Numerical Matrix Analysis

Notes #10 — Conditioning and Stability
Floating Point Arithmetic / Stability

Peter Blomgren
(blomgren@sdsu.edu)

Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center

San Diego State University
San Diego, CA 92182-7720

http://terminus.sdsu.edu/

Spring 2024

(Revised: January 18, 2024) Sax DitcoStaTe

UNIvERSITY

Peter Blomgren (blomgren@sdsu.edu) 10. Floating Point Arithmetic / Stability — (1/25)


http://terminus.sdsu.edu/

Outline

@ Student Learning Targets, and Objectives
@ SLOs: Floating Point Arithmetic & Stability

e Finite Precision
o |EEE Binary Floating Point (from Math 541~")
@ Non-representable Values — a Source of Errors

9 Floating Point Arithmetic
@ “Theorem” and Notation
@ Fundamental Axiom of Floating Point Arithmetic
@ Example

Q@ Stability
@ Introduction: What is the “correct” answer?

@ Accuracy — Absolute and Relative Error
@ Stability, and Backward Stability

Peter Blomgren (blomgren@sdsu.edu) 10. Floating Point Arithmetic / Stability — (2/25)



Student Learning Targets, and Objectives SLOs: Floating Point Arithmetic & Stability

Student Learning Targets, and Objectives

Target Floating Point Arithmetic

Objective Know how to express a floating point unmber using the
IEEE-785-1985 (and successor) standard

Objective Know how to express the limits of the floating point
environment USING €mach-

Target Stability
Objective Know the definitions of absolute and relative error.
Objective Know the formal and informal definitions of stable and
backward stable algorithms.
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Finite Precision IEEE Binary Floating Point (from Math 541R-I-P-)

Non-representable Values — a Source of Errors

Finite Precision A 64-bit real number, double

The Binary Floating Point Arithmetic Standard 754-1985
(IEEE — The Institute for Electrical and Electronics Engineers)
standard specified the following layout for a 64-bit real number:

SC10Cg9 ... C1ComMyg1 Mg ... M1 M

Where
Symbol Bits Description
s 1 The sign bit — O=positive, 1=negative
c 11 The characteristic (exponent)
m 52 The mantissa
10 51
_ k
r= (1214 A), c=Y a2’ F=) gt
n=0 k=0
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Finite Precision IEEE Binary Floating Point (from Math 541R:1-P)

Non-representable Values — a Source of Errors

IEEE-754-1985 Special Signals

In order to be able to represent zero, +00, and NaN (not-a-number),
the following special signals are defined in the IEEE-754-1985 standard:

Type S (1 bit) C (11 bits) M (52 bits)
signaling NaN u 2047 (max)  .Ouuuuu—u (*)
quiet NaN u 2047 (max) .luuuuu—u
negative infinity 1 2047 (max) .000000—0
positive infinity 0 2047 (max) .000000—0
negative zero 1 0 .000000—0
positive zero 0 0 .000000—0

(*) with at least one 1 bit.

From http://www.freesoft.org/CIE/RFC/1832/32.htm

If you think IEEE-754-1985 is too “simple.” There are some interesting additions in the
IEEE 754-2008 revision; e.g. fused-multiply-add (fma) operations.

Some environments (e.g. AVX/AVX2/AVX-512 extensions) combine multiple fma op-
erations into a single step, e.g. performing a four-element dot-product on two 128-bit
SIMD registers ag X by + a1 X b1 + a2 X by + a3 X bz with single cycle throughput. i
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Finite Precision IEEE Binary Floating Point (from Math 541R:1-P)

Non-representable Values — a Source of Errors

Examples: Finite Precision

10 51
m
r= (2B, e=d a2 F=) opt
k=0 k=0

Example #1 — 3.0

0, 10000000000, 100000000000000000000000000000000000000000000000000

1
n=(—1)°.22°-1023, (1 + 2) —1.2. g =30

Example #2 — (The Smallest Positive Real Number)

0,00000000000, 000000000000000000000000000000000000000000000000001

rp = (~1)° - 2071028 (1 1 9=52) ~ 1,113 x 10~3%
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Finite Precision IEEE Binary Floating Point (from Math 541R:1-P)

Non-representable Values — a Source of Errors

Examples: Finite Precision

10 51
— m
r= (72T B(AA), e=D a2 F=) ooy
k=0 k=0

Example #3 — (The Largest Positive Real Number)

0,11111111110,111111111111111111111111111111111111111111111111111

1 1 1 1
(_1)021023(1++++ + )

s 2 2 PN

1
91023 (2 - 252) ~ 1.798 x 103%8

SAN DIEGO STATE
UNIviRSITY
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Finite Precision IEEE Binary Floating Point (from Math 541R-I-P-)

Non-representable Values — a Source of Errors

That's Quite a Range!

