Numerical Matrix Analysis

Lecture Notes #3 — Orthogonal Vectors, Matrices and Norms

Peter Blomgren,
⟨blomgren.peter@gmail.com⟩

Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego, CA 92182-7720

http://terminus.sdsu.edu/

Spring 2016
Outline

1. Introduction
 - Recap

2. Fundamental Concepts
 - Adjoint / Hermitian
 - Inner Products, Matrix Properties, Orthogonality
 - Unitary Matrices, Vector Norms, Matrix Norms

3. Next...
 - Looking Ahead
Previously...

A quick review / crash course in basic linear algebra:

- Vectors: Transpose, Addition & Subtraction
- Matrix-Vector Product
- The Vandermonde Matrix ... and Linear Least Squares Problems
- Matrix-Matrix Product
- The Transpose of a Matrix (A^T)
- The Range and Nullspace of a Matrix A
- The Rank of a Matrix $A_{m \times n}$
- The Inverse of a Matrix A
The **Adjoint** a.k.a **Hermitian** (Transpose, or Conjugate) of a matrix $A \in \mathbb{C}^{m \times n}$...

For a scalar $z \in \mathbb{C}$, $z = a + bi$, the **complex conjugate** \bar{z}, or z^* is obtained by negating the imaginary part, i.e. $z^* = a - bi$.

Note that if $z \in \mathbb{R}$, then $z^* = z$.

For a matrix $A \in \mathbb{C}^{m \times n}$, the Hermitian Conjugate $A^* \in \mathbb{C}^{n \times m}$ is the matrix

$A = \begin{bmatrix}
 a_{11} & a_{12} \\
 a_{21} & a_{22} \\
 a_{31} & a_{32} \\
 a_{41} & a_{42}
\end{bmatrix} \implies A^* = \begin{bmatrix}
 a_{11}^* & a_{21}^* & a_{31}^* & a_{41}^* \\
 a_{12}^* & a_{22}^* & a_{32}^* & a_{42}^*
\end{bmatrix}$
The Hermitian Conjugate

If \(A = A^* \), the matrix \(A \) is said to be **Hermitian**.

Note that a **Hermitian matrix must be square**.

In the case that \(A \) is real-valued, *i.e.* \(A \in \mathbb{R}^{m \times n} \), then

\[A = A^* = A^T \]

(the Hermitian conjugate equals the **transpose**).

If \(A = A^T \), the matrix \(A \) is said to be **Symmetric**.

Our book (**TREFETHEN-BAU**) tends to state results and theorems in terms of complex vectors and matrices, and hence use the Hermitian conjugate, *i.e.* \(\bar{x}^* \) is a row-vector.

If this is disturbing to you, just imagine that all quantities are real, and that \(* \equiv T \).

The advantage of this approach is that we never have to wonder if a result (stated for the real case) extends to the complex case.
The inner product, denoted $\langle \mathbf{x}, \mathbf{y} \rangle$, of two column vectors $\mathbf{x}, \mathbf{y} \in \mathbb{C}^m$ is defined

$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^* \mathbf{y} = \sum_{i=1}^{m} x_i^* y_i$$

note that the inner product is a scalar quantity.

The Euclidean length, $\| \mathbf{x} \|$, of $\mathbf{x} \in \mathbb{C}^m$ is defined

$$\| \mathbf{x} \| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle} = \sqrt{\mathbf{x}^* \mathbf{x}} = \sqrt{\sum_{i=1}^{m} |x_i|^2}$$
The inner product can also be written

\[\langle \bar{x}, \bar{y} \rangle = \bar{x}^* \bar{y} = \| \bar{x} \| \cdot \| \bar{y} \| \cdot \cos(\alpha) \]

where \(\alpha \) is the angle between \(\bar{x} \) and \(\bar{y} \).
The inner product is **bilinear**, *i.e.* it is linear in each vector separately:

1. \((\bar{x}_1 + \bar{x}_2)^* \bar{y} = \bar{x}_1^* \bar{y} + \bar{x}_2^* \bar{y}\)
2. \(\bar{x}^* (\bar{y}_1 + \bar{y}_2) = \bar{x}^* \bar{y}_1 + \bar{x}^* \bar{y}_2\)
3. \((\alpha \bar{x})^* (\beta \bar{y}) = \alpha^* \beta \bar{x}^* \bar{y}\)

where \(\bar{x}, \bar{x}_1, \bar{x}_2, \bar{y}, \bar{y}_1, \bar{y}_2 \in \mathbb{C}^m\), and \(\alpha, \beta \in \mathbb{C}\).
Associated Matrix Properties

