Numerical Matrix Analysis

Notes #17 — Systems of Equations
Gaussian Elimination / Cholesky Factorization

Peter Blomgren
⟨blomgren@sdsu.edu⟩

Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego, CA 92182-7720

http://terminus.sdsu.edu/

Spring 2023
(Revised: March 15, 2023)
Outline

1. Gaussian Elimination
 - Last Time...
 - Stability
 - Backward Stability? Practical Stability?

2. Cholesky Factorization
 - Hermitian Positive Definite Matrices
 - $R^* R$-factorization

3. Reference
We quickly reviewed a familiar algorithm — **Gaussian Elimination**.

If we save the multipliers generated by the elimination, we get the **LU-factorization** of A, *i.e.* $A = LU$, where L is lower triangular, and U is upper triangular.

In this initial form, GE/LU is completely useless (unstable), we discussed a couple of fixes, some probably familiar, some new...
In **Partial Pivoting** we rearrange the rows of the matrix A (on the fly) in order to move the largest element in the “active” column to the diagonal entry — this way we can guarantee that the multiplier is bounded by one

$$\tilde{l}_{ji} = a_{ji} \odot a_{ii} = \frac{a_{ji}}{a_{ii}}(1 + \epsilon), \quad |\epsilon| \leq \epsilon_{\text{mach}}, \quad |\delta_{ji}| \leq \epsilon_{\text{mach}} \ell_{ji}$$

We get $PA = LU$
Partial Pivoting is stable “most of the time.” We looked at enhancements taking scale into consideration: **Scaled Partial Pivoting**.

The overall work for GE/LU is $\sim \frac{2m^3}{3}$, and partial pivoting adds $O(m^2)$ operations, which is a small cost.

Sometimes **Complete Pivoting** — rearrangement of both the rows and columns of A is necessary to achieve high accuracy. The cost is significant since the additional work adds $O(m^3)$ operations.

We get $PAQ = LU$
— We look at the stability of Gaussian elimination.

— Gaussian Elimination for **Hermitian Positive Definite Matrices:**

— Cholesky Factorization — The Hermitian (Symmetric) version of LU-factorization.
“Gaussian Elimination with partial pivoting is explosively unstable for certain matrices, yet stable in practice. This apparent paradox has a statistical explanation.”

[Trefethen-\&-Bau, p.163]

The stability analysis of Gaussian Elimination with Partial Pivoting (GE w/PP) is complicated, consider the example $A = LU$

\[
\begin{bmatrix}
10^{-20} & 1 \\
1 & 1
\end{bmatrix}
= \begin{bmatrix}
1 & 0 \\
10^{20} & 1
\end{bmatrix}\begin{bmatrix}
10^{-20} & 1 \\
0 & 1 - 10^{20}
\end{bmatrix}
\]

The likely naively computed \tilde{L} and \tilde{U} are

\[
\begin{bmatrix}
1 & 0 \\
10^{20} & 1
\end{bmatrix}\begin{bmatrix}
10^{-20} & 1 \\
0 & -10^{20}
\end{bmatrix}
= \begin{bmatrix}
10^{-20} & 1 \\
1 & 0
\end{bmatrix} \neq A
\]
This behavior is quite generic — instability in Gaussian Elimination (with or without pivoting) can arise if the factors \tilde{L} or \tilde{U} are large compared with A.

In the previous example we have

$$\|A\|_F = 1.7321, \quad \|\tilde{L}\|_F = 1.0000 \times 10^{20}, \quad \|\tilde{U}\|_F = 1.0000 \times 10^{20}$$

i.e. the computed factors are 20 orders of magnitude larger than the initial matrix — no wonder we run into problems!

The purpose of pivoting — from the point of view of stability/accuracy — is to make sure that \tilde{L} and \tilde{U} are not too large.
Formal Result

Theorem (LU-Factorization without (explicit) Pivoting)

Let the factorization $A = LU$ of a non-singular matrix $A \in \mathbb{C}^{m \times m}$ be computed by Gaussian Elimination without pivoting in a floating point environment satisfying the floating point axioms. If A has an LU-factorization, then for ε_{mach} small enough, the factorization completes successfully in floating point arithmetic (no zero pivots \tilde{a}_{ii} are encountered), and the computed matrices \tilde{L}, and \tilde{U} satisfy

$$\tilde{L}\tilde{U} = A + \delta A, \quad \frac{\|\delta A\|}{\|L\|\|U\|} = O(\varepsilon_{mach})$$

for some $\delta A \in \mathbb{C}^{m \times m}$.

