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Student Learning Targets, and Objectives SLOs: QR-Factorization Least Squares Problems

Student Learning Targets, and Objectives

Target Gram-Schmidt Orthogonalization

Objective “Classical” vs. Modified
Objective Mathematically Equivalent
Objective Numerically Divergent

Target Quatifying Compuational “Speed”

Objective Computational Complexity

Target Orthogonalization Alternatives

Objective Householder Reflections
Objective (Givens Rotations)
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Recap
Gram-Schmidt

Gram-Schmidt and Householder: Different Views of QR

Projectors: Orthogonal and Non-Orthogonal
Classical Gram-Schmidt

Last Time (Projections; Classical Gram-Schmidt)

Orthogonal and non-orthogonal projectors

P = P2,

[
P = P∗

]
.

Projection with an orthonormal, and arbitrary, basis

P = Q̂Q̂∗, P = A(A∗A)−1A∗.

Rank-one projections, rank-(m − 1) complementary projections

P = ~q~q∗, P⊥ = I − ~q~q∗.

QR-Factorization, using classical Gram-Schmidt orthogonalization.
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Algorithm: Classical Gram-Schmidt ∃ Movies

Algorithm (Classical Gram-Schmidt)

1: for k ∈ {1, . . . , n} do
2: ~vk ← ~ak
3: for i ∈ {1, . . . , k − 1} do
4: rik ← ~q∗i ~ak /* projection */

5: ~vk ← ~vk − rik~qi /* projection */

6: end for
7: rkk ← ‖~vk‖2
8: ~qk ← ~vk/rkk
9: end for

Mathematically, we are done. Numerically, however, we can run
into trouble due to roundoff errors.
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Classical Gram-Schmidt: Revisited  The Modified Gram-Schmidt Method

Let A ∈ C
m×n, m ≥ n, be a full-rank matrix with columns ~ak .

With orthogonal projectors Pk we can express the Gram-Schmidt
orthogonalization using the formulas

~qk =
Pk~ak
‖Pk~ak‖2

, k = 1, . . . , n
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Classical Gram-Schmidt: Revisited  The Modified Gram-Schmidt Method

Let A ∈ C
m×n, m ≥ n, be a full-rank matrix with columns ~ak .

With orthogonal projectors Pk we can express the Gram-Schmidt
orthogonalization using the formulas

~qk =
Pk~ak
‖Pk~ak‖2

, k = 1, . . . , n

The projector Pk must be an (m ×m)-matrix of rank
(m − (k − 1)) which projects the space C

m orthogonally onto the
space orthogonal to span (~q1, . . . , ~qk−1). (P1 = I ).
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Classical Gram-Schmidt: Revisited  The Modified Gram-Schmidt Method

Let A ∈ C
m×n, m ≥ n, be a full-rank matrix with columns ~ak .

With orthogonal projectors Pk we can express the Gram-Schmidt
orthogonalization using the formulas

~qk =
Pk~ak
‖Pk~ak‖2

, k = 1, . . . , n

The projector Pk must be an (m ×m)-matrix of rank
(m − (k − 1)) which projects the space C

m orthogonally onto the
space orthogonal to span (~q1, . . . , ~qk−1). (P1 = I ).

Note: ~qk ∈ span (~a1, . . . , ~ak) and ~qk ⊥ span (~q1, . . . , ~qk−1); there-
fore this description is equivalent to the algorithm on slide 5.
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Classical Gram-Schmidt: Revisited  The Modified Gram-Schmidt Method

Let A ∈ C
m×n, m ≥ n, be a full-rank matrix with columns ~ak .

With orthogonal projectors Pk we can express the Gram-Schmidt
orthogonalization using the formulas

~qk =
Pk~ak
‖Pk~ak‖2

, k = 1, . . . , n

The projector Pk must be an (m ×m)-matrix of rank
(m − (k − 1)) which projects the space C

m orthogonally onto the
space orthogonal to span (~q1, . . . , ~qk−1). (P1 = I ).

Note: ~qk ∈ span (~a1, . . . , ~ak) and ~qk ⊥ span (~q1, . . . , ~qk−1); there-
fore this description is equivalent to the algorithm on slide 5.

