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Student Learning Targets, and Objectives SLOs: Floating Point Arithmetic & Stability

Student Learning Targets, and Objectives

Target Floating Point Arithmetic

Objective Know how to express a floating point unmber using the
IEEE-785-1985 (and successor) standard

Objective Know how to express the limits of the floating point
environment using εmach.

Target Stability

Objective Know the definitions of absolute and relative error.
Objective Know the formal and informal definitions of stable and

backward stable algorithms.
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Finite Precision
Floating Point Arithmetic

Stability

IEEE Binary Floating Point (from Math 541R.I.P.)
Non-representable Values — a Source of Errors

Finite Precision A 64-bit real number, double

The Binary Floating Point Arithmetic Standard 754-1985
(IEEE — The Institute for Electrical and Electronics Engineers)
standard specified the following layout for a 64-bit real number:

s c10 c9 . . . c1 c0 m51 m50 . . . m1 m0

Where

Symbol Bits Description

s 1 The sign bit — 0=positive, 1=negative
c 11 The characteristic (exponent)
m 52 The mantissa

r = (−1)s 2c−1023 (1 + f ), c =
10
∑

n=0

cn2n, f =
51
∑

k=0

mk

252−k
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Finite Precision
Floating Point Arithmetic

Stability

IEEE Binary Floating Point (from Math 541R.I.P.)
Non-representable Values — a Source of Errors

IEEE-754-1985 Special Signals

In order to be able to represent zero, ±∞, and NaN (not-a-number),
the following special signals are defined in the IEEE-754-1985 standard:

Type S (1 bit) C (11 bits) M (52 bits)
signaling NaN u 2047 (max) .0uuuuu—u (*)
quiet NaN u 2047 (max) .1uuuuu—u
negative infinity 1 2047 (max) .000000—0
positive infinity 0 2047 (max) .000000—0
negative zero 1 0 .000000—0
positive zero 0 0 .000000—0

(*) with at least one 1 bit.

From http://www.freesoft.org/CIE/RFC/1832/32.htm

If you think IEEE-754-1985 is too “simple.” There are some interesting additions in the
IEEE 754-2008 revision; e.g. fused-multiply-add (fma) operations.

Some environments (e.g. AVX/AVX2/AVX-512 extensions) combine multiple fma op-
erations into a single step, e.g. performing a four-element dot-product on two 128-bit
SIMD registers a0 × b0 + a1 × b1 + a2 × b2 + a3 × b3 with single cycle throughput.
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Floating Point Arithmetic

Stability

IEEE Binary Floating Point (from Math 541R.I.P.)
Non-representable Values — a Source of Errors

Examples: Finite Precision

r = (−1)s 2c−1023 (1 + f ), c =

10
∑

k=0

cn2n, f =

51
∑

k=0

mk

252−k

Example #1 — 3.0

0, 10000000000, 100000000000000000000000000000000000000000000000000

r1 = (−1)0 · 2210
−1023 ·

(

1 +
1

2

)

= 1 · 21 ·
3

2
= 3.0

Example #2 — (The Smallest Positive Real Number)

0, 00000000000, 000000000000000000000000000000000000000000000000001

r2 = (−1)0 · 20−1023 ·
(

1 + 2−52
)

≈ 1.113 × 10−308
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Non-representable Values — a Source of Errors

Examples: Finite Precision

r = (−1)s 2c−1023 (1 + f ), c =
10
∑

k=0

cn2n, f =
51
∑

k=0

mk

252−k

Example #3 — (The Largest Positive Real Number)

0, 11111111110, 111111111111111111111111111111111111111111111111111

r3 = (−1)0 · 21023 ·

(

1 +
1

2
+

1

22
+ · · · +

1

251
+

1

252

)

= 21023 ·

(

2 −
1

252

)

≈ 1.798 × 10308
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Finite Precision
Floating Point Arithmetic

Stability

IEEE Binary Floating Point (from Math 541R.I.P.)
Non-representable Values — a Source of Errors

That’s Quite a Range!

In summary, we can represent

{

± 0, ±1.113 × 10−308, ±1.798 × 10308, ±∞, NaN
}

and a whole bunch of numbers in

(− 1.798×10308, −1.113×10−308)∪(1.113×10−308, 1.798×10308)

Bottom line: Over- or under-flowing is usually not a problem in
IEEE floating point arithmetic.

