Outline

1. Least Squares Problems
 - Recap: Conditioning
 - Recap: Solution Strategies
 - Experiment: Test Problem

2. LSQ + Householder Triangularization
 - Theorem
 - Relative Error
 - Comparison with Gram-Schmidt

3. Conditioning
 - Normal Equations vs. Householder QR?!?
 - The SVD
 - Comments & Rank-Deficient Problems
Least Squares Problems: Stability — (3/22)

Last Time

Theorem (Conditioning of Linear Least Squares Problems)

Let $\bar{b} \in \mathbb{C}^m$ and $A \in \mathbb{C}^{m \times n}$ of full rank be given. The least squares problem, $\min_{\bar{x} \in \mathbb{C}^n} \| \bar{b} - A\bar{x} \|$ has the following 2-norm relative condition numbers describing the sensitivities of $\bar{y} = P\bar{b} \in \text{range}(A)$ and \bar{x} to perturbations in \bar{b} and A:

$$\begin{array}{|c|c|c|}
\hline
\downarrow \text{Input, Output} \rightarrow & \bar{y} & \bar{x} \\
\hline
\bar{b} & \frac{1}{\cos \theta} & \frac{\kappa(A)}{\eta \cos \theta} \\
\hline
A & \frac{\kappa(A)}{\cos \theta} & \kappa(A) + \frac{\kappa(A)^2 \tan \theta}{\eta} \\
\hline
\end{array}$$

$$\kappa(A) = \frac{\sigma_1}{\sigma_n} \in [1, \infty), \quad \cos \theta = \frac{\|\bar{y}\|}{\|\bar{b}\|} \in \left[0, \frac{\pi}{2}\right], \quad \eta = \frac{\|A\| \|\bar{x}\|}{\|A\bar{x}\|} \in [1, \kappa(A))$$
Deconstructing η...

\[
\eta = \frac{\|A\| \|\bar{x}\|}{\|A\bar{x}\|} \in [1, \kappa(A))
\]

Without loss of generality, rescale \bar{x} so that $\|\bar{x}\| = 1$.

Now with $A = U\Sigma V^*$, the extreme cases correspond to

\[
\bar{x} = \bar{v}_1 \implies \eta = \frac{\|A\|}{\|A\bar{v}_1\|} = \frac{\sigma_1}{\sigma_1} = 1,
\]

\[
\bar{x} = \bar{v}_n \implies \eta = \frac{\|A\|}{\|A\bar{v}_n\|} = \frac{\sigma_1}{\sigma_n} = \kappa(A).
\]

So, we get the best conditioning of the Least Squares Problem when the formulation and model conspires such that the final solution aligns with the minor semi-axis of the ellipsoid $A\mathbb{S}^{n-1}$.

Peter Blomgren, ⟨blomgren.peter@gmail.com⟩

Least Squares Problems: Stability — (4/22)
Currently, we have four candidate methods for solving least squares problems:

- **The Normal Equations**

 \[\bar{x} = (A^*A)^{-1}A^*\bar{b} \]

- **Gram-Schmidt Orthogonalization** (QR-factorization)

 \[\bar{x} = R^{-1}(Q^*\bar{b}) \]

- **Householder Triangularization** (QR-factorization)

 \[\bar{x} = R^{-1}(Q^*\bar{b}) \]

- **The Singular Value Decomposition**

 \[\bar{x} = V(\Sigma^{-1}(U^*\bar{b})) \]
Our Test Problem

% The Dimensions of the problem
m = 100;
n = 15;

% The time-vector --- samples in [0,1]
t = (0:(m-1))’ / (m-1);

% Build the matrix A
A = [];
for p = 0:(n-1)
 A = [A t.^p];
end

% Build the right-hand side
b = exp(sin(4*t)) / 2006.787453080206;
Our Test Problem: Visualized

Figure: The rows of the matrix A, the columns of the matrix A, and the vector \bar{b}.
The normalization

```plaintext
% Build the right-hand side
b = exp(sin(4*t)) / 2006.787453080206;
```

Is chosen so that the correct (exact) value of the last component is $x_{15} = 1$.

We are trying to compute the 14th degree polynomial $p_{14}(t)$ which fits $\exp(\sin(4t))$ on the interval $[0, 1]$.

