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Last Time: The QR-Algorithm with Shifts

Starting from the pure QR-Algorithm, which converges linearly, we made
a number of critical connections with three other algorithms:

1. Inverse Iteration
2. Shifted Inverse Iteration
3. Rayleigh Quotient Iteration

Adding the tie-breaking Wilkinson shift, we were able to define an
algorithm which diagonalizes a real symmetric matrix with cubic
convergence in general, and quadratic convergence in the worst case.
We describe the algorithm to the point where we can quickly identify one
eigenvalue/eigenvector pair. Deflation, i.e. further sub-division of the
problem is necessary to identify the full diagonalization.
Ref: Watkins, D.S., 2008. The QR Algorithm Revisited. SIAM review,

50(1), pp.133-145.
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The Core QR-Algorithm with Wilkinson Shift

Algorithm (The QR-Algorithm with Wilkinson Shifts)
A(0) = hessenberg form(A)
for k = 1:...

Select µ
(k)
W = am − sign(δ)b2

m−1

|δ|+
√

δ2+b2
m−1

, δ = am−1−am
2

[
Q(k),R(k)] = qr

(
A(k−1) − µ

(k)
W I
)

A(k) = R(k)Q(k) + µ
(k)
W I

endfor

Where, [
am−1 bm−1
bm−1 am

]
def= A(m-1):m,(m-1):m
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The QR-Algorithm with Shifts

Result for Symmetric A ∈ R2048×2048 “Peel-Off Deflation”
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Computing the SVD

Computing the SVD in a stable way is non-trivial.

Formally, computation of the SVD can be reduced to an eigenvalue
decomposition of a Hermitian square matrix, but the most obvious
approach is unstable. (Which is not stopping some people from
using it...)

Better informed individuals base their SVD computations on a
different form of reduction to Hermitian form. As with
diagonalizations, for maximum efficiency SVD computations are
usually done in two phases.
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Singular Values of A and Eigenvalues of A∗A 1 of 5
We know that every matrix A ∈ Cm×n has a singular value
decomposition A = UΣV ∗, and hence

A∗A = VΣ∗ΣV ∗ = V diag(σ2
1, . . . , σ

2
n)V ∗.

Since A∗A and diag(σ2
1, . . . , σ

2
n) are related by a similarity

transformation, we must have that λi (A∗A) = σ2
i . Thus, in

infinite precision the algorithm is clear:

Do-Not-Use-Algorithm (SVD in Infinite Precision)
1. Form A∗A.
2. Compute the eigenvalue decomposition A∗A = VΛV ∗.
3. Let Σ =

√
Λ, zero-padded to (m × n).

4. Solve UΣ = AV for unitary U, via QR-factorization.
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Singular Values of A and Eigenvalues of A∗A 2 of 5

The algorithm described is unstable since it reduces the SVD to an
eigenvalue problem which may be extremely sensitive to
perturbations — due to ill-conditioning; here κ(A∗A) = (σ1/σn)2.

However, this algorithm is used quite frequently; usually by
someone who has “rediscovered” the SVD; — even though it has
many names: the Proper Orthogonal Decomposition, the
Karhunen-Loève (KL-) Decomposition, Principal Component
Analysis, Empirical Orthogonal Functions, etc..., the SVD keeps
getting “rediscovered.”
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Rewind — [Notes#4] Hits on scholar.google.com

Figure: The many names, faces, and close relatives of the Singular Value
Decomposition... Number of hits for “Proper.Orthogonal.Decomposition”,
“Empirical.Orthogonal.(Function|Functions)”, “Karhunen.Loeve”,
“Canonical.Correlation.Analysis”
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Singular Values of A and Eigenvalues of A∗A 3 of 5

The matrix A∗A has familiar and useful interpretations in many
fields.

It shows up in linear least squares, as the normal equations, and
also in the general orthogonal projector, P = A(A∗A)−1A∗ built
from a non-orthogonal matrix. Further, in statistics and other
fields, it (or something very much like it) is known as the
co-variance matrix.

Bottom Line
There are many tempting reasons to form A∗A... Don’t!!!
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Singular Values of A and Eigenvalues of A∗A 4 of 5
We can quantify the instability.
When the Hermitian matrix A∗A is perturbed by δB , the following
holds for the perturbation of the eigenvalues

|λk (A∗A + δB) − λk (A∗A) | ≤ ‖δB‖2

A similar bound holds for the perturbation of the singular values
|σk(A + δA) − σk(A)| ≤ ‖δA‖2.

