Numerical Matrix Analysis

Notes \＃22－Eigenvalues Computing the Singular Value Decomposition

Peter Blomgren

〈blomgren＠sdsu．edu〉
Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego，CA 92182－7720
http：／／terminus．sdsu．edu／

$$
\underset{\text { (Revised: April } 16,2024)}{\text { Spring } 2024}
$$

The Computation，Phase 1
The QR－Algorithm with Shifts

Last Time：The QR－Algorithm with Shifts

Starting from the pure QR－Algorithm，which converges linearly，we made a number of critical connections with three other algorithms：

1．Inverse Iteration
2．Shifted Inverse Iteration
3．Rayleigh Quotient Iteration
Adding the tie－breaking Wilkinson shift，we were able to define an algorithm which diagonalizes a real symmetric matrix with cubic convergence in general，and quadratic convergence in the worst case．

We describe the algorithm to the point where we can quickly identify one eigenvalue／eigenvector pair．Deflation，i．e．further sub－division of the problem is necessary to identify the full diagonalization．
Ref：Watkins，D．S．，2008．The QR Algorithm Revisited．SIAM review， 50（1），pp．133－145．

Outline
Flashback
－The QR－Algorithm with ShiftsThe Big Prize－Computing the SVD
－$\sigma(A)$ and $\lambda\left(A^{*} A\right)$
－Stable Approach for $\sigma(A)$
The Computation，Phase 1
－Golub－Kahan Bidiagonalization
－Lawson－Hanson－Chan Bidiagonalization，when $m \gg n$
－Hybrid LHC／GK 3－Step Bidiagonalization
（4）The Computation，Phase 2
－OLD：QR－Like Algorithm，NEW：Divide－and－Conquer
－Divide－and－Conquer
－Implementations

The Core QR－Algorithm with Wilkinson Shift

Algorithm（The QR－Algorithm with Wilkinson Shifts）

$\mathbf{A}^{(0)}$＝hessenberg＿form (\mathbf{A})
for $\mathrm{k}=1: .$.

$$
\begin{aligned}
& \mathbf{k}=1: \ldots \\
& \text { Select } \mu_{\mathrm{w}}^{(k)}=a_{m}-\frac{\operatorname{sign}(\delta) b_{m-1}^{2}}{|\delta|+\sqrt{\delta^{2}+b_{m-1}^{2}}}, \quad \delta=\frac{a_{m-1}-a_{m}}{2} \\
& {\left[\mathbf{Q}^{(\mathbf{k})}, \mathbf{R}^{(\mathbf{k})}\right]=\operatorname{qr}\left(\mathbf{A}^{(\mathbf{k}-\mathbf{1})}-\mu_{\mathrm{w}}^{(\mathbf{k})} \mathbf{l}\right)} \\
& \mathbf{A}^{(\mathbf{k})}=\mathbf{R}^{(\mathbf{k})} \mathbf{Q}^{(\mathbf{k})}+\mu_{\mathrm{w}}^{(\mathbf{k})} \mathbf{l}
\end{aligned}
$$

endfor

Where，

$$
\left[\begin{array}{cc}
a_{m-1} & b_{m-1} \\
b_{m-1} & a_{m}
\end{array}\right] \stackrel{\text { def }}{=} A_{(m-1): m,(m-1): m}
$$

Flashback

- Computing the SVD The Computation, Phase 1
The Comptation, Phase 2

Computing the SVD in a stable way is non-trivial.
Formally, computation of the SVD can be reduced to an eigenvalue decomposition of a Hermitian square matrix, but the most obvious approach is unstable. (Which is not stopping some people from using it...)

Better informed individuals base their SVD computations on a different form of reduction to Hermitian form. As with diagonalizations, for maximum efficiency SVD computations are usually done in two phases.

