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Applications/Keywords “Random” results from scholar.google.com

Principal.Component.Analysis
Positron Emission Tomography (PET), Gene Clustering, fMRI,
Dynamics of the Bovine Pancreatic Trypsin Inhibitor (BPTI),
. . .

Singular.Value.Decomposition
Genome data processing, Orthogonal Frequency Division Mul-
tiplexing (OFDM) channel estimation, Information retrieval,
Hamiltonian mechanics, . . .

Empirical.Orthogonal.(Function—Functions)
Statistical weather prediction, Atlantic Ocean surface temper-
atures, Acoustic classification of zoo-plankton, . . .
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Applications/Keywords “Random” results from scholar.google.com

Canonical.Correlation.Analysis
fMRI, Neural activity, Climate forecasts, Identification of
hydrological neighborhoods, El Niño/Southern Oscillation
(ENSO) prediction, . . .

Proper.Orthogonal.Decomposition
Turbulent flows, Vibroimpact oscillations, Cavity flows, Opti-
mal control of fluids, Magneto-Hydro-Dynamics (MHD) flows,
. . .

Karhunen.Loeve
Characterization of human faces, Cosmology, Turbulence
Modeling, Multi-spectral image restoration, Universal image
compression, . . .
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Application: Analysis of Dynamic Pattern Formation

The Kuramoto-Sivashinsky equation, here in polar coordinates
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is a model for the behavior of cellular flames stabilized on a
circular porous plug burner. For different simulation parameters
(η1, η2, η3,R) it exhibits a wide array of complex flame patterns;
— mimicking patterns observed in physical experiments.
∃ Movies.
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Integrating the Kuramoto-Sivashinsky Equation

We defer all discussion on how to time-integrate the
Kuramoto-Sivashinsky equation to [Math 693b].
We note that each time step (from t to t + δt, where δt is
“small”), requires the solution of several non-Hermitian linear
systems A~x = ~b, where in our set-up A ∈ Rm×m, with m = 2048.
In what follows, we keep the parameters
(η1, η2, η3) = (0.32, 1.00, 0.017) constant, and vary only the radius
of the circular burner.
For the majority of radii, we get static (non-moving) patterns, which
are quite easy to classify.
However, for some fairly narrow parameter ranges we get
time-dependent (dynamic) patters. We will use the SVD to analyze
and classify these patterns.
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Static Patterns Observed in the Kuramoto-Sivashinsky Simulations

Figure: Some of the static patterns observed using the Kuramoto-Sivashinsky integra-
tion scheme. 2-cell pattern, R = 5.0; 3-cell pattern, R = 6.0; 4-cell pattern, R = 8.0;
6/1-cell pattern, R = 10.0; 8/2-cell pattern, R = 12.0; 10/5/1-cell pattern, R = 14.5;
Common simulation parameters: (η1, η2, η3) = (0.32, 1.00, 0.017).
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Dynamic Pattern #1: 3-Cell (Nearly) Rigid Rotation
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Dynamic Pattern #2: 3-Cell “Hopping Pattern”
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Dynamic Pattern #1–2: 3-Cell Dynamic States (Captions)

Figure (Slide 9): Snapshots of a three-cell nearly rigid rotation
state from a simulation of the Kuramoto-Sivashinsky equation. The
pattern is shown at times t ∈ {0, 15, 30, 45, 60, 75, 90, 105, 120}.
The simulation parameter values are: (η1, η2, η3; R) =
(0.32, 1.00, 0.017; 7.36). In this sequence we see how the pattern
stays the same, but rotates counter-clockwise.

Figure (Slide 10): Snapshots of a three-cell hopping state from
a simulation of the Kuramoto-Sivashinsky equation. The pat-
tern is shown at times t ∈ {0, 15, 30, 45, 60, 75, 90, 105, 120}.
The simulation parameter values are: (η1, η2, η3; R) =
(0.32, 1.00, 0.017; 7.7475). In this sequence we see how the “front-
runner” of the two-cell formation bridges the gap to the solitary cell.
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Analyzing the Dynamic Patterns “The Method of Snapshots”

We use the SVD in order to analyze and classify these dynamic
patters.
Each “frame”, u(i)(r , φ) with 32 radial, and 64 azimuthal points,
of the sequence defines a 2048 × 1-vector f̃i :

→ f̃i =




u(i)(r1, φ1)
...

u(i)(r1, φ64)
u(i)(r2, φ1)

...

...
u(i)(r32, φ64)
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Analyzing the Dynamic Patterns: The Snapshot Matrices

For both the rigidly rotating, and the hopping pattern, we have
computed 7200 frames, hence for each simulation we can build a
2048 × 7200 matrix of snapshots

Ã =
[
f̃1 f̃2 . . . f̃7200

]
.

It turns out that for this application (and many others) it is
advantageous to view each snapshot as a perturbation from the
mean, so with ~mf = meani=1,...,7200(f̃i ), we define new vectors
~fi = f̃i − ~mf , and a new “snapshot perturbation matrix”

A =
[
~f1 ~f2 . . . ~f7200

]
.
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Interpreting UΣV ∗ = A

We now compute the SVD of the snapshot perturbation matrix, so that

A = UΣV ∗

Restatement of the obvious: U is orthonormal, and has the same
column space as A, i.e. it is an orthonormal basis for range(A).
The singular values σi tell us how “important” each column in U is, i.e.
how much perturbation “energy” is controlled by the ith column of U.
In this application the left singular vectors (columns of U) are of interest.
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~mf and ~u1, . . . , ~u10 for Rigid Rotation and Hopping
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Some Discussion...

