Numerical Matrix Analysis
Lecture Notes #8
The QR-Factorization: — Least Squares Problems

Peter Blomgren,
(blomgren.peter@gmail.com)

Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego, CA 92182-7720
http://terminus.sdsu.edu/

Spring 2016

Previously...

Computing the QR-factorization 3 ways:

Gram-Schmidt Orthogonalization — Modified vs. Classical.
Householder Triangularization

<table>
<thead>
<tr>
<th>Modified Gram-Schmidt</th>
<th>Householder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Useful for iterative methods</td>
<td>Even better stability</td>
</tr>
<tr>
<td>“Triangular Orthogonalization” $AR_1R_2\ldots R_n = \tilde{Q}$</td>
<td>“Orthogonal Triangularization” $Q_n\ldots Q_2Q_1A = R$</td>
</tr>
<tr>
<td>Work $\sim 2mn^2$ flops</td>
<td>Work $\sim 2mn^2 - \frac{2n^3}{3}$ flops</td>
</tr>
</tbody>
</table>

| Note: No Q at this lower cost!!! |

Least Squares

Least squares data/model fitting is used everywhere; — social sciences, engineering, statistics, mathematics,

In our language, the problem is expressed as an **overdetermined system**

$$A\tilde{x} = \tilde{b}, \quad A \in \mathbb{C}^{m \times n}, \quad m \gg n.$$

Since A is “tall and skinny,” we have more equations than unknowns.

The least squares solution is defined by

$$\tilde{x}_{LS} = \arg \min_{\tilde{x} \in \mathbb{C}^n} \| \tilde{b} - A\tilde{x} \|_2^2.$$
Least Squares: Some Language

The quantity $\bar{r} = \bar{b} - A\bar{x}$ is known as the residual, and since our problem is overdetermined, we cannot (in general) hope to find an \bar{x}^* such that $\bar{r}(\bar{x}^*) = 0$.

Minimizing some norm of $\bar{r}(\bar{x})$ is a close second best.

The choice of the 2-norm leads to a problem that is easy to work with, and it is usually the correct choice for statistical reasons — computing the least squares solution yields the Maximum Likelihood estimate (under certain conditions — independent identically distributed variables, etc...)

Example: Polynomial Data-Fitting

```
Figure: Illustrating the least-squares polynomial fit of degrees 1, 2, 3, 6, 12, and 18 to a data-set containing 38 points. The top panel of each figure shows the data-set and the fitted polynomial; the bottom panel shows the residual (as a function of the polynomial degree).
```

Least-Squares: Problem Set-Up

So... How do we achieve this miracle of data fitting? We flip back to lecture #2 and express our system using the Vandermonde matrix

$$A = \begin{bmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^d \\ 1 & x_2 & x_2^2 & \cdots & x_2^d \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_m & x_m^2 & \cdots & x_m^d \end{bmatrix}, \quad \vec{c} = \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ \vdots \\ c_d \end{bmatrix}, \quad \vec{b} = \begin{bmatrix} b_0 \\ b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix},$$

where the fitting polynomial is described using the coefficients \vec{c}

$$p(x) = c_0 + c_1x + c_2x^2 + \cdots + c_dx^d.$$

Given the locations of the points \bar{x}, and a particular set of coefficients \vec{c}, the matrix-vector product $\vec{p} = A\vec{c}$ evaluates the polynomial in those points, i.e. $\vec{p}^T = \{p(x_1), p(x_2), \ldots, p(x_m)\}$.

Least-Squares: Thinking About Projectors

We can think of the least squares problem in as the problem of finding the vector in $\text{range}(A)$ which is closest to \vec{b}.

Since we are measuring using the 2-norm, “closest” $\overset{\text{def}}{=} \text{closest}$ in the sense of Euclidean distance.

We look to minimize the residual, $\bar{r} = \bar{b} - A\bar{x}$.

The minimum residual must be orthogonal to $\text{range}(A)$.
Least Squares: Formal Statement

Theorem (Linear Least Squares)

Let $A \in \mathbb{C}^{m \times n}$ ($m \geq n$), and $\tilde{b} \in \mathbb{C}^m$ be given. A vector $\tilde{x} \in \mathbb{C}^n$ minimizes the residual norm $\|\tilde{r}\|_2 = \|\tilde{b} - A\tilde{x}\|_2$, thereby solving the least squares problem, if and only if $\tilde{r} \perp \text{range}(A)$, that is

$$A^*\tilde{r} = 0,$$

where the orthogonal projector $P \in \mathbb{C}^{m \times m}$ maps \mathbb{C}^m onto $\text{range}(A)$. The $n \times n$ system $A^*A\tilde{x} = A^*\tilde{b}$ (the normal equations), is non-singular if and only if A has full rank \Leftrightarrow The solution \tilde{x}^* is unique if and only if A has full rank.

Language: The Pseudo-Inverse

Hence, if A has full rank, the least squares solution \tilde{x}_{LS} is uniquely determined by

$$\tilde{x}_{LS} = (A^*A)^{-1}A^*\tilde{b}.$$

The matrix

$$A^\dagger \overset{\text{def}}{=} (A^*A)^{-1}A^*$$

is known as the pseudo-inverse of A.