We can represent the projector Pk = (I − Q̂k−1Q̂
∗
k−1) where Q̂k−1

is the (m × (k − 1))-matrix [~q1 ~q2 . . . ~qk−1].
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Gram-Schmidt and Householder: Different Views of QR

Bad News for the Classical Version
Improving Gram-Schmidt
I Feel the Need for Speed!!!

A Hard Test Problem Matlab-centric Notation

Let U and V be two randomly selected (80× 80) unitary matrices

[U,∼] = qr(randn(80,80)); [V,∼] = qr(randn(80,80));
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A Hard Test Problem Matlab-centric Notation

Let U and V be two randomly selected (80× 80) unitary matrices

[U,∼] = qr(randn(80,80)); [V,∼] = qr(randn(80,80));

Build a matrix A with singular values 2−1, 2−2, . . . , 2−80:
(condition number — κ(A) = 279 ≈ 1023)

S = diag(2.̂(-1:-1:-80)); A = U * S * V’;
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A Hard Test Problem Matlab-centric Notation

Let U and V be two randomly selected (80× 80) unitary matrices

[U,∼] = qr(randn(80,80)); [V,∼] = qr(randn(80,80));

Build a matrix A with singular values 2−1, 2−2, . . . , 2−80:
(condition number — κ(A) = 279 ≈ 1023)

S = diag(2.̂(-1:-1:-80)); A = U * S * V’;

Finally we compute the QR-factorization using both classical and
modified Gram-Schmidt

[QC,RC] = qr cgs(A);HW#3 [QM,RM] = qr mgs(A);HW#4

Now, the diagonals of RC and RM contain the recovered singular values.

Peter Blomgren 〈blomgren@sdsu.edu〉 7. QR & LSQ: Gram-Schmidt and Householder — (7/38)



Recap
Gram-Schmidt

Gram-Schmidt and Householder: Different Views of QR

Bad News for the Classical Version
Improving Gram-Schmidt
I Feel the Need for Speed!!!

A Hard Test Problem Matlab-centric Notation

Let U and V be two randomly selected (80× 80) unitary matrices

[U,∼] = qr(randn(80,80)); [V,∼] = qr(randn(80,80));

Build a matrix A with singular values 2−1, 2−2, . . . , 2−80:
(condition number — κ(A) = 279 ≈ 1023)

S = diag(2.̂(-1:-1:-80)); A = U * S * V’;

Finally we compute the QR-factorization using both classical and
modified Gram-Schmidt

[QC,RC] = qr cgs(A);HW#3 [QM,RM] = qr mgs(A);HW#4

Now, the diagonals of RC and RM contain the recovered singular values.

Burning Questions: What is the modified Gram-Schmidt method?!?
... and why do we need it?!?
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Classical Gram-Schmidt: The Bad News 1 of 2

Unfortunately, classical Gram-Schmidt is not numerically stable —
in finite precision, the vectors ~qk may lose orthogonality...
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Figure: Comparing Q∗Q (which should be the identity matrix) for classical (left) and mod-
ified (right) Gram-Schmidt on a particularly hard problem where σ1 = 2−1 and σ80 = 2−80.
We see that CGS completely loses orthogonality after 20-some steps; whereas MGS does
not suffer this catastrophic breakdown.
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Classical Gram-Schmidt: The Bad News 2 of 2

Figure: The perfor-
mance of classical
(blue ’o’s) and
modified (red ’x’s)
Gram-Schmidt
on a particularly
hard problem
where σ1 = 1

2
and

σ80 = 1
280 . C-GS

identifies the first ∼
26 singular values
(down to the size
∼ √εmach), whereas
M-CG identifies ∼ 54
singular values (down
to the size ∼ εmach).
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What is “Machine Epsilon,” εmach???

Machine Epsilon is the smallest positive value for which
1.0 + ε > 1.0.

In most (double-precision / 64-bit) computational environments
εmach ∼ 2.22 × 10−16, which means we can compute with AT
MOST 15 significant (base-10) digits.

Algorithm (Find Machine Epsilon)

1: eps = 1.0
2: while (1.0 + eps > 1.0) do
3: eps← eps/2
4: end while
5: eps← eps ∗ 2
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An Improvement: Modified Gram-Schmidt

For each k in classical Gram-Schmidt, we compute one orthogonal
projection of rank (m − (k − 1)):

~vk = Pk~ak .

