

The Singular Value Decomposition Google Hits Applications Some Applications	The Singular Value Decomposition Google Hits Applications Some Applications
Searches on scholar.google.com	Applications/Keywords "Random" results from scholar.google.com
figure: The many names, faces, and close relatives of the Singular Value Decomposition.", "Empirical.Orthogonal.(Function]Functions)", "Singular.Value.Decomposition", "Fincipal.Component.Analysis", "Singular.Value.Decomposition", "Principal.Component.Analysis", "Singular.Value.Decomposition", "Principal.Component.An	 Principal.Component.Analysis Positron Emission Tomography (PET), Gene Clustering, fMRI, Dynamics of the Bovine Pancreatic Trypsin Inhibitor (BPTI), Singular.Value.Decomposition Genome data processing, Orthogonal Frequency Division Multiplexing (OFDM) channel estimation, Information retrieval, Hamiltonian mechanics, Empirical.Orthogonal.(Function—Functions) Statistical weather prediction, Atlantic Ocean surface temperatures, Acoustic classification of zoo-plankton,
Peter Blomgren (blomgren@sdsu.edu) 23. SVD: Application to Signal and Data Analysis — (3/24)	Peter Blomgren (blomgren@sdsu.edu) 23. SVD: Application to Signal and Data Analysis — (4/24)
The Singular Value Decomposition Google Hits Applications Some Applications	The Singular Value Decomposition Dynamic Pattern Formation Applications Principal Component Analysis (PCA)
Applications/Keywords "Random" results from scholar.google.com	Application: Analysis of Dynamic Pattern Formation

Canonical.Correlation.Analysis

fMRI, Neural activity, Climate forecasts, Identification of hydrological neighborhoods, El Niño/Southern Oscillation (ENSO) prediction, ...

Proper.Orthogonal.Decomposition

Peter Blomgren (blomgren@sdsu.edu)

Turbulent flows, Vibroimpact oscillations, Cavity flows, Optimal control of fluids, Magneto-Hydro-Dynamics (MHD) flows, ...

Karhunen.Loeve

Characterization of human faces, Cosmology, Turbulence Modeling, Multi-spectral image restoration, Universal image compression, ...

23. SVD: Application to Signal and Data Analysis — (5/24

SAN DIEGO UNIVER

∃ Movies.

Ê

The Kuramoto-Sivashinsky equation, here in polar coordinates

 $u_t = -u_{rrrr} - \frac{1}{r^4} u_{\phi\phi\phi\phi} - \frac{2}{r^2} u_{rr\phi\phi} - \frac{2}{r} u_{rrr} + \frac{2}{r^3} u_{r\phi\phi}$

 $+\eta_1 u - \eta_2 \left[u_r^2 + \frac{1}{r^2} u_{\phi}^2 \right] - \eta_3 u^3,$

is a model for the behavior of cellular flames stabilized on a

- mimicking patterns observed in physical experiments.

circular porous plug burner. For different simulation parameters

 $(\eta_1, \eta_2, \eta_3, R)$ it exhibits a wide array of complex flame patterns;