Finding 2006.787453080206 — Using Maple

Some Maple Action...

\begin{verbatim}
with(linalg);
Digits := 512;
m := 100;
n := 15;
f := (i,j) \rightarrow ((i-1)/(m-1))^{(j-1)};
A := Matrix(m,n,f);
g := (i) \rightarrow exp(sin(4*(i-1)/(m-1)));
b := Vector(100,g);
x := leastsqrs(A,b);
evalf(x[15]);
\end{verbatim}

Gives

\[x_{15} = 2006.7874531048518338 \ldots \]

Curious... However, using this value instead didn't change anything significantly in the following slides...
Associated Condition Numbers

We use the best available solution \(x = A\backslash b; \ y = A*x; \) to estimate the dimensionless parameters, and condition numbers

<table>
<thead>
<tr>
<th>(\kappa(A))</th>
<th>(\cos \theta)</th>
<th>(\eta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{cond}(A))</td>
<td>(\frac{\text{norm}(y)}{\text{norm}(b)})</td>
<td>(\frac{\text{norm}(A) \ \text{norm}(x)}{\text{norm}(y)})</td>
</tr>
<tr>
<td>(2.27 \times 10^{10})</td>
<td>(0.999999999999426)</td>
<td>(2.10 \times 10^{5})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\downarrow \text{Input, Output} \rightarrow)</th>
<th>(\bar{y})</th>
<th>(\bar{x})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\bar{b})</td>
<td>1.00</td>
<td>(1.08 \times 10^{5})</td>
</tr>
<tr>
<td>(A)</td>
<td>(2.27 \times 10^{10})</td>
<td>(3.10 \times 10^{10})</td>
</tr>
</tbody>
</table>

Bottom Line: If we get 6 correct digits (error \(\sim 10^{-6} \)) in matlab (\(\epsilon_{\text{mach}} \sim 10^{-16} \)) then we are doing as well as we can.
We have three ways of solving the least squares problem using Householder Triangularization:

1. In the first approach, we explicitly form and use the matrix Q.
2. In the second approach, we extract the “action” $Q^*\bar{b}$, by adding \bar{b} as an additional column in A, and then identifying the appropriate components of the computed \tilde{R} as R and $Q^*\bar{b}$.
3. In the third approach, we rely on matlab’s implementation... It uses Householder triangularization with column pivoting, for maximal accuracy.
Householder Triangularization: Errors

The approaches described above gives us the following errors

\[e_1 = 3.16387 \times 10^{-7}, \ e_2 = 3.16371 \times 10^{-7}, \ e_3 = 2.18674 \times 10^{-7} \]

Implicitly forming \(Q^*\tilde{b} \) improves the result marginally, which means that the errors introduced in the explicit formation of \(Q^*\tilde{b} \) are small compared to the errors introduced by the QR-factorization itself.

The Matlab solver, which includes all the bells and whistles, improves the result a little more;

All three variants are backward stable.
Least Squares Problems: Stability — (13/22)

Householder Triangularization: Theorem

Theorem

Let the full-rank least square problem be solved by Householder triangularization in a floating-point environment satisfying the floating point axioms. This algorithm is backward stable in the sense that the computed solution \(\tilde{x} \) has the property

\[
\| (A + \delta A) \tilde{x} - \bar{b} \| = \min, \quad \frac{\| \delta A \|}{\| A \|} = O(\epsilon_{mach})
\]

for some \(\delta A \in \mathbb{C}^{m\times n} \). This is true whether \(\hat{Q}^* \bar{b} \) is formed explicitly or implicitly. Further, the theorem is true for Householder triangularization with arbitrary column pivoting.
Householder Triangularization: Relative Error

Figure: The relative error \((p(x) - b(x))/b(x)\) on the interval \([0, 1]\).
We have two ways of solving the least squares problem using modified Gram-Schmidt orthogonalization:

\[
\begin{align*}
\text{[Q,R]} &= \text{qr.mgs}(A); \\
x &= R \backslash (Q'\ast b); \\
e_4 &= \text{abs}(x(15)-1);
\end{align*}
\]

\[
\begin{align*}
\text{[Q,R]} &= \text{qr.mgs}([A \ b]); \\
Qb &= R(1:n,n+1); \\
R &= R(1:n,1:n); \\
x &= R \backslash Qb; \\
e_5 &= \text{abs}(x(15)-1);
\end{align*}
\]

- The explicit formation of \(Q \) in the first approach suffers from forward errors, and the result is quite disastrous:
 \(e_4 = 0.03024 \)

- If instead we form \(Q'\ast \bar{b} \) implicitly (the second approach), the result is much better:
 \(e_5 = 2.4854 \times 10^{-8} \)
The fact that $e_5 < e_{1,2,3}$ in this example is not an indication of anything in particular — it is just luck.

