Arnoldi Iteration Arnoldi Iteration ~>> Eigenvalues

# Numerical Matrix Analysis Notes #25 Arnoldi Iteration

Peter Blomgren (blomgren@sdsu.edu)

Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State University San Diego, CA 92182-7720

http://terminus.sdsu.edu/

Spring 2024 (Revised: April 24, 2024)



-(1/30)

Peter Blomgren (blomgren@sdsu.edu)

25. Arnoldi Iteration

Arnoldi Iteration Arnoldi Iteration ~>> Eigenvalues

# Outline



- Arnoldi Iteration
  - Introduction
  - Mechanics
  - Interpretations
- 2 Arnoldi Iteration → Eigenvalues
  - Computing Eigenvalues by Arnoldi Iteration
  - The Arnoldi/Lanczos Approximation Problem
  - Convergence



Arnoldi Iteration Arnoldi Iteration ---> Eigenvalues

Introduction Mechanics Interpretations

# Introduction, Definitions

The Arnoldi Iteration generates a **sequence of matrices** from which the eigenvalues  $\lambda$  of  $A\vec{x} = \lambda \vec{x}$  for  $A \neq A^*$  can easily be computed.

It is a Gram-Schmidt-style orthogonalization iteration for transforming the matrix into Hessenberg form.

|                                | $A \rightsquigarrow QR$ | $A \rightsquigarrow QHQ^*$ |
|--------------------------------|-------------------------|----------------------------|
| Orthogonal "Structuring"       | Householder             | Householder                |
| 'Structured" Orthogonalization | Gram-Schmidt            | Arnoldi                    |

Definition (Krylov Sequences and Subspaces)

Given a vector  $\vec{x}$  and a matrix A, the associated **Krylov vector** sequence is  $\{\vec{x}, A\vec{x}, \dots, A^{k-1}\vec{x}, \dots\}$ , and the corresponding **Krylov subspaces**  $K(A, \vec{x}; k) = \text{span}(\vec{x}, A\vec{x}, \dots, A^{k-1}\vec{x})$ .



Arnoldi Iteration Arnoldi Iteration ~-> Eigenvalues Introduction Mechanics Interpretations

Householder vs. Gram-Schmidt/Arnoldi

In the context of the QR factorization we have the Householder reflections which "triangularize" A by a sequence of orthogonal operations; and the Gram-Schmidt process which Orthogonalize A by a sequence of triangular operations.

 $_{\text{Ops.}}^{\text{Row-}}$  The Householder reflection strategy performs better (in terms of *Q*-orthonormality) in finite precision.

 $_{\text{Ops.}}^{\text{Col-}}$  The Gram-Schmidt process has the advantage that it can be stopped part-way; yielding an incomplete QR-factorization of the first *n* columns of *A*.

We have viewed the process of computing the Hessenberg (upper triangular + 1 sub-diagonal) form  $A = QHQ^*$  as a two-sided application of Householder reflections. The Arnoldi iteration is the "interruptible" Gram-Schmidt "equivalent."



Arnoldi Iteration Arnoldi Iteration ~~ Eigenvalues Introduction Mechanics Interpretations

Problem Structure and Notation

We consider the problem of computing  $A \rightsquigarrow QHQ^*$  for  $A \in \mathbb{R}^{m \times m}$ . All norms  $\|\cdot\|$  are 2-norms  $\|\cdot\|_2$ . *n* is the iteration number, and we operate in the regime where  $n \ll m$ .

The complete Hessenberg reduction can be written in the form  $A = QHQ^*$ , or AQ = QH, where  $A, Q, H \in \mathbb{R}^{m \times m}$ . However, seen at the  $n^{\text{th}}$  iterative step, we consider the partially computed matrix  $Q_n \in \mathbb{R}^{m \times n}$ , *i.e.* the first *n* columns of *Q*:

$$Q_n = \left[ \begin{array}{ccc} ec{q}_1 & ec{q}_2 & \cdots & ec{q}_n \end{array} 
ight]$$

Arnoldi Iteration Arnoldi Iteration ~~ Eigenvalues Introduction Mechanics Interpretations

Hessenberg Reduction, at step n

We also consider the upper  $((n + 1) \times n)$  block of H, also a Hessenberg matrix

$$\tilde{H}_n = \begin{bmatrix} h_{1,1} & \cdots & h_{1,n} \\ h_{2,1} & h_{2,2} & & \vdots \\ & \ddots & \ddots & & \\ & & h_{n,n-1} & h_{n,n} \\ & & & & h_{n+1,n} \end{bmatrix},$$

so that

$$AQ_n = Q_{n+1}\tilde{H}_n$$

is well defined, since

$$[m \times n] = [m \times m] \otimes [m \times n] = [m \times (n+1)] \otimes [(n+1) \times n] = [m \times n].$$