Peter Blomgren (bilomgrenessduu. edu)	22. Computing the Singular Value Decomposition -(5/25)
	$\sigma(A)$ and $\lambda\left(A^{*} A\right)$ stable Approach for $\sigma(A)$
Singular Values of A and Eigenvalue	of $A^{*} A \quad 1$ of 5

We know that every matrix $A \in \mathbb{C}^{m \times n}$ has a singular value decomposition $A=U \Sigma V^{*}$, and hence

$$
A^{*} A=V \Sigma^{*} \Sigma V^{*}=V \operatorname{diag}\left(\sigma_{1}^{2}, \ldots, \sigma_{n}^{2}\right) V^{*}
$$

Since $A^{*} A$ and $\operatorname{diag}\left(\sigma_{1}^{2}, \ldots, \sigma_{n}^{2}\right)$ are related by a similarity transformation, we must have that $\lambda_{i}\left(A^{*} A\right)=\sigma_{i}^{2}$. Thus, in infinite precision the algorithm is clear:

Do-Not-Use-Algorithm (SVD in Infinite Precision)

1. Form $A^{*} A$.
2. Compute the eigenvalue decomposition $A^{*} A=V \wedge V^{*}$.
3. Let $\Sigma=\sqrt{\Lambda}$, zero-padded to $(m \times n)$.
4. Solve $U \Sigma=A V$ for unitary U, via $Q R$-factorization.

The algorithm described is unstable since it reduces the SVD to an eigenvalue problem which may be extremely sensitive to perturbations - due to ill-conditioning; here $\kappa\left(A^{*} A\right)=\left(\sigma_{1} / \sigma_{n}\right)^{2}$.

However, this algorithm is used quite frequently; usually by someone who has "rediscovered" the SVD; - even though it has many names: the Proper Orthogonal Decomposition, the Karhunen-Loève (KL-) Decomposition, Principal Component Analysis, Empirical Orthogonal Functions, etc..., the SVD keeps getting "rediscovered."

The Big Prize－Computing the SVD The Computation，Phase 1
The Computation，Phase 2
Rewind－［Notes\＃4］

Figure：The many names，faces，and close relatives of the Singular Value Decomposition．．．Number of hits for＂Proper．Orthogonal．Decomposition＂， Empirical．Orthogonal．（Function｜Functions）＂，＂Karhunen．Loeve＂，
＂Canonical．Correlation．Analysis＂

```
Hits on scholar．google．com
```


Flashback
The Big Prize — Computing the SVD
The Computation，Phase 1
The Computation，Phase 2

Figure：The many names，faces，and close relatives of the Singular Value Decomposition．．．Number of hits for＂Proper．Orthogonal．Decomposition＂， ＂Empirical．Orthogonal．（Function｜Functions）＂，＂Karhunen．Loeve＂， ＂Canonical．Correlation．Analysis＂，＂Singular．Value．Decomposition＂， ＂Principal．Component．Analysis＂

Figure：The many names，faces，and close relatives of the Singular Value ＂Empirical．Orthogonal．（Function｜Functions）＂
＂Empirical．Orthogonal．（Function｜Functions）＂，＂Karhunen．Loeve＂，
＂Canonical．Correlation．Analysis＂，＂Singular．Value．Decomposition＂，
＂Karhunen．Loeve＂，
＂Principal．Component．Analysis＂
Peter Blomgren 〈blomgren＠sdsu．edu〉
22．Computing the Singular Value Decomposition

$\sigma(A)$ and $\lambda\left(A^{*} A\right)$
Stable Approach for $\sigma(A)$
Singular Values of A and Eigenvalues of $A^{*} A$

The matrix $A^{*} A$ has familiar and useful interpretations in many fields．

It shows up in linear least squares，as the normal equations，and also in the general orthogonal projector，$P=A\left(A^{*} A\right)^{-1} A^{*}$ built from a non－orthogonal matrix．Further，in statistics and other fields，it（or something very much like it）is known as the co－variance matrix．

Bottom Line

There are many tempting reasons to form $A^{*} A$ ．．．

We can quantify the instability．
When the Hermitian matrix $A^{*} A$ is perturbed by δB ，the following holds for the perturbation of the eigenvalues

$$
\left|\lambda_{k}\left(A^{*} A+\delta B\right)-\lambda_{k}\left(A^{*} A\right)\right| \leq\|\delta B\|_{2}
$$