Modified Gram-Schmidt computes the same — mathematically
equivalent quantity — by a sequence of (k − 1) projections of
rank (m − 1):

P1 = I , Pk = P⊥~qk−1
. . . P⊥~q1

, k > 1,

where
P⊥~qk = I − ~qk~q

∗
k , k > 1,

thus
ṽk = P⊥q̃k−1

. . . P⊥q̃1
ãk.
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Algorithm: Modified Gram-Schmidt

Algorithm (Modified Gram-Schmidt)

1: for k ∈ {1, . . . , n} do
2: ~vk ← ~ak
3: end for
4: for i ∈ {1, . . . , n} do
5: rii ← ‖~vi‖2

6: ~qi ← ~vi/rii
7: for k ∈ {(i + 1), . . . , n} do
8: rik ← ~q∗i ~vk
9: ~vk ← ~vk − rik~qi

10: end for
11: end for

The ordering of the computation
is the key... in step #i , we make
all the remaining columns orthog-
onal to column #i .

In practice, usually we let ~vi over-
write ~ai , in order to save storage.

We can also let ~qi overwrite ~vi to
save additional storage.
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Comparison: Modified/Classical Gram-Schmidt

Algorithm (Modified vs. Classical Gram-Schmidt)

1: for k ∈ {1, . . . , n} do
2: ~vk ← ~ak
3: end for
4: for i ∈ {1, . . . , n} do
5: rii ← ‖~vi‖2

6: ~qi ← ~vi/rii
7: for k ∈ {(i + 1), . . . , n} do
8: rik ← ~q∗

i
~vk

9: ~vk ← ~vk − rik~qi
10: end for
11: end for

1: for k ∈ {1, . . . , n} do
2: ~vk ← ~ak
3: for i ∈ {1, . . . , k − 1} do
4: rik ← ~q∗

i
~ak

5: ~vk ← ~vk − rik~qi
6: end for
7: rkk ← ‖~vk‖2

8: ~qk ← ~vk/rkk
9: end for

Clearly, unexpected subtle differences can have a huge impact on the result.
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Why is ~q∗i ~vk 6= ~q∗i ~ak???

In infinite precision, they are the same:

~vk contains only the part of ~ak ⊥ span (~q1, . . . , ~qk−1), i.e

~ak = ~vk + ~a ‡k , where ~a ‡k ∈ span (~q1, . . . , ~qk−1)

in the sense that:

~q∗i ~ak = ~q∗i (~vk + ~a ‡k ) = ~q∗i ~vk + ~q∗i ~a
‡
k︸︷︷︸

0

= ~q∗i ~vk

However, numerically, throwing out the (infinite-precision) 0 is
better than “mixing in” the numerical errors from the computation
of ~q∗i ~a

‡
k .
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Counting Work: Ancient, Old, and Somewhat Recent Measures

How fast is fast???
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Counting Work: Ancient, Old, and Somewhat Recent Measures

We need some measure of how fast, or slow, an algorithm is...

In ancient times multiplications (an divisions) where a lot slower than
additions (and subtractions) T∗,/ ≫ T+,−; so one would count the
number of multiplications.

Then the chip designers figured out how to make multiplications faster,
so T∗,/ ≈ T+,−, so in the old days one would count all operations.

Last week, processors where so fast that memory accesses dominated
the processing time; in particular cache-misses, so we end up with a
completely different model... (see next slide)

Yesterday, processors suddenly had multiple cores, and hence multiple
memory pathways...

This morning we have to deal with GPUs with tens of thousands of cores,
FPGAs...
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Counting Work: The (Single-Threaded) Memory Access Latency Model

If we have three cache-levels (L1, L2, and L3), some average
hit-rate (and hence miss-rate) for each level and the time it takes
to access that cache-level (the hit-cycle-time), then we end up
with a measure for the average memory access latency per memory
access

T ∼ + (L1 hit rate ∗ L1 hit cycle time)

+ (L1 miss L2 hit rate ∗ L2 hit cycle time)

+ (L2 miss L3 hit rate ∗ L3 hit cycle time)

+ (L3 miss rate ∗ [S]DRAM latency)

If this does not scare you, please get a Ph.D. in algorithm design!