Peter Blomgren (blomgren@sdsu.edu) 25. Arnoldi Iteration

- (6/30)

2 of 3

Arnoldi Iteration Arnoldi Iteration ~-> Eigenvalues Introduction Mechanics Interpretations

### Hessenberg Reduction, at step n

The  $n^{\text{th}}$  column of the relation  $AQ_n = Q_{n+1}\tilde{H}_n$  is

$$A\vec{q}_n = \sum_{k=1}^{n+1} h_{k,n}\vec{q}_k,$$

which means that  $\vec{q}_{n+1}$  satisfies an (n+1)-term recurrence relation involving itself, and previous Krylov basis vectors,  $\vec{q}_{1,...,n}$ :

$$\vec{q}_{n+1} = rac{1}{h_{n+1,n}} \left[ A \vec{q}_n - \sum_{k=1}^n h_{k,n} \vec{q}_k \right].$$

The Arnoldi iteration implements this recurrence relation.



Arnoldi Iteration Arnoldi Iteration ~-> Eigenvalues Introduction Mechanics Interpretations

# The Arnoldi Algorithm

# Algorithm (Arnoldi Iteration)

1: 
$$\vec{b} \leftarrow \operatorname{random}(\mathbb{R}^{m \times 1})$$
,  
2:  $\vec{q}_1 \leftarrow \vec{b}/\|\vec{b}\|$   
3: for  $n \in \{1, 2, ...\}$  do  
4:  $\vec{v} \leftarrow A\vec{q}_n$   
5: for  $j \in \{1, ..., n\}$  do  
6:  $h_{j,n} \leftarrow \vec{q}_j^* \vec{v}$   
7:  $\vec{v} \leftarrow \vec{v} - h_{j,n} \vec{q}_j$   
8: end for  
9:  $h_{n+1,n} \leftarrow \|\vec{v}\|$  TB-33.2:  $h_{n+1,n} = 0$  (Breakdown due to Convergence)  
10:  $\vec{q}_{n+1} \leftarrow \vec{v}/h_{n+1,n}$   
11: end for

SAN DIEGO STATE UNIVERSITY Arnoldi Iteration Arnoldi Iteration ~> Eigenvalues

The power of the Arnoldi process is the various interpretations that can be made of it (and its by-products), and the algorithms these suggest.

Arnoldi: Generated Krylov Subspaces From construction, the generated vectors  $\{\vec{q}_k\}$  form orthonormal bases for the Krylov subspaces generated by A and  $\vec{b}$ :

$$\mathcal{K}(\mathcal{A}, \vec{b}; k) = \mathrm{span}\left(\vec{b}, \mathcal{A}\vec{b}, \dots, \mathcal{A}^{n-1}\vec{b}\right) = \mathrm{span}\left(\vec{q}_1, \vec{q}_2, \dots, \vec{q}_n\right) \subseteq \mathbb{C}^m.$$



Arnoldi Iteration Arnoldi Iteration ~~ Eigenvalues

The  $(m \times n)$  Krylov matrix  $\mathcal{K}_n$  must have a reduced QR-factorization:

$$\mathcal{K}_n = \left[ \begin{array}{c|c} \vec{b} & A\vec{b} & \cdots & A^{n-1}\vec{b} \end{array} \right] = Q_n R_n,$$

where  $Q_n$  is the matrix previously defined ( $\vec{q}_k$  are its columns).

Neither  $\mathcal{K}_n$ , nor  $\mathcal{R}_n$  can be stably formed during the Arnoldi process, but they hint at why the Arnoldi process leads to effective methods for determining certain (the dominant) eigenvalues of A.

-(10/30)

| Arnoldi Iteration<br>Arnoldi Iteration ~> Eigenvalues | Introduction<br>Mechanics<br>Interpretations |        |
|-------------------------------------------------------|----------------------------------------------|--------|
| Arnoldi: Simplicity and Power, All-in-                | -One i/ii                                    | 3 of 3 |

The relationship between the Arnoldi iteration, and direct QR factorization of  $\mathcal{K}_n$  is reminiscent of the Simultaneous-(Power)-Iteration vs. QR-algorithm approaches:

| Straight-forward, unstable                       | Subtle, stable          |
|--------------------------------------------------|-------------------------|
| Simultaneous Iteration $\mathcal{K}_n = Q_n R_n$ | QR-algorithm<br>Arnoldi |



Introduction Arnoldi Iteration Mechanics Arnoldi Iteration ~>> Eigenvalues Interpretations ii/ii Arnoldi: Simplicity and Power, All-in-One 1 of 2We can also view the Arnoldi process as a computation of projections onto successive Krylov subspaces. Note:  $(n \times (n+1))$  Identity The product  $Q_n^*Q_{n+1} = I = \delta_{k,\ell}, \quad k = 1, \dots, n, \quad \ell = 1, \dots, (n+1).$ 