A backward stable SVD algorithm must give σ̃k satisfying

σ̃k = σk(A + δA), ‖δA‖
‖A‖ = O(εmach),

which implies
|σ̃k − σk | = O(‖A‖εmach).
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Singular Values of A and Eigenvalues of A∗A 5 of 5

Now, consider λ̃k(A∗A)... If computed using a backward stable
algorithm, we expect

|λ̃k − λk | = O(‖A∗A‖εmach) = O(‖A‖2εmach).

Since σk =
√
λk we get

|σ̃k − σk | = O
(
|λ̃k − λk |√

λk

)
= O

(‖A‖2εmach

σk

)
.

This result is off by a factor of ‖A‖
σk

, which is OK for the dominant
singular values, but a disaster for small singular values σk ≪ ‖A‖, in this
case we expect a loss of accuracy of order κ(A). In a sense we are
“squaring the condition number,” much like in the least squares case.
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Toward a Correct, Stable, Approach...

Given A ∈ Cm×m, consider (intellectually) the Hermitian matrix

H =
[

0 A∗

A 0

]
=
[

0 VΣU∗

UΣV ∗ 0

]
.

We can now write the eigenvalue decomposition of H
[

0 A∗

A 0

] [
V V
U −U

]
=
[

V V
U −U

] [
Σ 0
0 −Σ

]
.

It is clear that from the eigenvalue decomposition of H, we can identify
the singular values and singular vectors of A.
Many SVD computations are (implicitly) based on / derived from this
observation. We never explicitly form H, and are thus not constrained by
the requirement that A is square.
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The Two Phases of SVD Computation




∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗




Phase 1−→




∗ ∗
∗ ∗

∗ ∗
∗




Phase 2−→




∗
∗

∗
∗




The Bi-Diagonalization in Phase 1 requires a finite number of
operations ∼ O(mn2).
The Diagonalization in Phase 2 is done iteratively, and requires
“infinitely many” operations. In practice O(n2) operations are
sufficient to identify the singular values.
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Phase 1: Golub-Kahan Bidiagonalization 1 of 2
Phase-1-Bidiagonalization (for the SVD) is very similar to Phase-1-
Hessenberg-transformation (for the QR-algorithm); the main difference
here is that we are not constrained to a similarity transform, and hence
we can apply a different sequence of unitary transforms from the left and
right.



∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗




U∗
1−→




∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗




V1−→




∗ ∗ 0 0
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗




U∗
2−→




∗ ∗
∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗
0 ∗ ∗
0 ∗ ∗




V2−→




∗ ∗
∗ ∗ 0

∗ ∗
∗ ∗
∗ ∗
∗ ∗



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Phase 1: Golub-Kahan Bidiagonalization 2 of 2

The unitary matrices Ui are built from full Householder reflectors, and Vi

are built from “one-short” reflectors (like in the Hessenberg
transformation algorithm)

U∗AV = U∗
m · · ·U∗

1 AV1 · · ·Vn−2 =




∗ ∗
∗ ∗

∗ ∗
∗




Essentially, this is a QR-factorization from the right and the left, so the
total work ends up being

Work ∼
(

4mn2 − 4
3n

3
)
.
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Faster Methods for Phase 1

When A ∈ Rm×n, m ≫ n, Golub-Kahan bidiagonalization is
wasteful. In this case, a QR-factorization of A, followed by a the
Golub-Kahan bidiagonalization of R is better



∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗




Phase 1a−→




∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗
∗




Phase 1b−→




∗ ∗
∗ ∗

∗ ∗
∗




i.e. A → Q∗A → U∗Q∗AV . This is known as the
Lawson-Hanson-Chan bidiagonalization, and it requires

Work ∼
(
2mn2 + 2n3) .