Meanwhile, the rest of us will count “flops”, i.e. floating-point
operations (multiplications and additions)!
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11th Generation Intel Core Cache Structure (Already Outdated)
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See also: https://www.intel.com/content/www/us/en/products/docs/processors/core/core-technical-resources.html
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Recap
Gram-Schmidt

Gram-Schmidt and Householder: Different Views of QR

Bad News for the Classical Version
Improving Gram-Schmidt
I Feel the Need for Speed!!!

Counting Work: Gram-Schmidt Orthogonalization

Theorem (Computational Complexity of Modified Gram-Schmidt)

The modified Gram-Schmidt orthogonalization algorithm requires

∼ 2mn2 flops

to compute the QR-factorization of an (m × n) matrix.

Here we have assumed that complex arithmetic is just as fast as real
arithmetic. This is not true in general.

c1 · c2 = [r1 · r2 − i1 · i2] + i [r1 · i2 + r2 · i1]
c1 + c2 = [r1 + r2] + i [i1 + i2]

Hence, the complex multiplication consists of 4 real multiplications and 2
real additions; and the complex addition consists of 2 real additions.
Also, we need at least double the amount of memory accesses.
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Recap
Gram-Schmidt

Gram-Schmidt and Householder: Different Views of QR

Bad News for the Classical Version
Improving Gram-Schmidt
I Feel the Need for Speed!!!

Counting Flops

The Outer Loop: for i ∈ {1, . . . , n}
The Inner Loop: for k ∈ {(i + 1), . . . , n}

rik is formed by an m-inner product -- requiring m

multiplications and (m − 1) additions

~vk requires m multiplications and m subtractions

End Inner Loop

End Outer Loop

Work ∼
n∑

i=1

n∑

k=i+1

4m ∼
n∑

i=1

4m(n − i)

∼ 4mn2 − 4mn2/2 ∼ 2mn2

Note that to leading order summation is “just like” integration:
n∑

i=0

ip ∼
n(p+1)

(p + 1)
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Recap
Gram-Schmidt

Gram-Schmidt and Householder: Different Views of QR

Bad News for the Classical Version
Improving Gram-Schmidt
I Feel the Need for Speed!!!

Exact Summation Formula For Reference

n∑

i=0

ip =
(n + 1)p+1

p + 1
+

p∑

k=1

Bk

p − k + 1

(
p

k

)
(n + 1)p−k+1,

where Bk are Bernoulli numbers:

Bk(n) =
k∑

ℓ=0

ℓ∑

ν=0

(−1)ν
(
ℓ

v

)
(n + ν)k

ℓ + 1
.
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Recap
Gram-Schmidt

Gram-Schmidt and Householder: Different Views of QR

Gram-Schmidt — Triangular Orthogonalization
Householder — Orthogonal Triangularization
Householder vs. Gram-Schmidt

Gram-Schmidt as Triangular Orthogonalization 1 of 3

Each outer loop in the modified Gram-Schmidt algorithm can be
seen as a right-multiplication by a square upper triangular matrix.

E.g. Iteration#1





| | || | || | || | |
~v1 ~v2 . . . ~vn
| | || | || | || | |









1
r11

− r12
r11

− r13
r11

. . .

1
1

. . .





︸ ︷︷ ︸
R1

=





| | || | || | || | |
~q1 ~v

(2)
2 . . . ~v

(2)
n

| | || | || | || | |





The correct triangular matrix (Rk )  (one additional) orthogonal vector (~qk ).
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Gram-Schmidt as Triangular Orthogonalization 2 of 3

E.g. Iteration#2





| | || | || | || | |
~q1 ~v

(2)
2 . . . ~v

(2)
n

| | || | || | || | |









1
1
r22

− r23
r22

. . .

1

. . .





︸ ︷︷ ︸
R2

=





| | || | || | || | |
~q1 ~q2 . . . ~v

(3)
n

| | || | || | || | |





When we are done we have

AR1R2 . . .Rn︸ ︷︷ ︸
R̂−1

= Q̂ ⇔ A = Q̂R̂

“Bookkeeping” and naming  R̂−1
 R̂ (which is also triangular).
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Gram-Schmidt as Triangular Orthogonalization 3 of 3

This formulation of the QR-factorization shows that we can think
of the modified Gram-Schmidt algorithm as a method of
triangular orthogonalization.

We apply a sequence of triangular operations from the right of the
matrix A in order to reduce it to a matrix Q̂ with orthonormal
columns.