A similar bound holds for the perturbation of the singular values

$$
\left|\sigma_{k}(A+\delta A)-\sigma_{k}(A)\right| \leq\|\delta A\|_{2} .
$$

A backward stable SVD algorithm must give $\tilde{\sigma}_{k}$ satisfying

$$
\tilde{\sigma}_{k}=\sigma_{k}(A+\delta A), \quad \frac{\|\delta A\|}{\|A\|}=\mathcal{O}\left(\varepsilon_{\text {mach }}\right)
$$

which implies

$$
\left|\tilde{\sigma}_{k}-\sigma_{k}\right|=\mathcal{O}\left(\|A\| \varepsilon_{\text {mach }}\right) .
$$

Given $A \in \mathbb{C}^{m \times m}$ ，consider（intellectually）the Hermitian matrix

$$
H=\left[\begin{array}{c:c}
0 & A^{*} \\
\hdashline A & 0
\end{array}\right]=\left[\begin{array}{c:c}
0 & V \Sigma U^{*} \\
\hdashline U \Sigma V^{*} & 0
\end{array}\right] .
$$

We can now write the eigenvalue decomposition of H

$$
\left[\begin{array}{c:c}
0 & A^{*} \\
\hdashline A & 0
\end{array}\right]\left[\begin{array}{c:c}
V & V \\
\hdashline U & -U
\end{array}\right]=\left[\begin{array}{c:c}
V & V \\
\hdashline U & -U
\end{array}\right]\left[\begin{array}{c:c}
\Sigma & 0 \\
\hdashline 0 & -\Sigma
\end{array}\right] .
$$

It is clear that from the eigenvalue decomposition of H ，we can identify the singular values and singular vectors of A ．
Many SVD computations are（implicitly）based on／derived from this observation．We never explicitly form H ，and are thus not constrained by the requirement that A is square．

Now，consider $\tilde{\lambda}_{k}\left(A^{*} A\right)$ ．．．If computed using a backward stable algorithm，we expect

$$
\left|\tilde{\lambda}_{k}-\lambda_{k}\right|=\mathcal{O}\left(\left\|A^{*} A\right\| \varepsilon_{\text {mach }}\right)=\mathcal{O}\left(\|A\|^{2} \varepsilon_{\text {mach }}\right) .
$$

Since $\sigma_{k}=\sqrt{\lambda_{k}}$ we get

$$
\left|\tilde{\sigma}_{k}-\sigma_{k}\right|=\mathcal{O}\left(\frac{\left|\tilde{\lambda}_{k}-\lambda_{k}\right|}{\sqrt{\lambda_{k}}}\right)=\mathcal{O}\left(\frac{\|A\|^{2} \varepsilon_{\mathrm{mach}}}{\sigma_{k}}\right) .
$$

This result is off by a factor of $\frac{\|A\|}{\sigma_{k}}$ ，which is OK for the dominant singular values，but a disaster for small singular values $\sigma_{k} \ll\|A\|$ ，in this case we expect a loss of accuracy of order $\kappa(A)$ ．In a sense we are ＂squaring the condition number，＂much like in the least squares case．

The Bi－Diagonalization in Phase 1 requires a finite number of operations $\sim \mathcal{O}\left(m n^{2}\right)$ ．
The Diagonalization in Phase $\mathbf{2}$ is done iteratively，and requires ＂infinitely many＂operations．In practice $\mathcal{O}\left(n^{2}\right)$ operations are sufficient to identify the singular values．

Phase－1－Bidiagonalization（for the SVD）is very similar to Phase－1－ Hessenberg－transformation（for the QR－algorithm）；the main difference here is that we are not constrained to a similarity transform，and hence we can apply a different sequence of unitary transforms from the left and right．

