Outline

1 Gaussian Elimination
 - Introduction: GE — Something Familiar
 - GE, Backward Substitution, and LU-Factorization
 - Computational Complexity

2 GE: Instabilities, and Improvements
 - Partial Pivoting
 - Scaled Partial Pivoting
 - Complete Pivoting
We look at a familiar algorithm — Gaussian Elimination.

— The “pure” form.
— Connection to LU-factorization.
— Pivoting strategies to improve stability:
 — Scaled Partial Pivoting
 — (Rescaled) Scaled Partial Pivoting
 — Complete Pivoting
The Augmented Matrix $[A \ b]$

Given a matrix A and a column vector \bar{b}

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \quad \bar{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

We can define the augmented matrix

$$[A \ b] = \begin{bmatrix} a_{11} & a_{12} & a_{13} & b_1 \\ a_{21} & a_{22} & a_{23} & b_2 \\ a_{31} & a_{32} & a_{33} & b_3 \end{bmatrix}$$

We are going to operate on this augmented matrix using 3 basic operations...
Three Basic Operations on the Linear System / Augmented Matrix

We use three operations to simplify a linear system:

op#1 **Scaling** — Equation #i (E_i) can be multiplied by any non-zero constant λ with the resulting equation used in place of E_i. We denote this operation $(\lambda E_i) \rightarrow (E_i)$.

op#2 **Scaled Addition** — Equation #j (E_j) can be multiplied by any non-zero constant λ and added to Equation #i (E_i) with the resulting equation used in place of E_i. We denote this operation $(E_i + \lambda E_j) \rightarrow (E_i)$.

op#3 **Reordering** — Equation #j (E_j) and Equation #i (E_i) can be transposed in order. We denote this operation $(E_i) \leftrightarrow (E_j)$.

The goal is to apply a sequence of the operations on the augmented matrix

\[
[A \ b] = \begin{bmatrix}
 a_{11} & a_{12} & a_{13} & b_1 \\
 a_{21} & a_{22} & a_{23} & b_2 \\
 a_{31} & a_{32} & a_{33} & b_3
\end{bmatrix},
\]

in order to transform it into the upper triangular form

\[
\begin{bmatrix}
 ą_{11} & ą_{12} & ą_{13} & ąb_1 \\
 0 & ą_{22} & ą_{23} & ąb_2 \\
 0 & 0 & ą_{33} & ąb_3
\end{bmatrix}.
\]

From this form we use backward substitution to get the solution:

\[
x_3 = ąb_3/ą_{33}, \quad x_2 = (ąb_2 - ą_{23}x_3)/ą_{22},
\]

\[
x_1 = (ąb_1 - ą_{12}x_2 - ą_{13}x_3)/ą_{11}.
\]
Given an augmented matrix

\[C = [A \ b] = \begin{bmatrix}
 a_{11} & a_{12} & a_{13} & \ldots & a_{1m} & b_1 \\
 a_{21} & a_{22} & a_{23} & \ldots & a_{2m} & b_2 \\
 a_{31} & a_{32} & a_{33} & \ldots & a_{3m} & b_3 \\
 \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
 a_{m1} & a_{m2} & a_{m3} & \ldots & a_{mm} & b_m
\end{bmatrix} \]

We first make all the sub-diagonal entries in the first column zero:

for j=2:m [Eliminate the first column]
\[
 l_{j1} = -c_{j1}/c_{11} \\
 (l_{j1}r_1 + r_j) \rightarrow (r_j) \quad [r_j \text{ denotes elements in the } j\text{th row}]
\]
end
The pattern is clear... For a full implementation we eliminate all the sub-diagonal elements in columns $1-(m-1)$:

for $i=1:(m-1)$
 for $j=(i+1):m$ [Eliminate the ith column]
 $l_{ji} = -c_{ji}/c_{ii}$
 $(l_{ji}r_i + r_j) \rightarrow (r_j)$ [r_j -- elements in the jth row]
 end
end
After the elimination step, we have the following scenario — the augmented matrix is now upper triangular; we identify the upper triangular part U, and the modified right-hand-side \tilde{b}, and collect the multipliers in matrices M_j