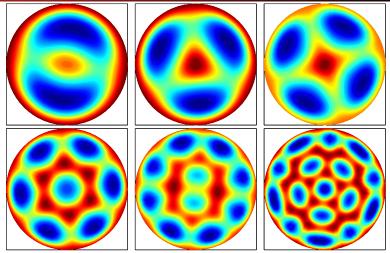
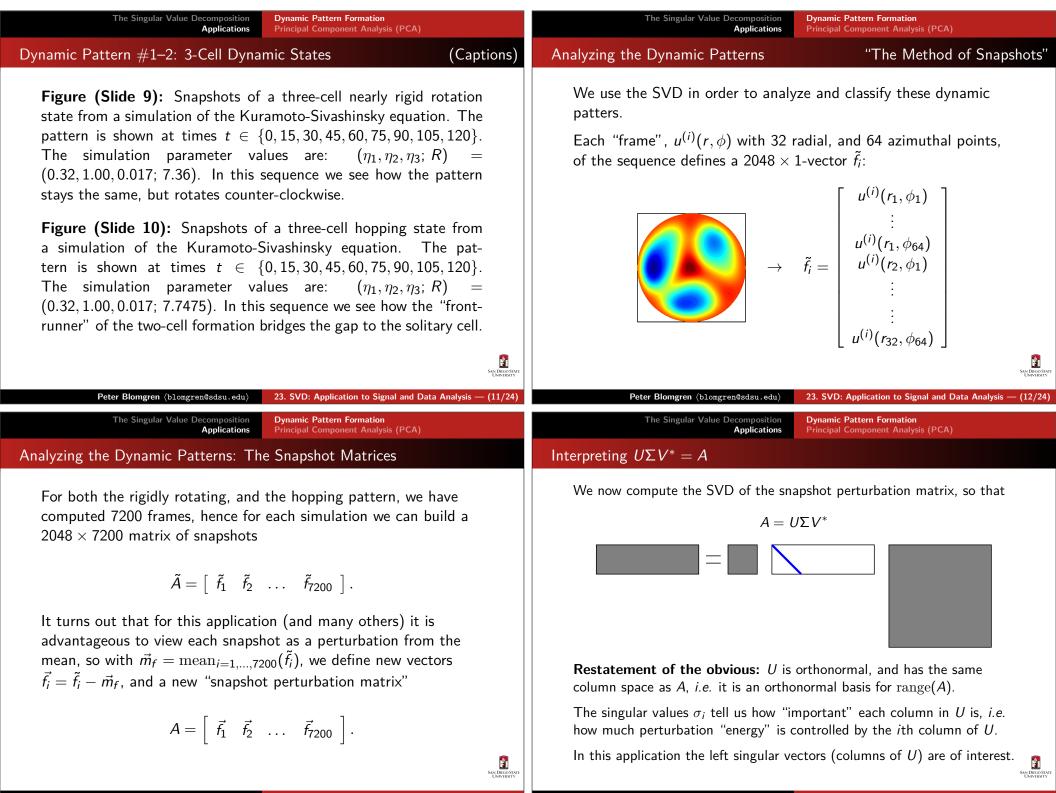
 $-\left[2-\frac{1}{r^2}\right]u_{rr}-\left[\frac{4}{r^4}+\frac{2}{r^2}\right]u_{\phi\phi}-\left[\frac{1}{r^3}+\frac{2}{r}\right]u_r$

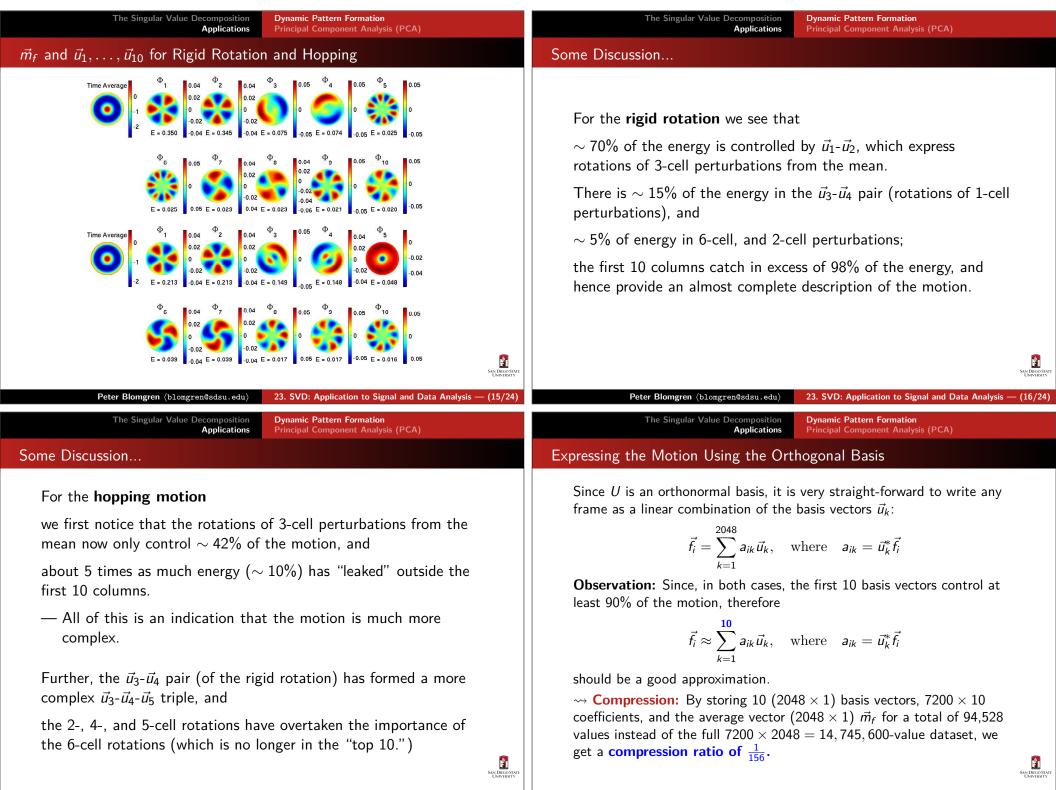
The Singular Value Decomposition **Dynamic Pattern Formation** Applications Principal Component Analysis (PCA)

