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Iterative Methods Overview

Iterative Methods: A Birds-eye View

The size and complexity of linear and non-linear systems that arise
from modern applications (especially 3+1-Dimensional models)
make direct (LU/QR/SVD) methods intractable in many settings.

Instead of using O(m3) operations to find a solution using direct
methods, in many cases it is possible to find a good
approximation (maybe even indistinguishable from the “correct”
solution in a floating-point environment) a lot faster using iterative
methods.

Yousef Saad, “Iterative Methods for Sparse Linear Systems,” 2nd edition, Society for
Industrial and Applied Mathematics, 2003, ISBN: 0-89871-534-2, MSRP $89.00.

R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R.
Pozo, C. Romine and H. Van der Vorst, “Templates for the Solution of Linear Systems:

Building Blocks for Iterative Methods,” 2nd Edition, Society for Industrial and Applied
Mathematics, 1994, URL http://www.netlib.org/linalg/html templates/Templates.html
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Iterative Methods Overview

The Boundary of “Tractable” Is Moving (Direct Methods)

What does it mean for m to be “very large?” — where m defines an
(m ×m) dense matrix.

Year m Defining Force
1950 20 Wilkinson
1965 200 Forsythe and Moler [Book, 1967]
1980 2,000 LINPACK
1995 20,000 LAPACK
2010 ???,000 ??? parallel computing, MPI/CUDA ???
2025 ?,???,000 ??? parallel computing, MPI/CUDA/FPGA ???

Over the time-span (1950→ 1995) m increased by a factor of 103. The
speedup in processing speed (computer hardware) over the same period,
was about ∼ 109.

Since our deterministic methods scale as O(m3) this makes sense,
(103)3 = 109.

If matrix problems scaled as O(m2), we would have m1995 ∼ 3, 000, 000.
With iterative methods this is sometimes achievable.
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Iterative Methods Overview

The Curse of Higher Dimensions (Direct Methods)

Say you are simulating a 3D-space+Time problem (effectively a
4D-computation)... and you need to refine your computational grid to
achieve higher “resolution” in your solution.

Why? — There are many reasons for wanting to do this, e.g.

You may be interested in small-scale behaviour

You need to numerically demonstrate convergence

You need to demonstrate numerical stability

The reasonable thing to do is to cut the grid-spacing in half,
δx1,2,3 →

1
2δx1,2,3, thus doubling the number of points in each spatial

direction)

Depending on the computational scheme you are using you also have to
refine in the temporal direction δt → 1

2k δt, k ≥ 1.
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Iterative Methods Overview

The Curse of Higher Dimensions (Direct Methods)

In the best case setting k = 1. So that

δx1,2,3 → 1
2δx1,2,3 n(x1,2,3) → 2n(x1,2,3)

δt → 1
2δt n(t) → 2n(t)

m → 24m

For an O(m3) algorithm, the computational effort just went up by
a factor of (24)3 = 212 = 4, 096.

Sometimes it is possible to “decouple” the time and space growth
in 3D+Time algorithms; which “limits” the factor to “only”
2(23)3 = 210 = 1, 024.

That’s still 20 years of computational improvements according to
Moore’s “Law.”
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Iterative Methods Overview

Iterative Methods: Stationary Methods 1 of 2

Jacobi Iteration, for A~x = ~b “Classic” — Do not use!

The Jacobi method is based on solving for every variable locally with
respect to the other variables; one iteration of the method corresponds
to solving for every variable once. The resulting method is easy to
understand and implement, but convergence is slow

x
(k)
i =

1

aii

[
~bi −

∑

j 6=i

aijx
(k−1)
j

]
, i = 1, . . . , n

Gauss-Seidel Iteration, for A~x = ~b “Classic” — Do not use!

The Gauss-Seidel method is like the Jacobi method, except that it uses
updated values as soon as they are available. In general, if the Jacobi
method converges, the Gauss-Seidel method will converge faster than
the Jacobi method, though still relatively slowly.

x
(k)
i =

1

aii

[
~bi −

∑

j<i

aijx
(k)
j −

∑

j>i

aijx
(k−1)
j

]
, i = 1, . . . , n
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Iterative Methods Overview

Iterative Methods: Stationary Methods 2 of 2

SOR, for A~x = ~b “Classic” — Do not use!