Note that we can make the theorem apply to GE w/Pivoting by applying it to the “pre-pivoted matrix:” $A := PA[Q]$.
Formal Result: Comments

If we just flash by the previous slide, the result look just like all the other backward stability results... **BUT!!!** take a closer look... we have

$$\frac{\|\delta A\|}{\|L\| \|U\|} = \mathcal{O}(\varepsilon_{\text{mach}}).$$

Usually, the results contain something like

$$\frac{\|\delta A\|}{\|A\|} = \mathcal{O}(\varepsilon_{\text{mach}}).$$

There is a **critical difference** here. If $\|L\| \|U\| = \mathcal{O}(\|A\|)$, then the theorem states that GE is backward stable. However (like in our previous example), if $\|L\| \|U\| \gg \mathcal{O}(\|A\|)$, all bets are off!

Peter Blomgren (blomgren@sdsu.edu)
Without pivoting, both \(\|L\| \) and \(\|U\| \) can be unbounded, and GE w/o Pivoting is unstable by any standard.

Consider GE w/PP. By construction \(|\ell_{ij}| \leq 1 \), so that \(\|L\| = \mathcal{O}(1) \) in any norm (this is true for all the pivoting schemes we have discussed). We now focus our attention to \(U \); essentially GE w/PP is backward stable provided \(\|U\| = \mathcal{O}(\|A\|) \).

The following quantity turns out to be very useful:

Definition (Growth Factor)

The **growth factor** of \(A \) (and the algorithm) is defined as the ratio

\[
\rho = \frac{\max_{i,j} |u_{ij}|}{\max_{i,j} |a_{ij}|}
\]
The Growth Factor... and Stability

If $\rho \sim 1$, there is little growth, and the elimination process is stable. When ρ is large, we expect loss of accuracy and/or instability of the algorithm... We make this precise: —

Theorem

Let the factorization $PA = LU$ of a non-singular matrix $A \in \mathbb{C}^{m \times m}$ be computed by GE w/PP in a floating point environment satisfying the floating point axioms. The computed matrices \tilde{P}, \tilde{L}, and \tilde{U} satisfy

$$\tilde{L}\tilde{U} = \tilde{P}A + \delta A,$$

$$\frac{\|\delta A\|}{\|A\|} = O(\rho \varepsilon_{mach})$$

for some $\delta A \in \mathbb{C}^{m \times m}$, where ρ is the growth factor of A. If $|l_{ij}| < 1$ for $i > j$, then $P = \tilde{P}$ for ε_{mach} small enough.
If $\rho = O(1)$ uniformly for all matrices of a given dimension m, then GE w/PP is backward stable; otherwise it is not.

Let the mathematical hair-splitting begin!

Consider the worst-case scenario

$$
\begin{bmatrix}
1 & 1 & 1 \\
-1 & 1 & 1 \\
-1 & -1 & 1 \\
\vdots & \vdots & \vdots \\
-1 & -1 & \cdots & -1 & 1 \\
-1 & -1 & \cdots & -1 & -1 & 1
\end{bmatrix}
=
$$
If $\rho = \mathcal{O}(1)$ uniformly for all matrices of a given dimension m, then GE w/PP is backward stable; otherwise it is not.

Let the mathematical hair-splitting begin!