In practice we do not explicitly form the matrices Ri and multiply
them together.

However, this view tells us something about the structure of
modified Gram-Schmidt.

Note: From now on when we say “Gram-Schmidt” we mean the
modified version.
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Final Comment: Gram-Schmidt Orthogonalization

Comment (Advantages and Disadvantages)

“The Gram-Schmidt process is inherently numerically unstable.

While the application of the projections has an appealing geometric

analogy to orthogonalization, the orthogonalization itself is prone

to numerical error. A significant advantage however is the ease

of implementation, which makes this a useful algorithm to use for

prototyping if a pre-built linear algebra library is unavailable.”

— Wikipedia, https://en.wikipedia.org/wiki/QR decomposition#Advantages and disadvantages

Peter Blomgren 〈blomgren@sdsu.edu〉 7. QR & LSQ: Gram-Schmidt and Householder — (25/38)

https://en.wikipedia.org/wiki/QR_decomposition#Advantages_and_disadvantages


Recap
Gram-Schmidt

Gram-Schmidt and Householder: Different Views of QR

Gram-Schmidt — Triangular Orthogonalization
Householder — Orthogonal Triangularization
Householder vs. Gram-Schmidt

Householder Triangularization A More Stable Alternative

Householder triangularization is another way of computing the
QR-factorization:

Gram-Schmidt Householder

Numerically stable(?) Even better stability
Useful for iterative methods Not as useful for iterative methods

“Triangular Orthogonalization” “Orthogonal Triangularization”

AR1R2 . . .Rn = Q̂ Qn . . .Q2Q1A = R

Gram-Schmidt: “Build triangular matrices that create ortogonal vectors”

Householder: “Build orthogonal transformations that create triangular matrices”
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Householder Triangularization By Picture





× × ×
× × ×
× × ×
× × ×
× × ×





︸ ︷︷ ︸
A

Q1→





∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗
0 ∗ ∗
0 ∗ ∗





︸ ︷︷ ︸
Q1A

Q2→





× × ×
∗ ∗
0 ∗
0 ∗
0 ∗





︸ ︷︷ ︸
Q2Q1A

Q3→





× × ×
× ×

∗
0
0





︸ ︷︷ ︸
Q3Q2Q1A

0 represents a new zero.
∗ represents a modified entry.
× represents an unchanged entry.

The Big Question: How do we find the unitary matrices Qk ?!?
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Householder Reflections

The matrices Qk are of the form

Qk =

[
I 0
0 F

]
,

where I is the ((k − 1)× (k − 1)) identity, and F is an
((m − k + 1)× (m − k + 1)) unitary matrix.

The matrix F is responsible for introducing zeros into the kth column.

Let ~x ∈ C
m−k+1 be the last (m − k + 1) entries in the kth column.

~x =




×
×
...
×




F
→ F~x =




±‖~x‖2

0
...
0


 = ±‖~x‖2 ~e1.
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Householder Reflections: A Geometric View

x

−||x||e1 ||x||e1

H(−) H(+)

Figure: We can view the two points ±‖~x‖2~e1 as reflections across
the hyperplanes, H±, orthogonal to ~v± = ±‖~x‖2~e1 − ~x .

Note: ~e1 ∈ Rm is a unit vector (for the appropriate m) in the first coordinate direction.
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Householder Reflections: As Projectors

We now use our knowledge of projectors and note that for any
~y ∈ C

m, the vector P~y defined by

P~y =

[
I −

~v~v∗

~v∗~v

]
~y = ~y − ~v

[
~v∗~y
~v∗~v

]
,

is the orthogonal projection of ~y onto the space H.

However, in order to reflect across the space H we must move the
point twice as far, i.e.

F~y =

[
I − 2

~v~v∗

~v∗~v

]
~y = ~y − 2~v

[
~v∗~y
~v∗~v

]
.
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Householder Reflections: Which One ?!?

In the real case we have two possibilities, i.e.

~v± = ±‖~x‖2~e1 − ~x , ⇒ F± = I − 2
~v±~v

∗
±

~v∗
±~v±

.

Mathematically, both choices give us an algorithm which produces a
triangularization of A. However, from a numerical point of view, the
choice which moves ~x the farthest is optimal.
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Householder Reflections: Which One ?!?