Integrating the Kuramoto-Sivashinsky Equation

- We defer all discussion on how to time-integrate the Kuramoto-Sivashinsky equation to [MATH 693B].
- We note that each time step (from t to $t + \delta t$, where δt is "small"), requires the solution of several non-Hermitian linear systems $A\vec{x} = \vec{b}$, where in our set-up $A \in \mathbb{R}^{m \times m}$, with m = 2048.
- In what follows, we keep the parameters $(\eta_1, \eta_2, \eta_3) = (0.32, 1.00, 0.017)$ constant, and vary **only** the radius of the circular burner.
- For the majority of radii, we get static (non-moving) patterns, which are quite easy to classify.
- However, for some fairly narrow parameter ranges we get time-dependent (dynamic) patters. We will use the SVD to analyze and classify these patterns.

Static Patterns Observed in the Kuramoto-Sivashinsky Simulations


Figure: Some of the static patterns observed using the Kuramoto-Sivashinsky integration scheme. 2-cell pattern, R = 5.0; 3-cell pattern, R = 6.0; 4-cell pattern, R = 8.0; 6/1-cell pattern, R = 10.0; 8/2-cell pattern, R = 12.0; 10/5/1-cell pattern, R = 14.5; *Common simulation parameters:* $(\eta_1, \eta_2, \eta_3) = (0.32, 1.00, 0.017).$

The Singular Value Decomposition Application Dynamic Pattern Formation Principal Component Analysis (PCA) Dynamic Pattern Formation Principal Component Analysis (PCA) Dynamic Pattern #1: 3-Cell (Nearly) Rigid Rotation Dynamic Pattern #2: 3-Cell "Hopping Pattern" Image: Component Analysis (PCA) Image: Component Analysis (PCA) Image: Component Analysis (PCA) Image: Com	Peter Blomgren (blomgren@sdsu.edu) 23. SVD: Application to Signal and Data Analysis — (7/24)	Peter Blomgren (blomgren@sdsu.edu) 23. SVD: Application to Signal and Data Analysis — (8/24)
Dynamic Pattern #1: 3-Cell (Nearly) Rigid Rotation Dynamic Pattern #2: 3-Cell "Hopping Pattern" Image: Comparison of the state of the		
	Dynamic Pattern #1: 3-Cell (Nearly) Rigid Rotation	Dynamic Pattern #2: 3-Cell "Hopping Pattern"