For any two matrices A and B, of compatible dimensions, i.e. $A \in \mathbb{C}^{m \times n}$, and $B \in \mathbb{C}^{n \times k}$ the following holds

$$(AB)^* = B^* A^*$$

If the matrices A and B are square, and invertible, the following holds

$$(AB)^{-1} = B^{-1} A^{-1}$$

When necessary, we use the notation A^{-*} for $(A^*)^{-1} \equiv (A^{-1})^*$.
Two vectors are **orthogonal** if and only if \(\langle \bar{x}, \bar{y} \rangle = \bar{x}^* \bar{y} = 0 \),

\[
0 = \frac{\bar{x}^* \bar{y}}{\|\bar{x}\| \cdot \|\bar{y}\|} = \cos(\alpha) \iff \alpha = \pi/2 + k \cdot \pi.
\]

A **set** of **non-zero** vectors \(S \) is **orthogonal** if its elements are pairwise orthogonal, i.e.

\[
\forall \bar{x}, \bar{y} \in S, \quad \bar{x} \neq \bar{y} \implies \bar{x}^* \bar{y} = 0
\]

A **set** of vectors \(S \) is **orthonormal** if it is **orthogonal**, and \(\forall \bar{x} \in S, \|\bar{x}\| = 1. \)
Theorem (Linear Independence)

The vectors in an orthogonal set S are linearly independent.

Proof:
Theorem (Linear Independence)

The vectors in an orthogonal set S are linearly independent.

Proof: If the vectors in S are not independent, then $\exists \vec{v}_k \in S$, so that

$$\vec{v}_k = \sum_{i \neq k} c_i \vec{v}_i.$$
Linear Independence of Orthogonal Set

Theorem (Linear Independence)

The vectors in an orthogonal set S are linearly independent.

Proof: If the vectors in S are not independent, then \(\exists \vec{v}_k \in S \), so that

\[
\vec{v}_k = \sum_{i \neq k} c_i \vec{v}_i.
\]

Since \(\vec{v}_k \neq 0 \), \(\langle \vec{v}_k, \vec{v}_k \rangle > 0 \),
Theorem (Linear Independence)

The vectors in an orthogonal set S are linearly independent.

Proof: If the vectors in S are not independent, then $\exists \vec{v}_k \in S$, so that

$$\vec{v}_k = \sum_{i \neq k} c_i \vec{v}_i.$$

Since $\vec{v}_k \neq 0$, $\langle \vec{v}_k, \vec{v}_k \rangle > 0$, now we use the bi-linearity property of inner products, and the orthogonality of S:
Linear Independence of Orthogonal Set

Theorem (Linear Independence)

The vectors in an orthogonal set S are linearly independent.

Proof: If the vectors in S are not independent, then $\exists \vec{v}_k \in S$, so that

$$\vec{v}_k = \sum_{i \neq k} c_i \vec{v}_i.$$

Since $\vec{v}_k \neq 0$, $\langle \vec{v}_k, \vec{v}_k \rangle > 0$, now we use the bi-linearity property of inner products, and the orthogonality of S:

$$0 < \langle \vec{v}_k, \vec{v}_k \rangle = \left\langle \vec{v}_k, \sum_{i \neq k} c_i \vec{v}_i \right\rangle = \sum_{i \neq k} c_i \underbrace{\langle \vec{v}_k, \vec{v}_i \rangle}_{0, \forall i \neq k} = 0.$$
Linear Independence of Orthogonal Set

Theorem (Linear Independence)

The vectors in an orthogonal set S are linearly independent.

Proof: If the vectors in S are not independent, then $\exists \mathbf{v}_k \in S$, so that

$$
\mathbf{v}_k = \sum_{i \neq k} c_i \mathbf{v}_i.
$$

Since $\mathbf{v}_k \neq 0$, $\langle \mathbf{v}_k, \mathbf{v}_k \rangle > 0$, now we use the bi-linearity property of inner products, and the orthogonality of S:

$$
0 < \langle \mathbf{v}_k, \mathbf{v}_k \rangle = \left\langle \mathbf{v}_k, \sum_{i \neq k} c_i \mathbf{v}_i \right\rangle = \sum_{i \neq k} c_i \langle \mathbf{v}_k, \mathbf{v}_i \rangle = 0.
$$

This contradicts the assumption that the vectors are linearly dependent, hence proving the theorem. \square
Corollary: Basis for \mathbb{C}^m

Corollary

If an orthogonal set $S \subseteq \mathbb{C}^m$ contains m vectors, then it is a basis for \mathbb{C}^m.

I.e. we can write any vector $\vec{v} \in \mathbb{C}^m$ as a unique linear combination

$$\vec{v} = \sum_{i=1}^{m} a_i \vec{s}_i,$$

where

$$a_i = \frac{\langle \vec{s}_i, \vec{v} \rangle}{\| \vec{s}_i \|^2}.$$

We can view the computation of a_i as a **projection** of the vector \vec{v} onto the direction \vec{s}_i.