In the real case we have two possibilities, i.e.

~v± = ±‖~x‖2~e1 − ~x , ⇒ F± = I − 2
~v±~v

∗
±

~v∗
±~v±

.

Mathematically, both choices give us an algorithm which produces a
triangularization of A. However, from a numerical point of view, the
choice which moves ~x the farthest is optimal.

If ~x and ‖~x‖2~e1 are too close, then the vector ~v = (‖~x‖2~e1 − ~x) used in
the reflection operation is the difference between two quantities that are
almost the same — catastrophic cancellation may occur.

Therefore, we select

ṽ = −sign(x1)‖x̃‖ẽ1 − x̃
∗

≡ sign(x1)‖x̃‖ẽ1 + x̃.

(*) We can take out the minus sign since ~v always appears “squared” in
the reflector.
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Algorithm: Householder QR-Factorization

Algorithm (Householder QR-Factorization)

1: for k ∈ {1, . . . , n} do
2: ~x ← A(k:m,k)
3: ~vk ← sign(x1)‖~x‖2~e1 + ~x
4: ~vk ← ~vk/‖~vk‖2
5: A(k:m,k:n)← A(k:m,k:n)− 2~vk(~v∗kA(k:m,k:n))
6: end for

A(k:m,k) Denotes the kth thru mth rows, in the kth column of
A — a vector quantity.

A(k:m,k:n) Denotes the kth thru mth rows, in the kth thru nth
columns of A — a matrix quantity.
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Householder-QR: Where is the Q ?!? 1 of 2

At the completion of the Householder QR-factorization, the
modified matrix A contains R (of the full QR-factorization), but Q
is nowhere to be found.

Often, we only need Q implicitly, as in the action of Q on
something. I.e. if we need Q∗~b, we can add the line

~b(k:m)← ~b(k:m)− 2~vk(~v∗k
~b(k:m))

to the loop; or store the generated vectors ~vk , and a posteriori

compute

for k ∈ {1, . . . , n} do
~b(k:m)← ~b(k:m)− 2~vk(~v∗k

~b(k:m))
end for
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Householder-QR: Where is the Q ?!? 2 of 2

If we need Q~x , then we must store the generated vectors ~vk , and
compute

for k ∈ {n, . . . , 1} do
~x(k:m)← ~x(k:m)− 2~vk(~v∗k ~x(k:m))

end for

We can also use this algorithm to explicitly generate Q

Q ← In×n
for k ∈ {n, . . . , 1} do

Q(k:m,k:n)← Q(k:m,k:n)− 2~vk(~v∗kQ(k:m,k:n))
end for
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Comparison: Householder vs. Gram-Schmidt (modified)
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Q-Orthogonality: Householder, Modified-GS, and Classical-GS
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Figure: Entries of Q∗Q for House-
holder (top-left), GSmod (top-right)
and classical (left) Gram-Schmidt.
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Householder-QR: Work mgs: ∼ 2mn2

The dominating work is done in the operation

A(k:m,k:n)← A(k:m,k:n)− 2~vk(~v∗
k A(k:m,k:n))

Each entry in A(k:m,k:n) is “touched” by 4 flops per iteration (2 from
the inner product, 1 scalar multiplication, and 1 subtraction).

The size of the sub-matrix A(k:m,k:n) is ((m− k + 1)× (n− k + 1)), so
we get

n∑

k=1

(m−k+1)(n−k+1) ∼
n∑

k=1

(m−k)(n−k) ∼
n∑

k=1

(
mn + k2 − k(m + n)

)

∼ mn2 +
n3

3
−

n2

2
(m + n) ∼

mn2

2
−

n3

6

Hence, the work of Householder-QR is ∼ 2mn2 −
2n3

3
flops.
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Final Comment: Householder Reflections

Comment (Advantages and Disadvantages)

“The use of Householder transformations is inherently the most sim-

ple of the numerically stable QR decomposition algorithms due to

the use of reflections as the mechanism for producing zeroes in

the R matrix. However, the Householder reflection algorithm is

bandwidth heavy and not parallelizable, as every reflection that

produces a new zero element changes the entirety of both Q and

R matrices.”

— Wikipedia, https://en.wikipedia.org/wiki/QR decomposition#Advantages and disadvantages 2
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