Consider the worst-case scenario

$$
\begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
-1 & 1 & 1 & 1 & 1 & 1 & 1 \\
-1 & -1 & 1 & 1 & 1 & 1 & 1 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
-1 & -1 & \cdots & -1 & 1 & 1 & 1 \\
-1 & -1 & \cdots & -1 & -1 & 1 & 1 \\
\end{bmatrix}
=
\begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
-1 & -1 & -1 & 1 & 1 & 1 & 1 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
-1 & -1 & \cdots & -1 & -1 & 1 & 1 \\
\end{bmatrix}
\begin{bmatrix}
1 & 1 & 1 \\
2 & 4 \\
\vdots & \vdots \\
2^{m-2} & 2^{m-1} \\
\end{bmatrix}
\begin{bmatrix}
1 & 2 \\
2 & \cdots \\
\vdots & \vdots \\
2^{m-1} & \vdots \\
\end{bmatrix}
$$

Here $\rho = 2^{m-1}$, which is the maximal value ρ can take for GE w/PP.
A growth factor of 2^{m-1} corresponds to a loss of $\sim (m - 1)$ bits of information (Recall: we have at most 52 binary digits in IEEE-754-1985 double precision floating point computations).

According the worst-case estimate we cannot safely operate on matrices of dimension larger than (52×52), and in that case only have one bit of information! This is an intolerable state of affairs for practical computations!!!
On the other hand... We have a uniform bound \(2^{m-1}\) on the growth factor for \((m \times m)\)-matrices, thus according to our previous definitions of backward stability; \textbf{GE w/PP is backward stable.}

Clearly, for practical purposes, this is an absurd conclusion. In this context, let’s put the previous formal definition of backward stability aside; and say that the worst-case scenario indicates that \textbf{GE w/PP can be unstable.}
Now... If GE w/PP is so unstable, why is it so famous and popular?!?

“Despite worst-case examples, GE w/PP is utterly stable in practice. Large factors U like the one in the worst-case scenario never seem to appear in real applications. In 50 years of computing no matrix problems that excite explosive instability are known to have arisen under natural circumstances.”

In “Matrix Computations” by Golub & Van-Loan, the upper bounds for the growth factors for partial and complete pivoting are given as

\[
\rho_{PP} \leq 2^{m-1}, \quad \rho_{CP} \leq 1.8m^{\left(\frac{\ln m}{4}\right)}.
\]
The number of matrices with large growth factors is very small — if we select a random matrix in $\mathbb{C}^{m \times m}$ it turns out that a practical bound on ρ_{PP} is given by \sqrt{m}. This is illustrated below.

Figure: The growth factors for GE w/PP for 500 random matrices ranging in size from (2×2) to (1448×1448). The blue line (left panel) corresponds to the practical bound \sqrt{m}; and the red line (right panel only) corresponds to the worst-case bound for complete pivoting, ρ_{cp}.
Figure: The corresponding values for ρ_{pp} are $\geq \{2, 8, 16, 128, 10^3, 10^4, 10^6, 10^9, 10^{13}, 10^{18}, 10^{26}, 10^{38}, 10^{54}, 10^{76}, 10^{108}, 10^{153}, 10^{217}, 10^{307}, 10^{435}, 10^{616}, 10^{871}, 10^{1232}, 10^{1743}\}$, whereas in this ($m \in \{2, \ldots, 5792\}$) range, $\rho_{cp} < 2.6 \times 10^8$; and $\sqrt{m} \leq 77$.
The bottom line is that GE w/PP works well “almost always.”

It is almost impossible to prove any useful result in this context.

Vigorous hand-waving and numerical recovery of the probability density functions for the growth-factor vs. the matrix size can be used to get indications that the number of matrices with large growth factors is exponentially small in a probabilistic sense.

See e.g. Trefethen-&-Bau pp.166–170, for some discussion.
We now turn our attention to application of Gaussian Elimination / LU-Factorization to a special class of matrices —

Definition (Hermitian Positive Definite)

A \(A \in \mathbb{C}^{m \times m} \) is **Hermitian Positive Definite** if \(A = A^* \), and

\[
\bar{x}^* A \bar{x} > 0, \quad \forall \bar{x} \in \mathbb{C}^m - \{\bar{0}\}.
\]

This type of matrices show up many applications — due to symmetry (reciprocity) in physical systems.

My favorite application is **optimization** [Math 693A], where we constantly build second order models

\[
m_k(\bar{p}) = f(\bar{x}_k) + \bar{p} \nabla f(\bar{x}_k) + \frac{1}{2} \bar{p}^* B_k \bar{p}
\]

where the matrix \(B_k \approx \nabla^2 f(\bar{x}_k) \) is symmetric (Hermitian) positive definite.
Let $A \in \mathbb{C}^{m \times m}$ be HPD.