In summary, we can represent
{£0, £1.113x1073%  +1.798 x 10°®, Loo, NaN}

and a whole bunch of numbers in

(—1.798x10%% —1.113x1073%)U(1.113x 107398 1.798 x 103%8)

Bottom line: Over- or under-flowing is usually not a problem in
IEEE floating point arithmetic.

The problem in scientific computing is what we cannot represent.
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Finite Precision IEEE Binary Floating Point (from Math 541R'|'P')

Non-representable Values — a Source of Errors

Fun with Matlab... ...Integers

(2% +2) — 2% = 2
(2% +2) — (2%+1) = 2
(253+1) _ 253 -0

253 _ (25371) 1

realmax = 1.7977 - 103%®  realmin = 2.2251 10308
eps = 2.2204 -1071°

The smallest not-exactly-representable integer is
(253 + 1) = 9,007, 199, 254, 740, 993.
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Finite Precision IEEE Binary Floating Point (from Math 541R'|'P')

Non-representable Values — a Source of Errors

Something is Missing — Gaps in the Representation 1of3

There are gaps in the floating-point representation!
Given the representation

000000000000 000000000000000000000000000000000000000000000000001
for the value vy = 271023(1 4 2752),
the next larger floating-point value is

000000000000 000000000000000000000000000000000000000000000000010
i.e. the value vp = 271023(1 4 2-51)

The difference between these two values is 271023 . 2—=52 — »—1075
(N 10—324)-

Any number in the interval (v1, v2) is not representable!
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Finite Precision IEEE Binary Floating Point (from Math 541R'|'P')

Non-representable Values — a Source of Errors

Something is Missing — Gaps in the Representation 2 of 3

A gap of 271975 doesn't seem too bad...

However, the size of the gap depend on the value itself...

Consider r = 3.0
0 10000000000 100000000000000000000000000000000000000000000000000

and the next value

010000000000 100000000000000000000000000000000000000000000000001
Here, the difference is 2 - 2752 = 2751 (~ 10710,

In general, in the interval [27,2"F1] the gap is 27752,

SAN DIEGO STATE
UNIviRSITY
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Finite Precision IEEE Binary Floating Point (from Math 541R'|'P')

Non-representable Values — a Source of Errors

Something is Missing — Gaps in the Representation 30f3

At the other extreme, the difference between

011111111110111111111111111111111111111111111111111111111111110

and the next value

011111111110111111111111111111111111111111111111111111111111111

is 21023 . =52 _ 2971 ~, 1 996 . 10°92.

That's a fairly significant gap!!! (A number large enough to
comfortably count all the particles in the universe...)

See, e.g.
https://physics.stackexchange.com/ ...

questions/47941/dumbed-down-explanation-how-scientists-know-the-number-of-atoms-in-the-universe

SAN DIEGO STATE
UNIviRSITY
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Finite Precision IEEE Binary Floating Point (from Math 541R'|'P')
Non-representable Values — a Source of Errors

The Relative Gap

It makes more sense to factor the exponent out of the discussion
and talk about the relative gap:

Exponent | Gap Relative Gap (Gap/Exponent)
2—1023 2—1075 2—52 ~ 222 % 10—16

21 2751 2752

1023 0971 9—52

Any difference between numbers smaller than the local gap is not
representable, e.g. any number in the interval

1
[3.0, 3.0+ 251)

is represented by the value 3.0.

10. Floating Point Arithmetic / Stability — (13/25)

Peter Blomgren (blomgren@sdsu.edu)



“Theorem” and Notation
Floating Point Arithmetic Fundamental Axiom of Floating Point Arithmetic
Example

The Floating Point “Theorem”

Floating point “numbers” represent intervals!

We let £1(x) denote the floating point representation of x € R.

Let the symbols &, 6, ®, and @ denote the floating-point
operations: addition, subtraction, multiplication, and division.

SAN DIEGO STATE
UNIvERSITY
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“Theorem” and Notation
Floating Point Arithmetic Fundamental Axiom of Floating Point Arithmetic
Example

The Floating Point €,,,.