Successive Over-relaxation (SOR) can be derived from the Gauss-Seidel
method by introducing an extrapolation parameter. For the optimal
choice of ω, SOR may converge faster than Gauss-Seidel by an order of
magnitude

x
(k)
i = ωx̂

(k)
i + (1− ω)x

(k−1)
i , where x̂

(k)
i = the GS iterate

SSOR, for A~x = ~b “Classic” — Do not use!

Symmetric Successive Over-relaxation (SSOR) has no advantage over
SOR as a stand-alone iterative method; however, it is useful as a pre-
conditioner for nonstationary methods. — SSOR is a forward SOR sweep
followed by a backward SOR sweep in which the unknowns are updated
in the reverse order.
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Iterative Methods Overview

Krylov Subspaces, Arnoldi and Lanczos

Given a vector ~x and a matrix A, the associated Krylov vector
sequence is {~x , A~x , . . . , Ak−1~x , . . . }, and the corresponding Krylov
subspaces K (A, ~x ; k) = span{~x , A~x , . . . , Ak−1~x}.

Most of the iterative algorithms described in the following slides for
solution of the linear system A~x = ~b are derived from analysis
(minimization of residuals) over Krylov subspaces, specifically

Symmetry Linear System Eigenvalue Problem

Ax̃ = b̃ Ax̃ = λx̃

A = A∗ CG Lanczos

GMRES

A 6= A∗ CGNE / CGNR Arnoldi

BiCG, etc...
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Iterative Methods Overview

The Arnoldi Iteration

Arnoldi is to Householder-based Hessenberg transformations, as
Gram-Schmidt is to Householder-based QR-factorization:

Problem A = QR A = QHQ∗

Orthogonal Transformation Householder Householder
 Structure Q∗A = R Q∗AQ = H

“Structure” Transformation Gram-Schmidt Arnoldi
 Orthogonalization AR−1 = Q AQn = Qn+1Hn

By “enforcing” the desired structure on Hn, the “by-product” is
the orthogonal matrix Q.

We will discuss the Arnoldi iteration in more detail in the next lecture.
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Iterative Methods Overview

Lanczos vs. Arnoldi

When A = A∗, we can find an orthonormal similarity transform so
that A = QTQ∗, where T is tri-diagonal. This special case makes
the Lanczos iteration much faster (3-term recurrence) than the
Arnoldi iteration (“infinite” n-recurrence):

~b = ~b0, ~q1 = ~b/‖~b‖
for n = 1,...

xx~v = A~qn
xxfor j = 1,. . . ,n

xxxxhjn = q̃j
∗ṽ

xxxxṽ = ṽ − hjnq̃j

xxendfor(j)

xxhn+1,n = ‖v‖
xx~qn+1 = ~v/hn+1,n

endfor(n)

~b = ~b0, ~q1 = ~b/‖~b‖,

β0 = 0, q0 = 0
for n = 1,...

xx~v = A~qn
xxαn = ~q∗n ~v
xxṽ = ṽ − βn−1q̃n−1 − αnq̃n

xxβn = ‖v‖
xx~qn+1 = ~v/βn

endfor(n)

T = diag(~α) + diag(~β,±1)

Arnoldi iteration Lanczos iteration
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Iterative Methods Overview

Iterative Methods: Non-Stationary Methods 1 of 6

Conjugate Gradient, “CG”

The conjugate gradient method derives its name from the fact that it
generates a sequence of conjugate (or orthogonal) vectors.

These vectors are the residuals of the iterates. They are also the gradi-
ents of a quadratic functional, the minimization of which is equivalent
to solving the linear system.

CG is an extremely effective method when the coefficient matrix is sym-
metric positive definite, since storage for only a limited number of
vectors is required. (See slide 25 for implementation details.)

Minimum Residual, “MINRES”

A computational alternative for CG for coefficient matrices that are sym-
metric but possibly indefinite.
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Iterative Methods Overview

Iterative Methods: Non-Stationary Methods 2 of 6

Conjugate Gradient on the Normal Equations, “CGNE” / “CGNR”

These methods are based on the application of the CG method to one of two forms
of the normal equations for A~x = ~b.

CGNE solves the system for (AA∗)~y = ~b, and then computes the solution ~x = A∗~y .

CGNR solves (A∗A)~x = A∗~b for the solution vector ~x .