With this notation and language, the least squares problem comes down to computing one or both of

$$\tilde{x} = A^\dagger \tilde{b}, \quad \tilde{y} = P\tilde{b}.$$

We will look at $3 \frac{1}{2}$ algorithms for accomplishing this.

The Moore-Penrose Matrix Inverse

Given $B \in \mathbb{C}^{m \times n}$, the Moore-Penrose generalized matrix inverse is a unique pseudo-inverse B^\dagger, satisfying

(i) $BB^\dagger B = B$

(ii) $B^\dagger BB^\dagger = B^\dagger$

(iii) $(BB^\dagger)^* = BB^\dagger$

(iv) $(B^\dagger B)^* = B^\dagger B$

The Moore-Penrose inverse is often referred to in the literature, so it is a good thing to know what it is...

Take#1 — The Normal Equations

The classical / straight-forward / bone-headed(?) way to solve the least squares problem is to solve the normal equations

$$A^*A\tilde{x} = A^*\tilde{b}.$$

The preferred way of doing this is by computing the Cholesky factorization (details to follow at a later date)

$$A^*A \xrightarrow{\text{Cholesky}} R^*R,$$

where R is an upper triangular matrix.

Hence, the equivalent system

$$R^*R\tilde{x} = A^*\tilde{b}, \quad (A^\dagger = (R^*R)^{-1}A^*),$$

can be solved by a forward and a backward substitution sweep.

Peter Blomgren, ⟨blomgren.peter@gmail.com⟩ Least Squares Problems — (9/18)
If (when) we can compute the reduced SVD

\[A = U \Sigma V^* \]

we can use \(\hat{U} \) to express the projector \(P = \hat{U}\hat{U}^* \), and end up with the linear system of equations

\[\hat{U}\Sigma V^*\hat{x} = \hat{U}\hat{U}^*\hat{b}. \]

and we get \(\hat{x}_{LS} \) by

\[\hat{x}_{LS} = V \hat{\Sigma}^{-1} \hat{U}^*\hat{b}. \]

Here, the pseudo-inverse is

\[A^\dagger = V \hat{\Sigma}^{-1} \hat{U}^*. \]

Take#2 — The SVD

\[\sim 2mn^2 + 11n^3 \] flops

With the reduced QR factorization, the game unfolds like this...

Given \(A = \hat{Q}\hat{R} \), we can project \(\hat{b} \) to the range of \(A \) using \(P = \hat{Q}\hat{Q}^* \), then the system

\[\hat{Q}\hat{R}\hat{x} = \hat{Q}\hat{Q}^*\hat{b}. \]

has a unique solution, given by

\[\hat{x}_{LS} = \hat{R}^{-1}\hat{Q}^*\hat{b}, \quad (A^\dagger = \hat{R}^{-1}\hat{Q}^*). \]

Note that we do not need \(Q \) explicitly, only the action \(Q^*\hat{b} \), which we can get cheaply from the Q-less version of Householder triangularization.

Take#3 — The QR-Factorization

\[\sim 2mn^2 - \frac{2n^3}{3} \] flops

Say we computed \(\hat{R} \) using the Householder Q-less QR-factorization, but “forgot” to compute \(Q^*\hat{b} \), is everything lost?!?

No, we can still compute \(\hat{x}_{LS} \) using the following sequence

\[\hat{x} = R^{-1}R^{-\dagger}(A^\dagger\hat{b}) \]
\[\hat{r} = \hat{b} - \hat{A}\hat{x} \]
\[\hat{e} = R^{-1}R^{-\dagger}(A^\dagger\hat{r}) \]
\[\hat{x} = \hat{x} + \hat{e}. \]

The first step solves the “semi-normal equations"

\[R^*\hat{R}\hat{x} = A^\dagger\hat{b}. \]

The remaining three steps takes one step of iterative refinement to reduce roundoff error.

Algorithms for Least Squares: Comments

<table>
<thead>
<tr>
<th>Method</th>
<th>Work (flops)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Equations</td>
<td>(\sim mn^2 + \frac{n^3}{3})</td>
<td>Fastest, sensitive to roundoff errors. Not recommended.</td>
</tr>
<tr>
<td>QR-Factorization</td>
<td>(\sim 2mn^2 - \frac{2n^3}{3})</td>
<td>Your everyday choice. Can break when (A) is close to rank-deficient.</td>
</tr>
<tr>
<td>SVD</td>
<td>(\sim 2mn^2 + 11n^3)</td>
<td>The Big Hammer™ more stable than the QR approach, but requires more computational work.</td>
</tr>
</tbody>
</table>

Additional Comment: If \(m \gg n \), then the work for QR and SVD are both dominated by the first term, \(2mn^2 \), and the computational cost of the SVD is not excessive. However, when \(m \approx n \) the cost of the SVD is roughly 10 times that of the QR-factorization.
We can now compute (and use) one of the big important tools of numerical linear algebra — the QR-factorization.

Next, we finally(?) formalize the discussion on “numerical stability,” and then we take another look at some of our algorithms in the light of stability considerations.

HW#4 — Exploratory

Implement modified Gram-Schmidt QR-factorization. Work through experiment #1 and #2 in “lecture9” of Trefethen & Bau. Make sure your versions of classical and modified GS can reproduce figure 9.1. Do exercises 9.1(a,b), and 9.2(a,b). For additional (non-mandatory) fun do exercises 9.1(c) and 9.2(c).