\[
\tilde{c} = [U \tilde{b}] = \begin{bmatrix}
u_{11} & u_{12} & u_{13} & \cdots & u_{1m} & \tilde{b}_1 \\
u_{22} & u_{23} & \cdots & u_{2m} & \tilde{b}_2 \\
u_{33} & \cdots & u_{3m} & \tilde{b}_3 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
u_{mm} & \cdots & \cdots & \cdots & \tilde{b}_m
\end{bmatrix}, \quad M_1 = \begin{bmatrix}1 & 1 \\
l_{21} & 0 & 1 \\
l_{31} & 0 & \ddots & \ddots \\
l_{m1} & 0 & \cdots & 0 & 1
\end{bmatrix}
\]

We have the relation

\[
M_{m-1} \cdot M_{m-2} \cdots M_1 \cdot C = M \cdot C = M \cdot [A | \tilde{b}] = [U | \tilde{b}] = \tilde{C}
\]
Now, if we are looking for the solution to \(A\vec{x} = \vec{b} \), we simply apply backward substitution to the \([U \mid \tilde{b}]\) system.

If we define \(L = M^{-1} \); — think of it as inverting (undoing) the triangularization of \(A \)

\[
L = M_1^{-1}M_2^{-1}\cdots M_{m-1}^{-1} = \begin{bmatrix}
1 \\
-l_{21} & 1 \\
-l_{31} & -l_{32} & 1 \\
\vdots & \vdots & \ddots & \ddots \\
-l_{m1} & -l_{m2} & \cdots & -l_{m,m-1} & 1
\end{bmatrix}
\]

Then we have the **LU-Factorization** of \(A \)

\[
A = LU.
\]
We can view the entire GE-algorithm as a sequence of matrix multiplications:

\[
M_{m-1}M_{m-2} \cdots M_2 M_1 \ A = U
\]

and it follows that we can write

\[
A = M^{-1} U = [M_1]^{-1}[M_2]^{-1} \cdots [M_{m-2}]^{-1}[M_{m-1}]^{-1} U
\]

The multiplication by the matrices \([M_j]\) correspond to scaled row-addition; the inverse operation is scaled row-subtraction, hence

\[
[M_j]^{-1} = \begin{bmatrix}
1 \\
\vdots \\
-1_{j+1,j} & 1 \\
\vdots \\
-1_{m,j} & \cdot & \cdot & \cdot & 1
\end{bmatrix}
\]

We must check this!
Checking the Inverses of M_j

$$[M_j]^{-1}[M_j] = \begin{bmatrix} 1 & \cdots & -l_{j+1,j} & 1 \\ \vdots & \ddots & \vdots & \vdots \\ -l_{m,j} & \cdots & 1 \\ 1 & \cdots & l_{j+1,j} & 1 \end{bmatrix} \begin{bmatrix} 1 & \cdots & -l_{j+1,j} & 1 \\ \vdots & \ddots & \vdots & \vdots \\ -l_{m,j} & \cdots & 1 \\ 1 & \cdots & l_{j+1,j} & 1 \end{bmatrix}$$

When we perform the matrix-matrix multiplication, the sub-diagonal elements of $[M_j]^{-1}$ (in column j, row $k \geq j$) will multiply elements in row j (column k) of $[M_j]$ (only the 1 on the diagonal). When that happens, the diagonal $k-k$ element of $[M_j]^{-1}$ will multiply the $k-j$-element of $[M_j]$, and we get

$$\text{Product}(k,j) = -l_{k,j} \cdot 1 + 1 \cdot l_{k,j} = 0, \quad k > j$$

All other off-diagonal elements are formed by (something) multiplying zero.

In summary, the only non-zeros elements in the product are the diagonal elements, which are all 1.

In the same way $[M_j][M_j]^{-1} = I_n$, hence the matrix we denoted $[M_j]^{-1}$ really is the inverse of $[M_j]$.