Therefore  $Q_n^*Q_{n+1}\tilde{H}_n$  is the  $(n \times n)$  Hessenberg matrix obtained by removing the last row of  $\tilde{H}_n$ :

$$H_n = \begin{bmatrix} h_{1,1} & \cdots & h_{1,n} \\ h_{2,1} & h_{2,2} & & \vdots \\ & \ddots & \ddots & & \vdots \\ & & h_{n,n-1} & h_{n,n} \end{bmatrix}, \text{ and } H_n = Q_n^* A Q_n.$$

Peter Blomgren (blomgren@sdsu.edu)

Arnoldi Iteration Arnoldi Iteration ~~ Eigenvalues Interpretations

Arnoldi: Simplicity and Power, All-in-One ii/ii 2 of 2

This matrix can be interpreted as the orthogonal projection  $(P : \mathbb{R}^{m \times m} \mapsto \mathbb{R}^{m \times n})$  of A onto  $\mathcal{K}_n$ , represented by the basis  $\{\vec{q}_1, \ldots, \vec{q}_n\}$ . (Exact statement in TB pp.254, it makes sense if you have taken [MATH 524]).

This type of projection shows up in a variety of contexts, and is sometimes referred to as the *Rayleigh-Ritz* procedure. It turns out that the diagonal elements is  $H_n$  are the Rayleigh coefficients of A with respect to the vectors  $\vec{q}_j$ .

This projection process is one of the ideas underlying the *Finite Element Method* for solution of PDEs, as well as *spectral methods*.

Since  $H_n$  is a projection of A, its eigenvalues  $\lambda(H_n)$  are related to the eigenvalues of A; they are referred to as the *Arnoldi eigenvalue* estimates, or *Ritz values* (with respect to  $\mathcal{K}_n$ ) of A.



Arnoldi Iteration Arnoldi Iteration ~> Eigenvalues Introduction Mechanics Interpretations

# Arnoldi: Summary (so far)

#### Theorem

The matrices  $Q_n$  generated by the Arnoldi iteration are reduced QR-factors of the Krylov matrix:

 $\mathcal{K}_n = Q_n R_n.$ 

The Hessenberg matrices  $H_n$  are the corresponding projections

 $H_n = Q_n^* A Q_n,$ 

and the successive iterates are related by

$$AQ_n = Q_{n+1}\tilde{H}_n$$



Arnoldi Iteration Arnoldi Iteration ~-> Eigenvalues Computing Eigenvalues by Arnoldi Iteration The Arnoldi/Lanczos Approximation Problem Convergence

# Arnoldi Eigenvalue Computation Strategy

# Strategy

- Perform Arnoldi Iteration
- Compute the Eigenvalues of  $H_n$  using *e.g.* the *QR*-algorithm at regular intervals.
  - $\lambda(H_n)$  are the Arnoldi eigenvalue estimates, or Ritz values.
  - a (growing) subset of  $\lambda(H_n)$  typically converge quickly, and are eigenvalues of A.
  - [∃ Movie]
  - Typically, the largest-modulus eigenvalues are located first; and usually (but not always) those are the ones we are interested in.

Some aspects of the convergence can be quantified...



 Computing Eigenvalues by Arnoldi Iteration The Arnoldi/Lanczos Approximation Problem Convergence

Minimization Problem Over the Monic Polynomials

Let 
$$ec{x} \in K(A,ec{b};n)$$
, then $ec{x} = \sum_{k=0}^{n-1} c_k A^k ec{b} = q(A) ec{b},$ 

where q(A) is a (matrix) polynomial in A.

With

 $\mathcal{P}^n = \{ \text{All Monic Polynomials of Degree } n \},$ 

where *monic* means  $c_n = 1$ , we can state the

Arnoldi (and Lanczos) Approximation Problem (AAP) Find  $p_n \in \mathcal{P}^n$  such that  $\|p_n(A)\vec{b}\|$  is minimized.



SAN DIEGO STATE

Solution to the Minimization Problem

The Arnoldi iteration solves the stated minimization problem:

Theorem

As long as the Arnoldi iteration does not break down (i.e.  $\mathcal{K}_n$  is of full rank n), (AAP) has a unique solution  $p_n$ ; the characteristic minimal polynomial of  $H_n$ . [Proof in Trefethen & Bau, pp. 259–260.]

Hence, the Ritz values generated by the Arnoldi iteration are the roots of the optimal polynomial.

Since the class of monic polynomials  $\mathcal{P}^n$  is invariant with respect to translations  $[z \mapsto (z + \alpha)]$ , so is the Arnoldi iteration:

Ref: See [MATH 524 (NOTES#8)] for discussions on Cayley–Hamilton Theorem; the Minimal, and Characteristic Polynomials.



