure QR-Algorithm be applied to a real symmetric matrix A whose eigenvalues satisfy $ \lambda_1 > \lambda_2 > \cdots > \lambda_m $ and whose corresponding eigenvector matrix Q has all non-singular leading principal sub-matrices. Then as $k \to \infty$, $A^{(k)}$ converges linearly with constant $\max_{1 \le j < n} \left \frac{\lambda_{j+1}}{\lambda_j} \right $ to $\operatorname{diag}(\lambda_1, \ldots, \lambda_m)$ and $\underline{Q}_{(k)}$ converges at the same rate to Q (mod $\pm 1 \cdot \underline{q}_j^{(k)}$). Next, we look into adding shifts to the QR-Algorithm in order to speed up the convergence.	 Final-Fragments: Inverse Iteration: You are going to need an implementation of the inverse iteration [LECTURE#19]. You are free to use a library / built-in call to solve the linear system in the inverse iteration. Rayleigh Quotient: You are going to need an implementaton of the Rayleigh quotient [LECTURE#19] (not to be confused with the Rayleigh quotient iteration). Now is a good time to start building and testing
Sou Direa Start University	E San Diroo Statt University
Peter Blomgren (blomgren@sdsu.edu) 20. The QR-Algorithm — (25/27) First Section Simultaneous Iteration ⇔ QR-Algorithm	Peter Blomgren (blomgren@sdsu.edu) 20. The QR-Algorithm - (26/27)
First SectionSimultaneous Iteration \Leftrightarrow QR-AlgorithmThe QR-AlgorithmEquivalence ProofBack from the DetourPutting it Together: Convergence	
Homework AI-Policy Spring 2024	
AI-era Policies — SPRING 2024	
AI-3 Documented: Students can use AI in any manner for this assessment or deliverable, but they must provide appropriate documentation for all AI use.	
This applies to ALL MATH-543 WORK during the SPRING 2024 semester.	
The goal is to leverage existing tools and resources to generate HIGH QUALITY SOLUTIONS to all assessments.	
You MUST document what tools you use and HOW they were used (including prompts); AND how results were VALIDATED.	
BE PREPARED to DISCUSS homework solutions and Al-strategies. Par- ticipation in the in-class discussions will be an essential component of the grade for each assessment.	
Ske Dirao Stati University	
Peter Blomgren (blomgren@sdsu.edu) 20. The QR-Algorithm (27/27)	