For the rigid rotation we see that
∼ 70% of the energy is controlled by ~u1-~u2, which express
rotations of 3-cell perturbations from the mean.
There is ∼ 15% of the energy in the ~u3-~u4 pair (rotations of 1-cell
perturbations), and
∼ 5% of energy in 6-cell, and 2-cell perturbations;
the first 10 columns catch in excess of 98% of the energy, and
hence provide an almost complete description of the motion.
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Some Discussion...

For the hopping motion
we first notice that the rotations of 3-cell perturbations from the
mean now only control ∼ 42% of the motion, and
about 5 times as much energy (∼ 10%) has “leaked” outside the
first 10 columns.
— All of this is an indication that the motion is much more

complex.

Further, the ~u3-~u4 pair (of the rigid rotation) has formed a more
complex ~u3-~u4-~u5 triple, and
the 2-, 4-, and 5-cell rotations have overtaken the importance of
the 6-cell rotations (which is no longer in the “top 10.”)
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Expressing the Motion Using the Orthogonal Basis

Since U is an orthonormal basis, it is very straight-forward to write any
frame as a linear combination of the basis vectors ~uk :

~fi =
2048∑

k=1
aik~uk , where aik = ~u∗k ~fi

Observation: Since, in both cases, the first 10 basis vectors control at
least 90% of the motion, therefore

~fi ≈
10∑

k=1
aik~uk , where aik = ~u∗k ~fi

should be a good approximation.
 Compression: By storing 10 (2048 × 1) basis vectors, 7200 × 10
coefficients, and the average vector (2048 × 1) ~mf for a total of 94,528
values instead of the full 7200 × 2048 = 14, 745, 600-value dataset, we
get a compression ratio of 1

156 .
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The Coefficients aik

The coefficients aik = ~u∗k
~fi give us a lot of useful information.

If the rotation is completely rigid then when ~uk -~uk+1 describe the
rotation of some n-cell pattern, the points (ai,k , ai,k+1) should form a
circle in R2, usually referred to as phase space...

a
i1

a
i2

a
i3

a
i4

a
i7

a
i8

Figure: The phase plots for ~u1-~u2, ~u3-~u4, and ~u7-~u8 corresponding to the nearly rigid ro-
tation. We notice a very small deformation for the ~u3-~u4 phase portrait, and see that the
~u7-~u8 phase portrait (controlling ∼ 4.6% energy) is quite egg-shaped and has period 2.
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The Coefficients aik Hopping State
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Figure: The phase plots for the hopping state looks very different. The three pairs:
~u1-~u2, ~u3-~u4, and ~u7-~u8 all display quasi-periodic behavior.

The comparison of the phase-diagrams for the nearly rigid rotation and the
hopping state is the most straight-forward way of classifying (and distin-
guishing) these dynamic patterns.
Looking at all the phase-diagrams for motions in the range R ∈
[7.3600, 7.7475] may give us an insight into how the hopping state is “born.”
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Analyzing Other Types of Data

Clearly, the SVD does not care what kind of data we encode in the
matrix A, we can think of many applications...

f̃i = Passport/DMV photographs (face recognition)
f̃i = Finger-prints
f̃i = DNA-(sub)sequence — Gattaca

f̃i = Multiple simultaneous temperature readings
f̃i = Demographic data
f̃i = Netflix data
f̃i = Purchase history

For time-dependent data, we can look that the phase-portraits; for other
types of data, the k-tuple of coefficients (ai1, . . . , aik) defines a
“signature” of ~fi expressed in the orthogonal basis. The signature may
be useful for identification purposes.
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Principal Component Analysis

Since Principal Component Analysis is the main(?) application
area of the SVD, we should probably say something about it?

We borrow from [Wikipedia]...

“Principal component analysis (PCA) is a statistical procedure that
uses an orthogonal transformation to convert a set of observations
of possibly correlated variables (entities each of which takes on var-
ious numerical values) into a set of values of linearly uncorrelated
variables called principal components.”
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Principal Component Analysis

“PCA can be done by eigenvalue decomposition of a data covari-
ance (or correlation) matrix or singular value decomposition of a
data matrix”
“XTX itself can be recognized as proportional to the empirical sam-
ple covariance matrix of the dataset X .”

From our experience, conditioning strongly “suggests” we compute
svd(A), where κ(A) = σ1/σn, since the problem eig(A∗A) suffers
from κ(A∗A) = (σ1/σn)2.
We note (formally)

A∗A = XΛX−1, A = UΣV ∗ ⇔ A∗A = VΣ2V ∗

which means that the right singular vectors (columns of V )
contain the principal components.
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Principal Component Analysis

Using A = UΣV ∗, the Score Matrix T = UΣ. (incidentally, U and
Σ form a Polar Decomposition [Math 524 (Notes#7.2)] of T ).

“Full” Principal Component Analysis involves (among other
things) making sure your data is properly organized and scaled. It
is common to extract the mean values, and describe the variations
from the mean in terms of z-scores.

Whereas the “core” computation is “just the SVD,” the rest of the
statistical explanations are best left to a statistician!
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