The following is a provable result:

Theorem

The solution of the full-rank least squares problem by modified Gram-Schmidt orthogonalization is also backward stable, provided that $Q^*\bar{b}$ is formed implicitly, as indicated on the previous slide.
Even though the condition number for the least squares problem is

\[\kappa(A) + \frac{\kappa(A)^2 \tan \theta}{\eta} \]

we have successfully found the solution with \(\sim 6 \) correct digits.

It may seem like it would be OK to find the solution via the **normal equations**

\[\tilde{x} = (A^* A)^{-1} (A^* \tilde{b}) \]

since

\[\kappa(A^* A) \sim \kappa(A) \kappa(A^*) \sim \kappa(A)^2 \]

However, if we try this (\(x = (A'*A)\backslash(A'*b); \)) in matlab, we get

```
Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate. RCOND = 1.512821e-19.
```

and \(|\tilde{x}_{15} - x_{15}| = 1.678 \).
Normal Equations: What Happened?!?

Even though the worst-case conditioning for the least squares problem is \(\kappa(A)^2 \), that is almost never realized.

In our test problem

\[
\tan \theta \sim 3 \times 10^{-6}, \quad \eta \sim 2 \times 10^5
\]

so, whereas

\[
\kappa(A)^2 = 5.16 \times 10^{20}, \quad \frac{\kappa(A)^2 \tan \theta}{\eta} = 3.10 \times 10^{10}
\]

But for \(A^* A \) there are no mitigating factors, and

\[
\kappa(A^* A) = 2.0 \times 10^{18} \quad \text{underestimate?}
\]

so

\[
\kappa(A^* A) \cdot \epsilon_{\text{mach}} = 4.4 \times 10^2
\]
Theorem

The solution of the full-rank least squares problem via the normal equations is **unstable**. Stability can be achieved, however, by restriction to a class of problems in which $\kappa(A)$ is uniformly bounded above or $\tan \theta$ is uniformly bounded below.

Bottom Line: The normal equations only work for “easy” least squares problems.
The Singular Value Decomposition

\[
[U, S, V] = \text{svd}(A, 0);
\]
\[
x = V \cdot (S \setminus (U^*b));
\]
\[
e_6 = |x(15) - 1|
\]

Solving the least squares problem using the SVD is the most expensive, but also the most stable method; here we get our error to be of the same order of magnitude as the other stable methods

\[
e_6 = 3.16383 \times 10^{-7}
\]

Theorem

The solution of the full-rank least squares problem by the SVD is backward stable.
At this point we have four working backward stable approaches to solving the full rank least squares problem:

- Householder triangularization
- Householder triangularization with column pivoting
- Modified Gram-Schmidt with implicit $Q^*\bar{b}$ calculation
- The SVD

The differences, in terms of classical norm-wise stability, among these algorithms are minor.

For everyday use, select the simplest one — Householder triangularization — as your default algorithm. If you are working in matlab use $A\backslash\bar{b}$ — Householder triangularization with column pivoting.
Rank-Deficient Least Squares Problems

When \textbf{rank}(A) < n, quite possibly with \(m < n \), the least squares problem is **under-determined**.

No unique solution exists, unless we add additional constraints. Usually, we look for the \textbf{minimum norm} solution \(\bar{x} \); \textit{i.e.} among the solutions we select the one with smallest norm.

The solution depends (strongly) on \textbf{rank}(A), and determining numerical rank is non-trivial. Is \(10^{-14} = 0 \)???

For this class of problems, the only fully stable algorithms are based on the SVD.

Householder triangularization with column pivoting is stable for “almost all” such problems.

Rank-deficient least squares problems are a completely different class of problems, and we sweep all the details under the rug...