The relative gap defines ,,,.; and

Vx € R, there exists & with |e| < €., such that £1(x) = x(1 + ¢€).

In 64-bit floating point arithmetic €., ~ 2.22 x 10716,
In matlab, eps returns this value.
In Python, print (np.finfo(float) .eps)

In C, #include <float.h> to define the value of __DBL_EPSILON__
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“Theorem” and Notation
Floating Point Arithmetic Fundamental Axiom of Floating Point Arithmetic
Example

Floating Point Arithmetic

All floating-point operations are performed up to some precision, i.e.

x@y=1fl(x+y), xOy=1fl(x—y),
x®y=1fl(xxy), x@y=1£1l(x/y)

SAN DIEGO STATE
UNIviRSITY
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“Theorem” and Notation
Floating Point Arithmetic Fundamental Axiom of Floating Point Arithmetic
Example

Floating Point Arithmetic

All floating-point operations are performed up to some precision, i.e.

x@y=1fl(x+y), xOy=1fl(x—y),
x®y=1fl(xxy), x@y=1£1l(x/y)

This paired with our definition of €., gives us

Axiom (The Fundamental Axiom of Floating Point Arithmetic)

For an n-bit floating point environment —
For all x,y € Fea (where Fgq is the set of 64-bit floating point numbers),

there exists € with |¢| < €n.cn(Fe4), such that
X@y:(X+y)(1+€), x@y:(x—y)(1+6),
x@y=(xx*xy)(l+e), xoy=(x/y)1+e)
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“Theorem” and Notation
Floating Point Arithmetic Fundamental Axiom of Floating Point Arithmetic
Example

Floating Point Arithmetic

All floating-point operations are performed up to some precision, i.e.

x@y=1fl(x+y), xOy=1fl(x—y),
x®y=1fl(xxy), x@y=1£1l(x/y)

This paired with our definition of €., gives us

Axiom (The Fundamental Axiom of Floating Point Arithmetic)

For an n-bit floating point environment —
For all x,y € Fea (where Fgq is the set of 64-bit floating point numbers),
there exists € with |¢| < €n.cn(Fe4), such that

x@y=(x+ty)l+e), x0y=Hx-y)(l+e),
x®y=(x*y)(l+e¢), x0y=(x/y)(l+e)

That is every operation of floating point arithmetic is exact up to a
relative error of size at most ¢,,,ch.
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“Theorem” and Notation
Floating Point Arithmetic Fundamental Axiom of Floating Point Arithmetic
Example

Example: Floating Point Error Scaled by 1010

Consider the following polynomial on the interval [1.92, 2.08]:

(x-2)°
x% — 18x8 + 144x7 — 672x% 4 2016x> — 4032x* + 5376x> — 4608x> + 2304x — 512

p(x)

p(x) = x*-18x+144x7-672x+2016x°-4032x"+5376x°-4608x°+2304x-512

T T T T T
1k i
0.5 7
ok i
-0.51 7
1k b
15 I I I i I L L L L SAN DikGO STATE
1.92 1.94 1.96 1.98 2 2.02 2.04 2.06 2.08 UNIVERSITY
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Introduction: What is the “correct” answer?
Accuracy — Absolute and Relative Error
Stability Stability, and Backward Stability

Stability

Nicholas J. Higham

SAN DIEGO STATE
UNIviRSITY
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Introduction: What is the “correct” answer?
Accuracy — Absolute and Relative Error
Stability Stability, and Backward Stability

Stability: Introduction

With the knowledge that “(floating point) errors happen,” we
have to re-define the concept of the “right answer.”

SAN DIEGO STATE
UNIviRSITY
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Introduction: What is the “correct” answer?
Accuracy — Absolute and Relative Error
Stability Stability, and Backward Stability

Stability: Introduction

With the knowledge that “(floating point) errors happen,” we
have to re-define the concept of the “right answer.”

Previously, in the context of conditioning we defined a
mathematical problem as a map

f: X—=Y

where X C C" is the set of data (input), and Y C C™ is the set of
solutions.

SAN DIEGO STATE
UNIviRSITY
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Introduction: What is the “correct” answer?
Accuracy — Absolute and Relative Error
Stability Stability, and Backward Stability

Stability: Introduction

We now define an implementation of an algorithm — on a floating-point
device, where I satisfies the fundamental axiom of floating point
arithmetic — as another map

fiXe—Y

i.e. f(X) € Y is a numerical solution of the problem.