The problem in scientific computing is what we cannot represent.
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Finite Precision
Floating Point Arithmetic

Stability

IEEE Binary Floating Point (from Math 541R.I.P.)
Non-representable Values — a Source of Errors

Fun with Matlab... ...Integers

(253 + 2) − 253 = 2
(253 + 2) − (253 + 1) = 2
(253 + 1) − 253 = 0

253 − (253 − 1) = 1

realmax = 1.7977 · 10308 realmin = 2.2251 · 10−308

eps = 2.2204 · 10−16

The smallest not-exactly-representable integer is
(253 + 1) = 9, 007, 199, 254, 740, 993.
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Finite Precision
Floating Point Arithmetic

Stability

IEEE Binary Floating Point (from Math 541R.I.P.)
Non-representable Values — a Source of Errors

Something is Missing — Gaps in the Representation 1 of 3

There are gaps in the floating-point representation!

Given the representation

0 00000000000 000000000000000000000000000000000000000000000000001

for the value v1 = 2−1023(1 + 2−52),

the next larger floating-point value is

0 00000000000 000000000000000000000000000000000000000000000000010

i.e. the value v2 = 2−1023(1 + 2−51)

The difference between these two values is 2−1023 · 2−52 = 2−1075

(∼ 10−324).

Any number in the interval (v1, v2) is not representable!
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Finite Precision
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IEEE Binary Floating Point (from Math 541R.I.P.)
Non-representable Values — a Source of Errors

Something is Missing — Gaps in the Representation 2 of 3

A gap of 2−1075 doesn’t seem too bad...

However, the size of the gap depend on the value itself...

Consider r = 3.0

0 10000000000 100000000000000000000000000000000000000000000000000

and the next value

0 10000000000 100000000000000000000000000000000000000000000000001

Here, the difference is 2 · 2−52 = 2−51 (∼ 10−16).

In general, in the interval [2n, 2n+1] the gap is 2n−52.
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Finite Precision
Floating Point Arithmetic

Stability

IEEE Binary Floating Point (from Math 541R.I.P.)
Non-representable Values — a Source of Errors

Something is Missing — Gaps in the Representation 3 of 3

At the other extreme, the difference between

0 11111111110 111111111111111111111111111111111111111111111111110

and the next value

0 11111111110 111111111111111111111111111111111111111111111111111

is 21023 · 2−52 = 2971 ≈ 1.996 · 10292.

That’s a fairly significant gap!!! (A number large enough to
comfortably count all the particles in the universe...)

See, e.g.

https://physics.stackexchange.com/ ...

questions/47941/dumbed-down-explanation-how-scientists-know-the-number-of-atoms-in-the-universe
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Floating Point Arithmetic

Stability

IEEE Binary Floating Point (from Math 541R.I.P.)
Non-representable Values — a Source of Errors

The Relative Gap

It makes more sense to factor the exponent out of the discussion
and talk about the relative gap:

Exponent Gap Relative Gap (Gap/Exponent)

2−1023 2−1075 2−52 ≈ 2.22 × 10−16

21 2−51 2−52

21023 2971 2−52

Any difference between numbers smaller than the local gap is not
representable, e.g. any number in the interval

[

3.0, 3.0 +
1

251

)

is represented by the value 3.0.
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Finite Precision
Floating Point Arithmetic

Stability

“Theorem” and Notation
Fundamental Axiom of Floating Point Arithmetic
Example

The Floating Point “Theorem” εmach

“Theorem”

Floating point “numbers” represent intervals!

Notation

We let fl(x) denote the floating point representation of x ∈ R.

Let the symbols ⊕, ⊖, ⊗, and ⊘ denote the floating-point
operations: addition, subtraction, multiplication, and division.
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Finite Precision
Floating Point Arithmetic

Stability

“Theorem” and Notation
Fundamental Axiom of Floating Point Arithmetic
Example

The Floating Point εmach

The relative gap defines εmach; and

∀x ∈ R, there exists ε with |ε| ≤ εmach, such that fl(x) = x(1 + ε).

In 64-bit floating point arithmetic εmach ≈ 2.22 × 10−16.

In matlab, eps returns this value.