Peter Blomgren, ⟨blomgren.peter@gmail.com⟩

GE / LU-Factorization with Pivoting — (12/29)
We now have expression for all the $[M_j]^{-1}$-matrices in the product $M^{-1} = [M_1]^{-1}[M_2]^{-1} \cdots [M_{m-2}]^{-1}[M_{m-1}]^{-1}$. Consider $[M_1]^{-1}[M_2]^{-1}$:

$$
\begin{bmatrix}
1 & 1 \\
-l_{2,1} & 1 \\
-l_{3,1} & 1 \\
\vdots & \vdots \\
-l_{m,1} & 1 \\
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
-l_{3,2} & 1 \\
\vdots & \vdots \\
-l_{m,2} & 1 \\
\end{bmatrix} =
\begin{bmatrix}
1 & 1 \\
-l_{2,1} & 1 \\
-l_{3,1} & -l_{3,2} & 1 \\
\vdots & \vdots & \vdots \\
-l_{m,1} & -l_{m,2} & \cdots & -l_{m,m-1} & 1 \\
\end{bmatrix}
$$

The argument can be extended to the entire product to show that

$$
L = M^{-1} =
\begin{bmatrix}
1 & 1 \\
-l_{2,1} & 1 \\
-l_{3,1} & -l_{3,2} & 1 \\
\vdots & \vdots & \vdots & \vdots \\
-l_{m,1} & -l_{m,2} & \cdots & -l_{m,m-1} & 1 \\
\end{bmatrix}
$$

Which is the matrix we build in our LU-factorization core.
Gaussian Elimination: Consider the k^{th} elimination step:

- **M columns**
- **$k-1$ untouched rows/cols**
- **$M-(k-1)$ changed rows/cols**

In this step we need to touch (read from cache/memory, apply addition and/or multiplication) the shaded elements. The work required is directly proportional to the number shaded elements i^2, where $i = (N - (k - 1))$.

Peter Blomgren, ⟨blomgren.peter@gmail.com⟩

GE / LU-Factorization with Pivoting — (14/29)
We have \((N - 1)\) elimination steps where \(k\) runs from 1 to \((N - 1)\), hence \(i\) runs from \(N\) down to 2. The total work is proportional to

\[
\sum_{i=2}^{N} 2i^2 = \frac{N(N + 1)(2N + 1)}{3} - 1 = \mathcal{O} \left(\frac{2N^3}{3} \right).
\]

Solving \(A\tilde{x} = \tilde{b}\) by factorization — work comparison for the factorization step \((m = n)\):
<table>
<thead>
<tr>
<th>Method</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>LU-Factorization</td>
<td>$\frac{2m^3}{3}$</td>
</tr>
<tr>
<td>QR: Householder, “Q-less”</td>
<td>$\frac{4m^3}{3}$</td>
</tr>
<tr>
<td>QR: Gram-Schmidt</td>
<td>$2m^3$</td>
</tr>
<tr>
<td>SVD</td>
<td>$13m^3$</td>
</tr>
</tbody>
</table>

GE+BS: Work Required

Elimination Steps

Peter Blomgren, {blomgren.peter@gmail.com} GE / LU-Factorization with Pivoting — (16/29)
As described, GE/LU is not stable — consider the multipliers in the light of stability and floating-point errors

\[\tilde{l}_{ji} = -c_{ij} \odot c_{ii} = -\frac{c_{ij}}{c_{ii}}(1 + \epsilon), \quad |\epsilon| \leq \epsilon_{\text{mach}} \]

Hence, the absolute errors introduced in the multipliers are

\[\delta l_{ji} \sim \epsilon_{\text{mach}} \left(\frac{c_{ij}}{c_{ii}} \right) \]

and if \(c_{ji} \) is close to zero, then the error may be very large.

We need to fix this...

Clearly, the smaller the multipliers, the smaller the errors...
It is fairly easy to re-arrange the computation so that all multipliers are bounded by 1.

Figure: Illustration of elimination on the kth level. We search for the largest (in magnitude) pivot element in the kth column, among the diagonal + sub-diagonal elements (vertical blue band). Then we interchange the kth row with the row with the maximal pivot (illustrated with two horizontal red bands).