- $\lambda(A) \in \mathbb{R}^+$.
- Eigenvectors that correspond to distinct eigenvalues of a Hermitian matrix are orthogonal (For general matrixes we only get linear independence).
- $\forall X \in \mathbb{C}^{m \times n}$, $m \geq n$, rank$(X) = n$; X^*AX is also HPD.
- By selecting $X \in \mathbb{C}^{m \times n}$ to be a matrix with a 1 in each column, and zeros everywhere else, we can write any $(n \times n)$ principal sub-matrix of A in the form X^*AX. It follows that every principal sub-matrix of A must be HPD, and in particular $a_{ii} \in \mathbb{R}^+$.

Peter Blomgren (blomgren@sdsu.edu)
We now turn to the main task at hand — decomposing a HPD matrix into triangular factors, $R^* R$...

We assume that A is an HPD matrix, and write it in the form

$$
\begin{bmatrix}
\alpha & \vec{w}^* \\
\vec{w} & B
\end{bmatrix} =
\begin{bmatrix}
\beta & 0^* \\
\vec{w}/\beta & I(n-1)
\end{bmatrix}
\begin{bmatrix}
1 & 0^* \\
0 & B - \vec{w}\vec{w}^*/\alpha
\end{bmatrix}
\begin{bmatrix}
\beta & \vec{w}^*/\beta \\
0 & I(n-1)
\end{bmatrix}
$$

Where

$$
\beta = \sqrt{\alpha}, \quad 0^* \text{ is the zero-vector, } \quad (B - \vec{w}\vec{w}^*/\alpha) \equiv (B - \vec{w}\vec{w}^*)/\alpha,
$$

$I(n-1)$ is the $(n-1) \times (n-1)$-identity matrix

Before moving forward, we check the matrix identity...
We have

\[
\begin{bmatrix}
\beta & 0^* \\
\vec{w}/\beta & \text{I}(n-1)
\end{bmatrix}
\begin{bmatrix}
1 & 0^* \\
0 & \text{B} - \vec{w}\vec{w}' / \alpha
\end{bmatrix}
\begin{bmatrix}
\beta & \vec{w}^* / \beta \\
0 & \text{I}(n-1)
\end{bmatrix}
\]

Multiplying the first two matrices, and then third together gives

\[
\begin{bmatrix}
\beta & 0^* \\
\vec{w}/\beta & \text{B} - \vec{w}\vec{w}' / \alpha
\end{bmatrix}
\begin{bmatrix}
\beta & \vec{w}^* / \beta \\
0 & \text{I}(n-1)
\end{bmatrix}
\]

\[
= \begin{bmatrix}
\alpha & \vec{w}^* \\
\vec{w} & \text{B}
\end{bmatrix}
\]

as desired.
It can be shown (see slides 31–32) that the sub-matrix \((B - \vec{w}\vec{w}^*/\alpha)\) is also HPD.

We can now define the Cholesky Factorization recursively:

\[
R^{(n)} = \begin{bmatrix}
\beta & \vec{w}^*/\beta \\
\vec{0} & R^{(n-1)}
\end{bmatrix}
\]

Where \(R^{(n-1)} = R^{(n-1)}\) is the Cholesky factor \(R\) associated with \((B - \vec{w}\vec{w}^*/\alpha)\), i.e. \([R^{(n-1)}]^*[R^{(n-1)}] = (B - \vec{w}\vec{w}^*/\alpha)\).

A note on the implementation (next slide): Since we only need to compute one of the triangular parts (it's Hermitian, remember?!?) of the factorization, the Cholesky factorization uses about 1/2 the operations of a general \(LU\)-factorization.
% Cholesky Factorization of an m-by-m matrix A
for i = 1:m
 %
 % compute \vec{w}^* / β
 %
 A(i, i) = sqrt(A(i, i));
 A(i, (i+1):m) = A(i, (i+1):m) / A(i, i);
 %
 % compute the upper triangular part of $B - \vec{w}\vec{w}^*/\alpha$
 %
 for j = (i+1):m
 A(j, j:m) = A(j, j:m) - A(i, j:m) * A(i, j)';
 end
 %
 % We zero out the sub-diagonal elements, since
 % the answer is an upper triangular matrix.
 %
 A((i+1):m, i) = zeros(m-i, 1);
end
Cholesky Factorization: Existence, Uniqueness, and Work

Theorem

Every HPD matrix \(A \in \mathbb{C}^{m \times m} \) has a unique Cholesky factorization.