In Python, print(np.finfo(float).eps)

In C, #include <float.h> to define the value of DBL EPSILON
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Finite Precision
Floating Point Arithmetic

Stability

“Theorem” and Notation
Fundamental Axiom of Floating Point Arithmetic
Example

Floating Point Arithmetic εmach

All floating-point operations are performed up to some precision, i.e.

x ⊕ y = fl(x + y), x ⊖ y = fl(x − y),
x ⊗ y = fl(x ∗ y), x ⊘ y = fl(x/y)
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Finite Precision
Floating Point Arithmetic

Stability

“Theorem” and Notation
Fundamental Axiom of Floating Point Arithmetic
Example

Floating Point Arithmetic εmach

All floating-point operations are performed up to some precision, i.e.

x ⊕ y = fl(x + y), x ⊖ y = fl(x − y),
x ⊗ y = fl(x ∗ y), x ⊘ y = fl(x/y)

This paired with our definition of εmach gives us

Axiom (The Fundamental Axiom of Floating Point Arithmetic)

For an n-bit floating point environment —
For all x , y ∈ F64 (where F64 is the set of 64-bit floating point numbers),
there exists ε with |ε| ≤ εmach(F64), such that

x ⊕ y = (x + y)(1 + ε), x ⊖ y = (x − y)(1 + ε),
x ⊗ y = (x ∗ y)(1 + ε), x ⊘ y = (x/y)(1 + ε)
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“Theorem” and Notation
Fundamental Axiom of Floating Point Arithmetic
Example

Floating Point Arithmetic εmach

All floating-point operations are performed up to some precision, i.e.

x ⊕ y = fl(x + y), x ⊖ y = fl(x − y),
x ⊗ y = fl(x ∗ y), x ⊘ y = fl(x/y)

This paired with our definition of εmach gives us

Axiom (The Fundamental Axiom of Floating Point Arithmetic)

For an n-bit floating point environment —
For all x , y ∈ F64 (where F64 is the set of 64-bit floating point numbers),
there exists ε with |ε| ≤ εmach(F64), such that

x ⊕ y = (x + y)(1 + ε), x ⊖ y = (x − y)(1 + ε),
x ⊗ y = (x ∗ y)(1 + ε), x ⊘ y = (x/y)(1 + ε)

That is every operation of floating point arithmetic is exact up to a
relative error of size at most εmach.
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Finite Precision
Floating Point Arithmetic

Stability

“Theorem” and Notation
Fundamental Axiom of Floating Point Arithmetic
Example

Example: Floating Point Error Scaled by 1010

Consider the following polynomial on the interval [1.92, 2.08]:

p(x) = (x − 2)9

= x9 − 18x8 + 144x7 − 672x6 + 2016x5 − 4032x4 + 5376x3 − 4608x2 + 2304x − 512

1.92 1.94 1.96 1.98 2 2.02 2.04 2.06 2.08
−1.5

−1

−0.5

0

0.5

1

1.5

 p(x) = x
9
−18x

8
+144x

7
−672x

6
+2016x

5
−4032x

4
+5376x

3
−4608x

2
+2304x−512

 p(x) as above

 p(x) = (x−2)
9
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Finite Precision
Floating Point Arithmetic

Stability

Introduction: What is the “correct” answer?
Accuracy — Absolute and Relative Error
Stability, and Backward Stability

Stability

680 pages of details...
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Finite Precision
Floating Point Arithmetic

Stability

Introduction: What is the “correct” answer?
Accuracy — Absolute and Relative Error
Stability, and Backward Stability

Stability: Introduction 1 of 3

With the knowledge that “(floating point) errors happen,” we
have to re-define the concept of the “right answer.”
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Finite Precision
Floating Point Arithmetic

Stability

Introduction: What is the “correct” answer?
Accuracy — Absolute and Relative Error
Stability, and Backward Stability

Stability: Introduction 1 of 3

With the knowledge that “(floating point) errors happen,” we
have to re-define the concept of the “right answer.”

Previously, in the context of conditioning we defined a
mathematical problem as a map

f : X 7→ Y

where X ⊆ C
n is the set of data (input), and Y ⊆ C

m is the set of
solutions.

Peter Blomgren 〈blomgren@sdsu.edu〉 10. Floating Point Arithmetic / Stability — (19/25)



Finite Precision
Floating Point Arithmetic

Stability

Introduction: What is the “correct” answer?
Accuracy — Absolute and Relative Error
Stability, and Backward Stability

Stability: Introduction 2 of 3

We now define an implementation of an algorithm — on a floating-point
device, where F satisfies the fundamental axiom of floating point
arithmetic — as another map

f̃ : X 7→ Y

i.e. f̃ (~x) ∈ Y is a numerical solution of the problem.