Partial pivoting adds $\frac{m^2}{2}$ comparisons to the algorithm.
Gaussian Elimination with Partial Pivoting

\[C = [A \ \bar{b}] \]

\[L = \text{eye}(m); \ \ P = \text{eye}(m); \]
\[\text{for } i=1:(m-1) \]
\[\quad \text{Cmax} = \max(\text{abs}(C(i:m,i))); \]
\[\quad \text{Cmax_index} = \text{find}(\text{abs}(C(i:m,i)) == \text{Cmax}); \]
\[\quad j = \text{Cmax_index}(1) + (i-1); \]
\[\quad C([j \ i],i:(m+1)) = C([i \ j],i:(m+1)); \]
\[\quad L([j \ i],1:(i-1)) = L([i \ j],1:(i-1)); \]
\[\quad P([j \ i],:) = P([i \ j],:); \]
\[\quad \text{for } j=(i+1):m \]
\[\quad \quad L(j,i) = -C(j,i) / C(i,i); \]
\[\quad \quad C(j,i:(m+1)) = L(j,i)*C(i,i:(m+1)) + C(j,i:(m+1)); \]
\[\text{end} \]
\[\text{end} \]

The algorithm yields

\[PA = LU. \]

It is much more stable than our initial two implementations of Gaussian Elimination, but it is not fail-safe.

Peter Blomgren, ⟨blomgren.peter@gmail.com⟩

GE / LU-Factorization with Pivoting — (19/29)
If we apply GE+PP to a system where the scales of the different equations are significantly different, the algorithm may break down (unnecessarily lose precision) e.g.

\[
\begin{bmatrix}
1 & -2 & 3 \\
1,000,000 & 2,000,000 & 3,000,000 \\
0.000001 & -0.000002 & -0.000003
\end{bmatrix}
\overline{x} =
\begin{bmatrix}
4,000,000 \\
0.000001
\end{bmatrix}
\]

In order to improve stability of GE+PP we must take scale into consideration.

One definition of scale: \(s(i) = \max(\text{abs}(B(i,:))) \), i.e. the scale of row \(\neq i \) equals to the magnitude of the largest element on that row.
We can pre-compute the scales $s(i)$ and make the pivoting decision based on the values of $B(i,i)/s(i)$ and $B(j,i)/s(j)$, $j=(i+1):n$.

```matlab
s = zeros(m,1);
for i=1:m
    s(i) = max(abs(B(i,:)));
end
for i=1:(m-1)
    Bmax = max(abs(B(i:m,i)./s(i:m)));
    Bmax_index = find( abs(B(i:m,i)./s(i:m)) == Bmax ) ;
    j = Bmax_index(1) + (i-1);
    B([j i],i:(m+1)) = B([i j],i:(m+1));
    L([j i],1:(i-1)) = L([i j],1:(i-1));
    for j=(i+1):m
        L(j,i) = -B(j,i) / B(i,i);
        B(j,i:(m+1)) = L(j,i)*B(i,i:(m+1)) + B(j,i:(m+1));
    end
end
```

Peter Blomgren, ⟨blomgren.peter@gmail.com⟩

GE / LU-Factorization with Pivoting — (21/29)
s = zeros(m,1);
for i=1:m
 s(i) = max(abs(B(i,:)));
end
for i=1:(m-1)
 Bmax = max(abs(B(i:m,i)./s(i:m)));
 Bmax_index = find(abs(B(i:m,i)./s(i:m)) == Bmax);
 j = Bmax_index(1) + (i-1);
 B([j i],i:(m+1)) = B([i j],i:(m+1));
 L([j i],1:(i-1)) = L([i j],1:(i-1));
 for j=(i+1):m
 L(j,i) = -B(j,i) / B(i,i);
 B(j,i:(m+1)) = L(j,i)*B(i,i:(m+1)) + B(j,i:(m+1));
 end
end

Note that the scale computation touches every element in the matrix, hence it adds

\[\mathcal{O}(m^2) \] additional operations.