The existence follows from the argument on slides 31–32, and uniqueness from the algorithm. □

Compared with standard Gaussian elimination / LU-factorization we are saving about half the operations since we only form the upper triangular part \(R \)

<table>
<thead>
<tr>
<th>Method</th>
<th>Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cholesky (R^ R) Factorization*</td>
<td>(\frac{m^3}{3})</td>
</tr>
<tr>
<td>LU-Factorization</td>
<td>(\frac{2m^3}{3})</td>
</tr>
<tr>
<td>QR: Householder</td>
<td>(\frac{4m^3}{3})</td>
</tr>
<tr>
<td>QR: Gram-Schmidt</td>
<td>(2m^3)</td>
</tr>
<tr>
<td>SVD</td>
<td>(13m^3)</td>
</tr>
</tbody>
</table>
Cholesky Factorization: Stability

Usually when we see this table

<table>
<thead>
<tr>
<th>Method</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cholesky R^*R Factorization</td>
<td>$\frac{m^3}{3}$</td>
</tr>
<tr>
<td>LU-Factorization</td>
<td>$\frac{2m^3}{3}$</td>
</tr>
<tr>
<td>QR: Householder</td>
<td>$\frac{4m^3}{3}$</td>
</tr>
<tr>
<td>QR: Gram-Schmidt</td>
<td>$2m^3$</td>
</tr>
<tr>
<td>SVD</td>
<td>$13m^3$</td>
</tr>
</tbody>
</table>

we note that with increased cost comes increased stability. The Cholesky factorization is the one pleasant exception!

All the subtle things that can go wrong in general LU-factorization (Gaussian elimination) are safe in the Cholesky factorization context!

Cholesky factorization is always backward stable! (For HPD matrices, that is.)
In the 2-norm we have \(\|R\| = \|R^*\| = \sqrt{\|A\|} \), thus the growth factor cannot be large. We also note that we can safely compute the Cholesky factorization **without pivoting**.

Theorem

Let \(A \in \mathbb{C}^{m \times m} \) be HPD, and let \(R^* R = A \) be computed using the Cholesky factorization algorithm in a floating point environment satisfying the floating point axioms. For sufficiently small \(\varepsilon_{\text{mach}} \), this process is guaranteed to run to completion (no zero or negative entries \(r_{kk} \) will arise), generating a computed factor \(\tilde{R} \) that satisfies

\[
\tilde{R}^* \tilde{R} = A + \delta A, \quad \frac{\|\delta A\|}{\|A\|} = \mathcal{O}(\varepsilon_{\text{mach}})
\]

for some \(\delta A \in \mathbb{C}^{m \times m} \).
If A is HPD, the standard (best) way to solve $A\vec{x} = \vec{b}$ is by Cholesky decomposition.

Once we have $R^*R\vec{x} = \vec{b}$, we get the solution by solving $R^*\vec{y} = \vec{b}$ (by forward substitution), followed by $R\vec{x} = \vec{y}$ (by backward substitution). Each triangular solve requires $\sim m^2$ operations, so the total work is $\sim \frac{1}{3}m^3$.
We have the following important result

Theorem

The solution of an HPD system \(A\tilde{x} = \tilde{b} \) via Cholesky factorization is backward stable, generating a computed solution \(\tilde{x} \) that satisfies

\[
(A + \Delta A)\tilde{x} = \tilde{b}, \quad \frac{\|\Delta A\|}{\|A\|} = O(\varepsilon_{\text{mach}})
\]

for some \(\Delta A \in \mathbb{C}^{m \times m} \).
One More Comment

If we have a Hermitian matrix $A \in \mathbb{C}^{m \times m}$ the best way to check if it is also Positive Definite is to try to compute the Cholesky factorization.