# Invariance Theorem

#### Theorem

Let the Arnoldi iteration be applied to a matrix  $A \in \mathbb{C}^{m \times m}$ ; each of the following invariance properties hold:

- [TRANSLATION-INVARIANCE] If A is changed to  $(A + \sigma I)$  for some  $\sigma \in \mathbb{C}$ , and  $\vec{b}$  is left unchanged, the Ritz values  $\{\theta_j\}$  change to  $\{\theta_j + \sigma\}$ .
- [SCALE-INVARIANCE] If A is changed to  $\sigma A$  for some  $\sigma \in \mathbb{C}$ , and  $\vec{b}$  is left unchanged, the Ritz values  $\{\theta_j\}$  change to  $\{\sigma\theta_j\}$ .
- [INVARIANCE UNDER UNITARY SIMILARITY TRANSFORMS] If A is changed to UAU\* for some unitary matrix U, and  $\vec{b}$  is changed to  $U\vec{b}$ , the Ritz values do not change.

In all three cases the Ritz vectors, the vectors  $Q_n \vec{y_j}$  corresponding to the eigenvectors  $\vec{y_j}$  of  $H_n$ , do not change.

Invariance Theorem: Discussion

We know (Schur Factorization) that every matrix is similar to an upper triangular matrix.

Therefore, the invariance property shows that we can understand the properties of the Arnoldi iteration by considering upper triangular matrices.

Note: NON-HERMITIAN MATRICES  $\leftrightarrow$  TRIANGULAR MATRICES, and HERMITIAN MATRICES  $\leftrightarrow$  DIAGONAL MATRICES. Hence in the non-Hermitian case off-diagonal elements complete the description of the matrix action beyond "just" the eigenvalues.



Convergence

**Easy Case:** A is diagonalizable, and has  $n \ll m$  distinct eigenvalues. In this case the Arnoldi iteration finds the n eigenvalues exactly, as long as the "seed vector"  $\vec{b}$  has non-zero components in each eigenspace  $E_{\lambda_k}$ ; and  $||p_n(A)\vec{b}|| = 0$ . [In infinite precision]

**General Case:** Here, the Ritz values are approximations to eigenvalues, and  $p_n$  is a *pseudo-minimal* polynomial; *i.e.*  $||p_n(A)\vec{b}||$  is small.

The convergence process can be illustrated by a particular level-curve (*lemniscate*) of the polynomial.



Arnoldi Lemniscates

Definition (Lemniscate, Level Set)

A lemniscate is a curve, or collection of curves

$$\{z\in\mathbb{C} : |p(z)|=\mathcal{C}\},\$$

where p(z) is a polynomial and C is a real constant.

If p(z) is the Arnoldi polynomial  $p_n(\cdot)$  for an Arnoldi iteration, and

$$\mathcal{C}_n = \frac{\|p_n(A)\vec{b}\|}{\|\vec{b}\|},$$

then the curves are called Arnoldi Lemniscates.

The components of the *Arnoldi Lemniscates* tend to surround the extreme eigenvalues of *A* and the shrink rapidly to a point (the eigenvalue).



Computing Eigenvalues by Arnoldi Iteration The Arnoldi/Lanczos Approximation Problem Convergence





 Computing Eigenvalues by Arnoldi Iteration The Arnoldi/Lanczos Approximation Problem Convergence



Computing Eigenvalues by Arnoldi Iteration The Arnoldi/Lanczos Approximation Problem Convergence

# Arnoldi Lemniscates





- (24/30)

Computing Eigenvalues by Arnoldi Iteration The Arnoldi/Lanczos Approximation Problem Convergence





Computing Eigenvalues by Arnoldi Iteration The Arnoldi/Lanczos Approximation Problem Convergence





Computing Eigenvalues by Arnoldi Iteration The Arnoldi/Lanczos Approximation Problem Convergence





Computing Eigenvalues by Arnoldi Iteration The Arnoldi/Lanczos Approximation Problem Convergence





Computing Eigenvalues by Arnoldi Iteration The Arnoldi/Lanczos Approximation Problem Convergence

# Arnoldi Lemniscates

### 15&16 of 16





Rate of Convergence

The rate of convergence is not well understood in general.

For a single outlying eigenvalue, the convergence rate is typically geometric (in the first few iterations, then faster); *e.g.* Trefethen & Bau show an example where

$$|\lambda^{(n)}-\lambda|\sim \left(\frac{2}{3}\right)^n.$$

Convergence is highly dependent on the shape of the eigenvalue spectrum  $\lambda(A)$ . — In the next lecture we will see some examples of this in the context of the related GMRES algorithm.