Faster Methods for Phase 1

When $A \in \mathbb{R}^{m \times n}, m \gg n$ ，Golub－Kahan bidiagonalization is wasteful．In this case，a QR－factorization of A ，followed by a the Golub－Kahan bidiagonalization of R is better

i．e．$A \rightarrow Q^{*} A \rightarrow U^{*} Q^{*} A V$ ．This is known as the Lawson－Hanson－Chan bidiagonalization，and it requires

$$
\text { Work } \sim\left(2 m n^{2}+2 n^{3}\right) .
$$

The unitary matrices U_{i} are built from full Householder reflectors，and V_{i} are built from＂one－short＂reflectors（like in the Hessenberg transformation algorithm）

$$
U^{*} A V=U_{m}^{*} \cdots U_{1}^{*} A V_{1} \cdots V_{n-2}=\left[\begin{array}{cccc}
* & * & & \\
& * & * & \\
& & * & * \\
& & &
\end{array}\right]
$$

Essentially，this is a QR－factorization from the right and the left，so the total work ends up being

$$
\text { Work } \sim\left(4 m n^{2}-\frac{4}{3} n^{3}\right) .
$$

Figure：Comparing the work for Golub－Kahan and Lawson－Hanson－
Chan bidiagonalization．The break－even point is $\frac{m}{n}=\frac{5}{3}$ ．
 The Computation，Phase 1 he Computation，Phase 2

Figure：The work for the hybrid method is $\sim\left(4 m n^{2}-\frac{4}{3} n^{3}-\frac{2}{3}(m-n)^{3}\right)$ ， and provides a small improvement in the range $n<m<2 n$ ．

In essence divide－and－conquer works like this：We want to compute the diagonalization of B ，which we decompose into three parts $B=B_{1}+B_{2}+\delta B$ ，where $\operatorname{rank}(\delta B)=1$ ：

Now，the diagonalization of the B_{1} and B_{2} blocks are computed （using the same strategy），then we（iteratively）correct for the rank－1 perturbation

We leave phase 2 implementations as suggested projects．
－Phase 2 implementation based on the QR－algorithm is quite straight－forward．
－Phase 2 implementation based on the divide－and－conquer paradigm requires careful consideration of all the＂book－ keeping＂details．While not necessarily more difficult in a mathematical sense，the practical implementation of this approach is more challenging．
－The implementations in the referenced libraries：Lapack， ScaLAPACK，and cuSOLVER are thousands of lines long．

Source：https：／／en．wikipedia．org／wiki／Singular－value＿deconp REFERENCE：http：／／ww netlib．org／lapack／explore－html／do／da6／ group＿－complex16＿o＿t＿h＿e＿rcomputational＿gae7f455622680c22921ba25be440a726f．html
－LAPACK＇s dbdsqr／zbdsqr implements an iterative variant of the QR algorithm
－＂Calculating the Singular Values and Pseudo－Inverse of a Matrix＂，G Golub and W．Kahan，Journal of the Society for Industrial and Applied Mathematics Series B Numerical Analysis，Volume 2，Issue 2，pp．205－224． （1964）．https：／／doi．org／10．1137／0702016
－＂Accurate Singular Values of Bidiagonal Matrices＂，James Demmel and W．Kahan，SIAM Journal on Scientific and Statistical Computing，Volume 11，Issue 5，pp．873－912．（1990）．https：／／doi．org／10．1137／0911052

Flashback	OLD：QR－Like Algorithm，NEW：Divide－and－Conque The Big Prize－Computing the SVD		
The Computation，Phase 1			The Computation，Phase 2
:---			

Phase 2 Implementations in the＂Wild＂

－The GNU Scientific Library（GSL）also implements an alternative approach：a one－sided Jacobi orthogonalization；the SVD of the bidiagonal matrix is obtained by solving a sequence of (2×2) SVD problems，similar to how the Jacobi eigenvalue algorithm solves a sequence of (2×2) eigenvalue methods
－＂Matrix Computations＂4th edition，Gene H．Golub and Charles F．Van Loan．Johns Hopkins University Press（2013）．§8．6．3－＂The SVD Algorithm＂；§8．6．4－＂Jacobi SVD Procedures＂