Wiki-History: Pentium FDIV bug (= 1994)

The Pentium FDIV bug was a bug in Intel’s original Pentium FPU. Certain FP division
operations performed with these processors would produce incorrect results. According
to Intel, there were a few missing entries in the lookup table used by the divide
operation algorithm.

Although encountering the flaw was extremely rare in practice (Byte Magazine
estimated that 1 in 9 billion FP divides with random parameters would produce
inaccurate results), both the flaw and Intel’s initial handling of the matter were heavily
criticized. Intel ultimately recalled the defective processors.

v

SAN DIEGO STATE
UNIviRSITY
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Introduction: What is the “correct” answer?
Accuracy — Absolute and Relative Error
Stability Stability, and Backward Stability

Stability: Introduction

—

The task at hand is to make useful statements about f(X)

sa Stae
UNIviRSITY
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Introduction: What is the “correct” answer?
Accuracy — Absolute and Relative Error
Stability Stability, and Backward Stability

Stability: Introduction

—

The task at hand is to make useful statements about f(X)

Even though (x) is affected by many factors — roundoff errors,
convergence tolerances, competing processes on the computer®, etc; we

will be able to make (maybe surprisingly) clear statements about £(X)

SAN DIEGO STATE
UNIviRSITY
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Introduction: What is the “correct” answer?
Accuracy — Absolute and Relative Error
Stability Stability, and Backward Stability

Stability: Introduction

—

The task at hand is to make useful statements about f(X)

Even though (x) is affected by many factors — roundoff errors,
convergence tolerances, competing processes on the computer®, etc; we

will be able to make (maybe surprisingly) clear statements about £(X)

* Note that depending on the memory model, the previous state of a mem-
ory location may affect the result in e.g. the case of cancellation errors:
If we subtract two 16-digit numbers with 13 common leading digits, we
are left with 3 digits of valid information. We tend to view the remain-
ing 13 digits as “random.” But really, there is nothing random about
what happens inside the computer (we hope!) — the “randomness” will
depend on what happened previously...
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Introduction: What is the “correct” answer?
Accuracy — Absolute and Relative Error
Stability Stability, and Backward Stability

Accuracy

The absolute error of a computation is
1(x) = F(R)]

and the relative error is

I1F(x) — F(2)ll
I

this latter quantity will be our standard measure of error.

If 7 is a good algorithm, we expect the relative error to be small, of
the order ¢,,,. We say that f is accurate if VX € X

I (x) = F)I

G

SAN DIEGO STATE
UNIviRSITY
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Introduction: What is the “correct” answer?
Accuracy — Absolute and Relative Error
Stability Stability, and Backward Stability

Interpretation: O(:

Since all floating point errors are functions of &,... (the relative error in
each operation is bounded by &,...;,), the relative error of the algorithm
must be a function of e,,,h:

17 - F _
GI—

The statement

e(smach) = O(Emach)
means that 3C € Rt such that

e(gmach) S CEmach, as Emach \{ 0

In practice €. is fixed; the notation means that if we were to decrease
Emach, then our error would decrease at least proportionally to &mach-

sa Stae
UNIviRSITY
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Introduction: What is the “correct” answer?
Accuracy — Absolute and Relative Error
Stability Stability, and Backward Stability

Stability

If the problem f : X — Y is ill-conditioned, then the accuracy goal
I1F(x) = ()]
T e an . O(Emach)
I
may be unreasonably ambitious. Instead we aim for stability.

We say that f is a stable algorithm if VX € X

IF(R) — FR)I _

IFR)| el

for some X with .
IX =X

i on = O Emac
E

“A stable algorithm gives approximately the right answer, to ap-
proximately the right question.”

Peter Blomgren (blomgren@sdsu.edu)
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Introduction: What is the “correct” answer?
Accuracy — Absolute and Relative Error
Stability Stability, and Backward Stability

Backward Stability

For many algorithms we can tighten this somewhat vague concept of
stability.

An algorithm f is backward stable if VX € X

F(x) = f(X)

for some X with .
IX =Xl

- O(Emach)

BEN

“A backward stable algorithm gives exactly the right answer, to
approximately the right question.”

Next: Examples of stable and unstable algorithms;
Stability of Householder triangularization.
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