If A is not HPD, then the Cholesky factorization will break down in the sense that

$$\sqrt{r_{kk}} \quad \text{or, if you want} \quad \sqrt[n]{A(i, i)}$$

will fail (if $r_{kk} < 0$) or the subsequent division by $\sqrt{r_{kk}}$ will fail (if $r_{kk} = 0$).

Usually, in applications (such as optimization) we require A to be sufficiently HPD, meaning that we must have $r_{kk} \geq \delta > 0$ for some δ. Quite possibly $\delta \in \left\{\sqrt{\varepsilon_{\text{mach}}}, \sqrt[3]{\varepsilon_{\text{mach}}}\right\}$.
Use Gaussian Elimination with Partial Pivoting, create plots like TB-Figure-22.1, and TB-Figure-22.2

- For matrices with random, normally distributed \(N(0,1) \) entries:
 6.5.1 Growth factor \(\rho \) for GE w/PP. (TB-Figure-22.1) — Use at least 1,024 matrices with varying sizes (up to at least \(2,048 \times 2,048 \) matrices)
 6.5.2 Probability density of \(\rho \). (TB-Figure-22.2) — Use at least \(1,048,576 \) matrices of each \((m \times m) \) size, \(m \in \{8, 16, 32, 64\} \).

- For matrices with random, uniformly distributed in \([0,1]\) entries:
 6.5.3 Growth factor \(\rho \) for GE w/PP. (variant of TB-Figure-22.1) — Use at least 1,024 matrices with varying size (up to at least \(2,048 \times 2,048 \) matrices)
 6.5.4 Probability density of \(\rho \). (variant of TB-Figure-22.2) — Use at least \(1,048,576 \) matrices of each \((m \times m) \) size, \(m \in \{8, 16, 32, 64\} \).

- 6.5.5 Comment on similarities / differences of normally vs. uniformly distributed matrix entries.

Hint: For computational efficiency, use built-in/library \(LU \)-factorizations with partial pivoting — \(\text{lu}() \) or \(\text{scipy.linalg.lu}() \) — *read the fine documentation.*
If A is HPD, and X is a non-singular matrix, then $B = X^*AX$ is also HPD: since X is non-singular $\bar{x} \neq 0 \Rightarrow X\bar{x} \neq 0$, hence

$$\forall \bar{x} \neq 0, \quad \bar{x}^*B\bar{x} = \bar{x}^*X^*AX\bar{x} = (X\bar{x})^*A(X\bar{x}) > 0$$

Now, with the representation

$$A = \begin{bmatrix} \beta^2 & \bar{w}^* \\ \bar{w} & B \end{bmatrix}$$

We select

$$X = \begin{bmatrix} 1/\beta & -\bar{w}^*/\beta^2 \\ 0 & \text{I}(n-1) \end{bmatrix}, \quad X^* = \begin{bmatrix} 1/\beta & 0* \\ -\bar{w}/\beta^2 & \text{I}(n-1) \end{bmatrix}$$
Now,

\[
X^*AX = \begin{bmatrix}
1/\beta & 0^* \\
-\vec{w}/\beta^2 & I(n-1)
\end{bmatrix} \begin{bmatrix}
\beta^2 & \vec{w}^* \\
\vec{w} & B
\end{bmatrix} \begin{bmatrix}
1/\beta & -\vec{w}^*/\beta^2 \\
0 & I(n-1)
\end{bmatrix}
\]

\[
= \begin{bmatrix}
\beta & \vec{w}^*/\beta \\
0 & B - \vec{w}\vec{w}^*/\alpha
\end{bmatrix} \begin{bmatrix}
1/\beta & -\vec{w}^*/\beta^2 \\
0 & I(n-1)
\end{bmatrix} = \begin{bmatrix}
1/\beta & -\vec{w}^*/\beta^2 \\
0 & I(n-1)
\end{bmatrix}
\]

It now follows from the definition (use \(\vec{x} \neq 0\) such that \(x_1 = 0\)) that \(B - \vec{w}\vec{w}^*/\beta^2\) is also HPD.