Since this algorithm overall requires \[\mathcal{O}(m^3) \] operations, the overhead of scaled partial pivoting does not add a significant amount of work.
GE+SPP: Wait a Minute! — The Scale Changes

Since we are modifying the rows in each elimination step, it seems likely that the scale of the row change. Should we recompute them???

\[
\begin{align*}
s &= \text{zeros}(m,1); \\
\text{for } i=1:(m-1) \\
&\quad \text{for } k=i:m \\
&\quad \quad s(k) = \text{max}(\text{abs}(B(k,:))); \\
&\quad \text{end} \\
B_{\text{max}} &= \text{max}(\text{abs}(B(i:m,i)./s(i:m)));
\end{align*}
\]

\[\text{Bmax_index } = \text{find}(\text{abs}(B(i:m,i)./s(i:m)) == B_{\text{max}});\]

\[j = \text{Bmax_index}(1) + (i-1);\]

\[B([j \ i],i:(m+1)) = B([i \ j],i:(m+1));\]

\[L([j \ i],1:(i-1)) = L([i \ j],1:(i-1));\]

\[\text{for } j=(i+1):m \\
&\quad m = \text{-}B(j,i) / B(i,i); \\
&\quad B(j,i:(m+1)) = m*B(i,i:(m+1)) + B(j,i:(m+1));
\]

\text{end}
\text{end}

Let’s call this GE+Rescaled-SPP (GE+RSPP). Since we are touching all the remaining elements in the matrix in each iteration, this configuration adds

\[O(m^3) \text{ additional operations,}\]

which is a significant amount of work.
GE with Complete Pivoting

If/when a problem warrants this (GE+RSPP) approach due to high accuracy demands, and we are willing to trade significant time/work for it) **complete pivoting** should be used instead.

```matlab
for i=1:(m-1)
    Bmax = max(max(abs(B(i:m,i:m))));
    [Bmax_r,Bmax_c] = find( abs(B(i:m,i:m)) == Bmax );
    j_r = Bmax_r(1) + (i-1);
    j_c = Bmax_c(1) + (i-1);
    B([j_r i],i:(m+1)) = B([i j_r],i:(m+1));
    L([j_r i],1:(i-1)) = L([i j_r],1:(i-1));
    B(:,[j_c i]) = B(:,[i j_c]);
    for j=(i+1):m
        L(j,i) = -B(j,i) / B(i,i);
        B(j,i:(m+1)) = L(j,i)*B(i,i:(m+1)) + B(j,i:(m+1));
    end
end
```

WARNING!!! — When the columns are interchanged, the unknowns are re-ordered. We have to implement some bookkeeping in order to keep track!
Illustration: Gaussian Elimination with Complete Pivoting

[Left] Illustration of elimination on the kth level. We search for the largest (in magnitude) pivot element in the sub-matrix indicated with blue; the pivot is marked with a black dot.

[Center] We interchange the corresponding rows, to move the pivot to the “active” row.

[Right] We interchange the columns to move the pivot to the “active” A_{kk} pivot location.


```matlab
col_idx = (1:m)';
for i=1:(m-1)
    Bmax = max(max(abs(B(i:m,i:m))));
    [Bmax_r,Bmax_c] = find( abs(B(i:m,i:m)) == Bmax );
    j_r = Bmax_r(1) + (i-1);
    j_c = Bmax_c(1) + (i-1);
    B([j_r i],i:(m+1)) = B([i j_r],i:(m+1));
    B(:,[j_c i]) = B(:,[i j_c]);
    col_idx([j_c i])=col_idx([i j_c]);
    for j=(i+1):m
        L(j,i) = -B(j,i) / B(i,i);
        B(j,i:(m+1)) = L(j,i)*B(i,i:(m+1)) + B(j,i:(m+1));
    end
end
```

After completion, `col_idx(i)` contains the original index of the variable currently called `x(i)`.

After GP+CP, we solve for \bar{x} using standard Backward Substitution, then we use the `col_idx` array to put the solution array back in the correct order:
GP+CP+BS gives us a vector with the order of the x_i’s “scrambled” from the column interchanges. To unscramble:

$I = \text{eye}(n);$
$P = I(:,\text{col_idx});$
$x = P*x;$

and we have solved $A\vec{x} = \vec{b}$ in the most stable way! (In the framework of Gaussian elimination, that is...)
Next Time

- A formal look at stability of Gaussian Elimination.
- Gaussian Elimination for **Hermitian Positive Definite Matrices:**
 - Cholesky Factorization.
Read Trefethen & Bau’s take on Gaussian Elimination and Pivoting, pp.147–162.