We can use this in order to decompose arbitrary vectors into orthogonal components...
Suppose we have an **orthonormal set** of vectors \(\{\bar{q}_1, \bar{q}_2, \ldots, \bar{q}_n\} \), \(\bar{q}_i \in \mathbb{C}^m, n \leq m \).

Now, for any vector \(\bar{v} \in \mathbb{C}^m \), the vector

\[
\bar{r} = \bar{v} - \sum_{i=1}^{n} \langle \bar{q}_i, \bar{v} \rangle \bar{q}_i
\]

is orthogonal to \(\{\bar{q}_1, \bar{q}_2, \ldots, \bar{q}_n\} \):

\[
\langle \bar{q}_k, \bar{r} \rangle = \langle \bar{q}_k, \bar{v} \rangle - \sum_{i=1}^{n} \langle \bar{q}_i, \bar{v} \rangle \langle \bar{q}_k, \bar{q}_i \rangle = 0.
\]

\[
\underbrace{\langle \bar{q}_k, \bar{v} \rangle}_{1} \underbrace{\langle \bar{q}_k, \bar{q}_k \rangle}_{1}
\]
We see that by applying this procedure, we have decomposed the vector \vec{v} into $n + 1$ orthogonal components:

$$
\vec{v} = \vec{r} + \sum_{i=1}^{n} \langle \vec{q}_i, \vec{v} \rangle \vec{q}_i
$$

If $\{\vec{q}_i\}$ is a basis for \mathbb{C}^m, then $n = m$ and $\vec{r} = \vec{0}$, i.e.

$$
\vec{v} = \sum_{i=1}^{n} \langle \vec{q}_i, \vec{v} \rangle \vec{q}_i = \sum_{i=1}^{n} (\vec{q}_i^* \vec{v}) \vec{q}_i = \sum_{i=1}^{n} \vec{q}_i (\vec{q}_i^* \vec{v}) = \sum_{i=1}^{n} (\vec{q}_i \vec{q}_i^*) \vec{v}
$$
In the expression $\bar{v} = \sum_{i=1}^{n} (\bar{q}_i^* \bar{v}) \bar{q}_i$, we view \bar{v} as a sum of coefficients (circled) times vectors \bar{q}_i, whereas in the equivalent expression $\bar{v} = \sum_{i=1}^{n} (\bar{q}_i \bar{q}_i^*) \bar{v}$, we view \bar{v} as a sum of orthogonal projections onto the various directions \bar{q}_i.

We will return to the issue of projection matrices of the form $\bar{q}_i \bar{q}_i^*$ in a few lectures.

Peter Blomgren, ⟨blomgren.peter@gmail.com⟩

Orthogonal Vectors, Matrices and Norms — (15/28)
Unitary Matrices

A square matrix $Q \in \mathbb{C}^{m \times m}$ is unitary (in the real case “orthogonal”) if

$$Q^* = Q^{-1} \iff Q^* Q = I$$

In terms of the columns, \bar{q}_i of Q this looks like

$$\begin{bmatrix}
\bar{q}_1^* \\
\bar{q}_2^* \\
\vdots \\
\bar{q}_n^*
\end{bmatrix} \begin{bmatrix}
\bar{q}_1 \\
\bar{q}_2 \\
\cdots \\
\bar{q}_n
\end{bmatrix} = \begin{bmatrix}1 & 1 & \cdots & 1 \end{bmatrix}$$

We have $\bar{q}_i^* \bar{q}_j = \delta_{ij}$, the Kronecker delta, equal to 1 if-and-only-if $i = j$, and 0 otherwise.
Multiplication by a Unitary Matrix

Since the norm of the columns of a unitary matrix is 1, multiplication by a unitary matrix preserves the Euclidean norm in the following sense:

For a unitary Q:

\begin{align*}
(1) \quad \langle Q\bar{x}, Q\bar{y} \rangle &= (Q\bar{x})^*(Q\bar{y}) = \bar{x}^* Q^* Q \bar{y} = \bar{x}^* \bar{y} = \langle \bar{x}, \bar{y} \rangle \\
(2) \quad \| Q\bar{x} \| &= \| \bar{x} \|
\end{align*}

The invariance of inner products mean that angles between vectors are preserved.

In the real case, multiplication by an orthogonal matrix corresponds to a **rigid rotation** (if $\det(Q) = 1$) or a **reflection** (if $\det(Q) = -1$) of the vector space.
Norms give us the essential notion of size and distance in a vector space — these are our tools for measuring the quality of approximations and convergence in our algorithms.