Êı

SAN DIEGO ST. UNIVERSITY

The Singular Value Decomposition Applications Principal Component Analysis (PCA)	The Singular Value Decomposition Applications Principal Component Analysis (PCA)
The Coefficients a _{ik}	The Coefficients <i>a_{ik}</i> Hopping State
The coefficients $a_{ik} = \vec{u}_k^* \vec{f}_i$ give us a lot of useful information. If the rotation is completely rigid then when $\vec{u}_k \cdot \vec{u}_{k+1}$ describe the rotation of some <i>n</i> -cell pattern, the points $(a_{i,k}, a_{i,k+1})$ should form a circle in \mathbb{R}^2 , usually referred to as <i>phase space</i> $a_{i2} = \begin{bmatrix} \vec{u}_k & \vec{u}_{i,k} & \vec$	$a_{i2} = a_{i4} = a_{i4} = a_{i4} = a_{i3} = a_{i7} = a_{i7} = a_{i6}$ Figure: The phase plots for the hopping state looks very different. The three pairs: $a_{i1} = a_{i7} = a_{i7} = a_{i7} = a_{i6}$ Figure: The phase plots for the hopping state looks very different. The three pairs: $a_{i7} = a_{i7} $
Peter Blomgren (blomgren@sdsu.edu) 23. SVD: Application to Signal and Data Analysis — (19/24)	Peter Blomgren (blomgren@sdsu.edu) 23. SVD: Application to Signal and Data Analysis — (20/24)
The Singular Value Decomposition Applications Principal Component Analysis (PCA)	The Singular Value Decomposition Dynamic Pattern Formation Principal Component Analysis (PCA)
Analyzing Other Types of Data	Principal Component Analysis
Clearly, the SVD does not care what kind of data we encode in the matrix A , we can think of many applications $\tilde{f}_i = \text{Passport/DMV}$ photographs (face recognition) $\tilde{f}_i = \text{Finger-prints}$ $\tilde{f}_i = \text{DNA-(sub)sequence} - \text{GATTACA}$	Since Principal Component Analysis is the main(?) application area of the SVD, we should probably say something about it? We borrow from [WIKIPEDIA]
$\tilde{f}_i =$ Multiple simultaneous temperature readings $\tilde{f}_i =$ Demographic data $\tilde{f}_i =$ Netflix data $\tilde{f}_i =$ Purchase history For time-dependent data, we can look that the phase-portraits; for other	"Principal component analysis (PCA) is a statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables (entities each of which takes on var- ious numerical values) into a set of values of linearly uncorrelated variables called principal components."
types of data, the k-tuple of coefficients (a_{i1}, \ldots, a_{ik}) defines a "signature" of $\vec{f_i}$ expressed in the orthogonal basis. The signature may be useful for identification purposes.	Sur Davis Start Start Davis Start

The Singular Value Decomposition Dynamic Pattern Formation Applications Principal Component Analysis (PCA)	The Singular Value Decomposition Dynamic Pattern Formation Applications Principal Component Analysis (PCA)
	Principal Component Analysis
"PCA can be done by eigenvalue decomposition of a data covari- ance (or correlation) matrix or singular value decomposition of a data matrix"	Using $A = U\Sigma V^*$, the <i>Score Matrix</i> $T = U\Sigma$. (incidentally, U and Σ form a Polar Decomposition [MATH 524 (NOTES#7.2)] of T).
" $X^T X$ itself can be recognized as proportional to the empirical sample covariance matrix of the dataset X."	"Full" Principal Component Analysis involves (among other things) making sure your data is properly organized and scaled. It
From our experience, conditioning strongly "suggests" we compute $svd(A)$, where $\kappa(A) = \sigma_1/\sigma_n$, since the problem $eig(A^*A)$ suffers from $\kappa(A^*A) = (\sigma_1/\sigma_n)^2$.	is common to extract the mean values, and describe the variations from the mean in terms of z -scores.
We note (formally) $A^*A = X\Lambda X^{-1}, A = U\Sigma V^* \iff A^*A = V\Sigma^2 V^*$	Whereas the "core" computation is "just the SVD," the rest of the statistical explanations are best left to a statistician!
which means that the right singular vectors (columns of V) contain the principal components.	SAN DINGS TOT UNIVERTIT
Peter Blomgren (blomgren@sdsu.edu) 23. SVD: Application to Signal and Data Analysis — (23/24)	Peter Blomgren (blomgren@sdsu.edu) 23. SVD: Application to Signal and Data Analysis — (24/24)