When the coefficient matrix A is non-symmetric and nonsingular, the normal equa-
tions matrices AA∗ and A∗A will be symmetric and positive definite, and hence CG
can be applied. The convergence may be slow, since the spectrum of the normal
equations matrices will be less favorable than the spectrum of A.

Chebyshev Iteration

The Chebyshev Iteration recursively determines polynomials with coeffi-
cients chosen to minimize the norm of the residual in a min-max sense.
The coefficient matrix must be positive definite and knowledge of the
extremal eigenvalues is required. This method has the advantage of re-
quiring no inner products.

Peter Blomgren 〈blomgren@sdsu.edu〉 24. Iterative Methods — Overview — (13/27)



Iterative Methods Overview

Iterative Methods: Non-Stationary Methods 3 of 6

Generalized Minimal Residual, “GMRES”

The Generalized Minimal Residual method computes a sequence
of orthogonal vectors (like MINRES), and combines these through
a least-squares solve and update.

However, unlike MINRES (and CG) it requires storing the whole
sequence, so that a large amount of storage is needed.

For this reason, restarted versions of this method are used. In
restarted versions, computation and storage costs are limited by
specifying a fixed number of vectors to be generated. This method
is useful for general non-symmetric matrices. (See slide 24 for implemen-

tation details.)
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Iterative Methods Overview

Iterative Methods: Non-Stationary Methods 4 of 6

BiConjugate Gradient, “BiCG”

The Biconjugate Gradient method generates two CG-like sequences of
vectors, one based on a system with the original coefficient matrix A,
and one on A∗.

Instead of orthogonalizing each sequence, they are made mutually or-
thogonal, or “bi-orthogonal”. This method, like CG, uses limited storage.
It is useful when the matrix is non-symmetric and nonsingular.

However, convergence may be irregular, and there is a possibility that
the method will break down. BiCG requires a multiplication with the
coefficient matrix and with its transpose at each iteration. (See slide 26 for

implementation details.)
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Iterative Methods Overview

Iterative Methods: Non-Stationary Methods 5 of 6

Conjugate Gradient Squared, “CGS”

The Conjugate Gradient Squared method is a variant of BiCG that ap-
plies the updating operations for the A-sequence and the A∗-sequences
both to the same vectors.

Ideally, this would double the convergence rate, but in practice conver-
gence may be much more irregular than for BiCG, which may sometimes
lead to unreliable results. A practical advantage is that the method does

not need the multiplications with the transpose of the coefficient matrix.

Biconjugate Gradient Stabilized, “BiCGSTAB”

The Biconjugate Gradient Stabilized method is a variant of BiCG, like
CGS, but using different updates for the A∗-sequence in order to obtain
smoother convergence than CGS.
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Iterative Methods Overview

Iterative Methods: Non-Stationary Methods 6 of 6

Quasi-Minimal Residual , “QMR”

The Quasi-Minimal Residual method applies a least-squares solve and
update to the BiCG residuals, thereby smoothing out the irregular con-
vergence behavior of BiCG, which may lead to more reliable approxima-
tions.

In full glory, it has a look-ahead strategy built in that avoids the BiCG

breakdown. Even without look ahead, QMR largely avoids the breakdown
that can occur in BiCG.

On the other hand, it does not effect a true minimization of either the
error or the residual, and while it converges smoothly, it often does not
improve on the BiCG in terms of the number of iteration steps.

Transpose-Free Quasi-Minimal Residual, “TFQMR”

A variant of the QMR algorithm which avoids multiplication by A∗.
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Iterative Methods Overview

Other Approaches 1 of 5

Preconditioning

A preconditioner is any form of explicit or implicit modification
of an original linear system that makes it easier to solve by a
given iterative method.

Finding a good preconditioner for a given linear system is a
combination of art, science, and white magic .

One step of the Jacobi, Gauss-Seidel, SOR, and SSOR iterations
can be viewed as the application of a (rudimentary) precondi-
tioner.

Successful preconditioning techniques are often based on incom-
plete factorizations.
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Iterative Methods Overview

Other Approaches 2 of 5

Multigrid methods

Multigrid (MG) methods apply to linear systems arising from discretiza-
tions of Partial Differential Equations (PDEs). MG techniques use
discretizations with different mesh sizes, to achieve fast convergence.

Roughly, a solution is computed on a coarse mesh, that solution
(interpolated to a finer mesh) is used as an initial guess for the
fine-mesh solution, etc...