Definition (Norm)

A **norm** is a function $\| \cdot \| : \mathbb{C}^m \rightarrow \mathbb{R}$ that assigns a real-valued (length) to each vector. A norm must satisfy the following three conditions for all vectors $\vec{x}, \vec{y} \in \mathbb{C}^m$, and scalars $\alpha \in \mathbb{C}$,

1. $\| \vec{x} \| \geq 0$, and $\| \vec{x} \| = 0$ only if $\vec{x} = 0$
2. $\| \vec{x} + \vec{y} \| \leq \| \vec{x} \| + \| \vec{y} \|$
3. $\| \alpha \vec{x} \| = |\alpha| \| \vec{x} \|$

(2) is known as the **“triangle inequality.”**
The p-norms (sometimes referred to as the l_p-norms), parametrized by p are defined by

$$\|\bar{x}\|_p = \left[\sum_{i=1}^{m} |x_i|^p \right]^{1/p}$$

As an illustration, the unit sphere $\|\bar{x}\|_p = 1$, $\bar{x} \in \mathbb{R}^2$ is illustrated for some common (and uncommon) p-norms, on the following slides.

The 2-norm is the standard Euclidean length function.

The 1-norm is sometimes referred to as the Manhattan/taxicab-distance.
Some commonly used p-norms

$$
\| \bar{x} \|_1 = \sum_{i=1}^{m} |x_i|, \quad \| \bar{x} \|_2 = \left[\sum_{i=1}^{m} |x_i|^2 \right]^{1/2}, \quad \| \bar{x} \|_\infty = \max_{i=1\ldots m} |x_i|
$$
The p-norms

Some exotic p-norms

\[\|\bar{x}\|_4 = \left(\sum_{i=1}^{m} |x_i|^4 \right)^{1/4}, \quad \|\bar{x}\|_{1/2} = \left(\sum_{i=1}^{m} |x_i|^{1/2} \right)^2, \quad \|\bar{x}\|_{1/4} = \left(\sum_{i=1}^{m} |x_i|^{1/4} \right)^4 \]

∃ Movie.
The **weighted** p-norms $\| \cdot \|_{W,p}$ are derived from the p-norms:

$$\| \bar{x} \|_{W,p} = \| W \bar{x} \|_p$$

where W is e.g. a diagonal matrix, in which the ith diagonal entry is the weight $w_i \neq 0$:

$$\| \bar{x} \|_{W,p} = \left[\sum_{i=1}^{m} |w_i x_i|^p \right]^{1/p}$$
The concept of weighted p-norms can be generalized to arbitrary non-singular weight matrices W.

Figure: Visualization of the unit-sphere for the weighted 1-, 2- and ∞-norms, where $W = \text{diag}(2, 1)$.

Weighted p-norms
Weighted p-norms

Figure: Visualization of the unit-sphere for the weighted 1-, 2- and ∞-norms, where $W = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$.

∃ Movie.
Matrix Norms — Induced by Vector Norms

Given a vector norms $\| \cdot \|_{(m)}$ and $\| \cdot \|_{(n)}$ on the domain and range of $A \in \mathbb{C}^{m \times n}$, the induced matrix norm $\|A\|_{(m,n)}$ is

$$
\|A\|_{(m,n)} = \sup_{\bar{x} \in \mathbb{C}^n - \{0\}} \left[\frac{\|A\bar{x}\|_{(m)}}{\|\bar{x}\|_{(n)}} \right]
$$

In any sane application, both $\| \cdot \|_{(m)}$ and $\| \cdot \|_{(n)}$ will be of the same type, i.e. the p-norms (with the same p).

Due to the linearity of norms — the third norm-condition — it is sufficient to maximize the matrix norm over $\bar{x} \in \mathbb{C}^n : \|\bar{x}\| = 1$...

Most of the time the norms with $p = 2$ are used. Indeed, if nothing else is specified, this is usually implied.
Illustration: Matrix Norms

\[
A = \begin{bmatrix}
1 & 2 \\
1/3 & 2
\end{bmatrix}
\]

\[\|A\|_1 = 4 \quad \|A\|_2 \approx 2.9852 \quad \|A\|_\infty = 3\]
Special Cases: Matrix p-norms

If D is a diagonal matrix, then

$$
\|D\|_p = \max_{1 \leq i \leq m} |d_i|.
$$

The 1-norm of a matrix is the maximal column-abs-sum:

$$
\|A\|_1 = \max_{1 \leq j \leq n} \|\bar{a}_j\|_1
$$

The ∞-norm of a matrix is the maximal row-abs-sum:

$$
\|A\|_\infty = \max_{1 \leq i \leq m} \|\bar{a}^*_i\|_1
$$
Next Time

- Finish up the discussion on norms:
 - Inequalities, General matrix norms, The Frobenius norm,
 Bounds on norms of products of matrices.
- The Singular Value Decomposition (SVD).