Peter Blomgren 〈blomgren@sdsu.edu〉 22. Computing the Singular Value Decomposition — (17/25)

Flashback
The Big Prize — Computing the SVD

The Computation, Phase 1
The Computation, Phase 2

Golub-Kahan Bidiagonalization
Lawson-Hanson-Chan Bidiagonalization, when m ≫ n
Hybrid LHC/GK 3-Step Bidiagonalization

Golub-Kahan vs. Lawson-Hanson-Chan Bidiagonalization
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Figure: Comparing the work for Golub-Kahan and Lawson-Hanson-
Chan bidiagonalization. The break-even point is m

n = 5
3 .
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A Hybrid 3-Step Method

It is possible to define a hybrid algorithm, which switches from
Golub-Kahan to Lawson-Hanson-Chan bidiagonalization at the optimal
point. We end up with a 3-step method, pictorially defined by

Phase 1a−→ Phase 1b−→ Phase 1c−→

We perform Golub-Kahan bidiagonalization for k steps, until m−k
n−k = 2,

and then perform Lawson-Hanson-Chan bidiagonalization to the
remaining, non-diagonalized part of the matrix.
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Hybrid Golub-Kahan / Lawson-Hanson-Chan Bidiagonalization
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Figure: The work for the hybrid method is ∼
(
4mn2 − 4

3n
3 − 2

3 (m − n)3),
and provides a small improvement in the range n < m < 2n.
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Computing the SVD: Phase 2

Until recently (1990’s), the standard approach to Phase 2 was a variant
of the QR-algorithm, applied to the bidiagonal matrix generated during
phase 1. E.g. Lapack’s sgesvd, cgesvd, dgesvd, and zgesvd.
More recently, divide-and-conquer algorithms, based on subdivision into
smaller subproblems have gained favor in the computational community.
For instance Lapack’s sgesdd, cgesdd, dgesdd, and zgesdd algorithms
are based on this paradigm.
One main advantage of this approach is that it can be parallelized, and
thus phase 2 can be computed very rapidly in a multi-core environment.
Implementations in e.g. ScaLAPACK, cuSOLVER.
Old-school computing: Variable names in Fortran-77 consist of 1-6 characters chosen
from the letters a-z and the digits 0-9. The first character must be a letter. Fortran-77
does not distinguish between upper and lower case, in fact, it assumes all input is upper
case.
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Divide-and-Conquer: Vigorous Hand-waving

In essence divide-and-conquer works like this: We want to compute
the diagonalization of B , which we decompose into three parts
B = B1 + B2 + δB , where rank(δB) = 1:




∗ ∗
∗ ∗

∗ ∗
∗ ∗

∗ ∗
∗


 =




B1

B2


 +




∗ ∗
∗ ∗




Now, the diagonalization of the B1 and B2 blocks are computed
(using the same strategy), then we (iteratively) correct for the
rank-1 perturbation




Σ(B1)
∗ ∗
∗ ∗

Σ(B2)


 −→




Σ(B)



.
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Phase 2 Implementations

We leave phase 2 implementations as suggested projects.
• Phase 2 implementation based on the QR-algorithm is quite

straight-forward.

• Phase 2 implementation based on the divide-and-conquer
paradigm requires careful consideration of all the “book-
keeping” details. While not necessarily more difficult in a
mathematical sense, the practical implementation of this
approach is more challenging.

• The implementations in the referenced libraries: Lapack,
ScaLAPACK, and cuSOLVER are thousands of lines long.
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Phase 2 Implementations in the “Wild”

LAPACK’s dbdsqr/zbdsqr implements an iterative variant of the
QR algorithm

“Calculating the Singular Values and Pseudo-Inverse of a Matrix”, G.
Golub and W. Kahan, Journal of the Society for Industrial and Applied
Mathematics Series B Numerical Analysis, Volume 2, Issue 2, pp.205–224.
(1964). https://doi.org/10.1137/0702016
“Accurate Singular Values of Bidiagonal Matrices”, James Demmel and
W. Kahan, SIAM Journal on Scientific and Statistical Computing, Volume
11, Issue 5, pp.873–912. (1990). https://doi.org/10.1137/0911052

Source: https://en.wikipedia.org/wiki/Singular value decomposition#Numerical approach
Reference: http://www.netlib.org/lapack/explore-html/d0/da6/

group complex16 o t h e rcomputational gae7f455622680c22921ba25be440a726f.html
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Phase 2 Implementations in the “Wild”

The GNU Scientific Library (GSL) also implements an alternative
approach: a one-sided Jacobi orthogonalization; the SVD of the
bidiagonal matrix is obtained by solving a sequence of (2 × 2) SVD
problems, similar to how the Jacobi eigenvalue algorithm solves a
sequence of (2 × 2) eigenvalue methods

“Matrix Computations” 4th edition, Gene H. Golub and Charles F. Van
Loan. Johns Hopkins University Press (2013). §8.6.3—”The SVD
Algorithm”; §8.6.4—”Jacobi SVD Procedures”

Source: https://en.wikipedia.org/wiki/Singular value decomposition#Numerical approach
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