Wiki-History: Pentium FDIV bug (≈ 1994)

The Pentium FDIV bug was a bug in Intel’s original Pentium FPU. Certain FP division
operations performed with these processors would produce incorrect results. According
to Intel, there were a few missing entries in the lookup table used by the divide
operation algorithm.

Although encountering the flaw was extremely rare in practice (Byte Magazine

estimated that 1 in 9 billion FP divides with random parameters would produce
inaccurate results), both the flaw and Intel’s initial handling of the matter were heavily
criticized. Intel ultimately recalled the defective processors.
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Finite Precision
Floating Point Arithmetic

Stability

Introduction: What is the “correct” answer?
Accuracy — Absolute and Relative Error
Stability, and Backward Stability

Stability: Introduction 3 of 3

The task at hand is to make useful statements about f̃ (~x).
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Finite Precision
Floating Point Arithmetic
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Introduction: What is the “correct” answer?
Accuracy — Absolute and Relative Error
Stability, and Backward Stability

Stability: Introduction 3 of 3

The task at hand is to make useful statements about f̃ (~x).

Even though f̃ (~x) is affected by many factors — roundoff errors,
convergence tolerances, competing processes on the computer∗, etc; we
will be able to make (maybe surprisingly) clear statements about f̃ (~x).
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Introduction: What is the “correct” answer?
Accuracy — Absolute and Relative Error
Stability, and Backward Stability

Stability: Introduction 3 of 3

The task at hand is to make useful statements about f̃ (~x).

Even though f̃ (~x) is affected by many factors — roundoff errors,
convergence tolerances, competing processes on the computer∗, etc; we
will be able to make (maybe surprisingly) clear statements about f̃ (~x).

∗ Note that depending on the memory model, the previous state of a mem-
ory location may affect the result in e.g. the case of cancellation errors:
If we subtract two 16-digit numbers with 13 common leading digits, we
are left with 3 digits of valid information. We tend to view the remain-
ing 13 digits as “random.” But really, there is nothing random about
what happens inside the computer (we hope!) — the “randomness” will
depend on what happened previously...
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Floating Point Arithmetic
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Introduction: What is the “correct” answer?
Accuracy — Absolute and Relative Error
Stability, and Backward Stability

Accuracy

The absolute error of a computation is

‖f̃ (~x) − f (~x)‖

and the relative error is

‖f̃ (~x) − f (~x)‖

‖f (~x)‖

this latter quantity will be our standard measure of error.

If f̃ is a good algorithm, we expect the relative error to be small, of
the order εmach. We say that f̃ is accurate if ∀~x ∈ X

‖f̃ (~x) − f (~x)‖

‖f (~x)‖
= O(εmach)
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Introduction: What is the “correct” answer?
Accuracy — Absolute and Relative Error
Stability, and Backward Stability

Interpretation: O(εmach)

Since all floating point errors are functions of εmach (the relative error in
each operation is bounded by εmach), the relative error of the algorithm
must be a function of εmach:

‖f̃ (~x) − f (~x)‖

‖f (~x)‖
= e(εmach)

The statement
e(εmach) = O(εmach)

means that ∃C ∈ R
+ such that

e(εmach) ≤ Cεmach, as εmach ց 0

In practice εmach is fixed; the notation means that if we were to decrease
εmach, then our error would decrease at least proportionally to εmach.
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Stability

If the problem f : X 7→ Y is ill-conditioned, then the accuracy goal

‖f̃ (~x) − f (~x)‖

‖f (~x)‖
= O(εmach)

may be unreasonably ambitious. Instead we aim for stability.

We say that f̃ is a stable algorithm if ∀~x ∈ X

‖f̃ (~x) − f (~̃x)‖

‖f (~̃x)‖
= O(εmach)

for some ~̃x with
‖~̃x − ~x‖

‖~x‖
= O(εmach)

“A stable algorithm gives approximately the right answer, to ap-
proximately the right question.”
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Backward Stability

For many algorithms we can tighten this somewhat vague concept of
stability.

An algorithm f̃ is backward stable if ∀~x ∈ X

f̃ (~x) = f (~̃x)

for some ~̃x with
‖~̃x − ~x‖

‖~x‖
= O(εmach)

“A backward stable algorithm gives exactly the right answer, to
approximately the right question.”

Next: Examples of stable and unstable algorithms;
Stability of Householder triangularization.
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