Warning: There are some serious dragons hiding in the details!
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Figure: A successive refinement of the grid.
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Iterative Methods Overview

Other Approaches 3 of 5

Domain Decomposition methods
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Domain decomposition methods revolve
around the divide-and-conquer principle.

The (discretized) PDE is solved over sub-
domains, and then the global solution is
patched together — very special attention
must be paid at the numerical boundaries
between the sub-domains.

Peter Blomgren 〈blomgren@sdsu.edu〉 24. Iterative Methods — Overview — (20/27)



Iterative Methods Overview

Other Approaches 4 of 5

Fast Multipole Method, FMM

• Introduced by Rokhlin & Greengard in 1987. “One of the 10 most

significant advances in computing in the 20th century.”

• An algorithm for achieving fast matrix-vector products for particular
dense matrices.

• Developed based on ideas similar to the Fast Fourier Transform
(FFT), and in some sense multi-grid methods...

• FFT — matrix entries are uniformly sampled complex exponentials.

• FMM — matrix entries are derived from particular functions,
satisfying known translation theorems.

• Standard matrix-vector multiply ∼ O(m2).

• FMM matrix-vector multiply ∼ O(m log(m)).
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Iterative Methods Overview

Other Approaches 5 of 5

Kaczmarz’s Algorithm, and beyond

[Kaczmarz (1937)] — Projection based algorithm; “solve” using one
column of the matrix at a time — Suitable for VERY LARGE
matrices

[Randomized Kaczmarz: Strohmer–Vershynin (2009)] ≈ stochastic
gradient descent (SDG)... When λ(A) > 0

[Gower–Richtarik (2015)] — A randomized iterative method for
solving a consistent system of linear equations; K(1937) is a special
case. Other special cases include randomized coordinate descent,
randomized Gaussian descent and randomized Newton method.
Block versions and versions with importance sampling of all these
methods also arise as special cases.

What do I know about these algorithms??? I know they exist. :-)
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Iterative Methods Overview

Algorithm Reference: Arnoldi Iteration

Algorithm (Arnoldi Iteration)

~b = ~b0 = arbitrary, ~q1 = ~b/‖~b‖
for n = 1,...

~v = A~qn
for j = 1,. . . ,n

hjn = ~qj
∗~v

~v = ~v − hjn~qj
endfor(j)

hn+1,n = ‖v‖
~qn+1 = ~v/hn+1,n

endfor(n)
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Algorithm Reference: GMRES

Algorithm (GMRES)

~q1 = ~b/‖~b‖
for n = 1:...

→ Step n of Arnoldi Iteration ←

~yn = arg min
~y

∥∥∥∥Hn~y − ‖~b‖~e1

∥∥∥∥
~xn = Qn~yn

endfor
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Algorithm Reference: CG

Algorithm (Conjugate Gradient CG Iteration)

~x0 = 0, ~p0 = ~r0 = ~b
for n = 1:...

αn = ‖~rn−1‖
2

~p∗

n−1A~pn−1
Step length

~xn = ~xn−1 + αn~pn−1 Approximate solution

~rn = ~rn−1 − αnA~pn−1 Updated residual

βn = ‖~rn‖
2

‖~rn−1‖2 Improvement this step

~pn = ~rn + βn~pn−1 New search direction
endfor
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Algorithm Reference: BiCG

Algorithm (Bi-Conjugate Gradient BiCG Iteration)

~x0 = 0, ~p0 = ~r0 = ~b, ~q0 = ~s0 = arbitrary

for n = 1:...

αn =
~s∗n−1~rn−1

~q∗

n−1A~pn−1
Step length

~xn = ~xn−1 + αn~pn−1 Approximate solution

~rn = ~rn−1 − αnA~pn−1 Updated residual, ~r
~sn = ~sn−1 − αnA

∗~qn−1 Updated residual, ~s

βn =
~s∗n ~rn

~s∗
n−1~rn−1

Improvement this step

~pn = ~rn + βn~pn−1 New search direction, ~p
~qn = ~sn + βn~qn−1 New search direction, ~q

endfor
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Acknowledgment

Slides 7–8, and 12–17 are blatantly “borrowed” from the
html-version of “Templates for the Solution of Linear Systems:

Building Blocks for Iterative Methods.”
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