Recap: Last Time 1 of 2

We noted that eigenvalue revealing computations are generally divided into 2 phases; in phase 1 we transform the matrix into Hessenberg form in a finite number of steps, and in phase 2 we apply a (possibly infinite) number of transformations to transform the Hessenberg matrix into upper triangular form

\[
\begin{bmatrix}
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & *
\end{bmatrix}
\rightarrow
\begin{bmatrix}
* & + & + & + & + \\
* & * & + & + & + \\
* & * & + & + & + \\
* & * & + & + & + \\
* & * & + & + & +
\end{bmatrix}
\rightarrow
\begin{bmatrix}
* & + & + & + & + \\
* & * & + & + & + \\
* & * & + & + & + \\
* & * & + & + & + \\
* & * & + & + & +
\end{bmatrix}
\]

Where the “+”-entries are zeros if \(A \) is Hermitian.

Phase 1 Can be backwardly stably computed using a slightly modified version of the Householder-QR algorithm (making all the reflectors one element shorter, and applying \(Q_k \) from the left and the right.)

Phase 2 Instead of directly talking about phase 2, we looked at...

- Rayleigh quotient (eigenvalue estimation).
- Power iteration (only useful as a basis for...)
- Inverse iteration (eigenvector estimation).
- Rayleigh quotient iteration (eigenvalue and eigenvector estimation — cubically convergent).

Next, we look at the QR-algorithm, and make some connections with the ideas above.
The QR-Algorithm

The QR-algorithm can be viewed as a stable procedure for computing QR-factorizations of the matrix power A, A^2, A^3, \ldots.

Algorithm (The "Pure" QR-Algorithm)

The "Pure" QR-Algorithm

$A^{(0)} = A$

for $k = 1; \ldots$

$[Q^{(k)}, R^{(k)}] = qr(A^{(k-1)})$

$A^{(k)} = R^{(k)}Q^{(k)}$

endfor

Under suitable (non-restrictive) assumptions, this simple algorithm converges to a Schur form for the matrix A — Upper triangular if A is arbitrary, and diagonal if A is Hermitian.

Before we go any further, let us verify this numerically...

Figure: The QR-algorithm applied to a non-Hermitian matrix A. The panels show the initial matrix, and iterations 1, 4, 16, 32, and 64.

The QR-Algorithm: Applied to $A = A^*$

Just a quick sanity-check... If $QR = A$, then

$$Q^*AQ = Q^*(QR)Q = (Q^*Q)RQ = RQ$$

Hence the matrices that we form are unitarily similar

$$A^{(k)} = Q^{(k)} \cdots Q^{(1)} A^{(0)} Q^{(1)} \cdots Q^{(k)}$$

In fact, this is the idea we had to reject in our effort to compute the Hessenberg form of A. Even though it has to be rejected as a finite-step method for transforming A, it turns out to be quite powerful as the basis of an iterative scheme.

As in the last lecture, in order to keep the discussion simple(r), we assume that $A \in \mathbb{R}^{m \times m}$, and $A = A^*$ so that $\lambda_i(A) \in \mathbb{R}$, and the set of eigenvectors is orthonormal.
The QR-Algorithm: Modifications

Since we will be applying the QR-algorithm to real symmetric matrices, we are looking for the diagonalization $\Lambda(A)$.

Like the Rayleigh quotient algorithm, the QR-algorithm (for real symmetric matrices) can be made to converge cubically. In order to achieve this, we must introduce three modifications

1. Before entering the iteration, A must be reduced to tri-diagonal form (using the “Hessenberg algorithm” (phase-1)).

2. Instead of $A^{(k)}$, the shifted matrix $A^{(k)} - \mu^{(k)}I$ is factored at each step, where $\mu^{(k)}$ is an eigenvalue estimate.

3. Whenever possible, and in particular whenever an eigenvalue is found, the problem is “deflated” by breaking $A^{(k)}$ into sub-matrices.

The Modified QR-Algorithm

Algorithm (Modified QR-Algorithm)

$A^{(0)} = \text{hessenberg_form}(A)$

$\delta = \text{small\ tolerance} \sim \sqrt{\epsilon_{\text{mach}}}$

for $k = 1$:...

 Select $\mu^{(k)}$

 $[Q^{(k)}, R^{(k)}] = qr(A^{(k-1)} - \mu^{(k)}I)$

 $A^{(k)} = R^{(k)}Q^{(k)} + \mu^{(k)}I$

 If any $A^{(k)}_{jj+1} \leq \delta$ then

 Set $A^{(k)}_{j,j+1} = A^{(k)}_{j+1,j} = 0$, so that

 $\begin{bmatrix}
 A_{11} & 0 \\
 0 & A_{22}
 \end{bmatrix} = A^{(k)}$

 recursively apply the QR-algorithm to A_1 and A_2

endfor

Unnormalized Simultaneous Iteration

The Idea: Apply the power iteration to several vectors at once.

Suppose we have a set of linearly independent vectors $\{v_1^{(0)}, \ldots, v_n^{(0)}\}$, then the space spanned by the vectors $\{A^k\overline{v}_1^{(0)}, \ldots, A^k\overline{v}_n^{(0)}\}$ generated by simultaneous power iteration, converges to the space spanned by the n eigenvectors \overline{q}_k corresponding to the n abs-largest eigenvalues $|\lambda_k|$, i.e.

$$\lim_{k \to \infty} \langle A^k\overline{v}_1^{(0)}, \ldots, A^k\overline{v}_n^{(0)} \rangle = (\overline{q}_1, \ldots, \overline{q}_n).$$

In matrix form

$$V^{(0)} = \begin{bmatrix} v_1^{(0)} & \cdots & v_n^{(0)} \end{bmatrix}, \quad V^{(k)} = A^kV^{(0)} = \begin{bmatrix} v_1^{(k)} & \cdots & v_n^{(k)} \end{bmatrix}$$
Since we are interested in the span, \(\langle A^k \vec{v}_1^{(0)}, \ldots, A^k \vec{v}_n^{(0)} \rangle \), i.e. the column-space of \(V^{(k)} \) we compute the reduced QR-factorization
\[
\hat{Q}^{(k)} \hat{R}^{(k)} = V^{(k)}.
\]

We can justify that the columns of \(\hat{Q}^{(k)} \) converge to the eigenvectors \(\vec{q}_k \); if we write both \(\vec{v}_j^{(0)} \) and \(\vec{v}_j^{(k)} \) in term of the eigenvectors of \(A \)
\[
\begin{align*}
\vec{v}_j^{(0)} &= a_{1j} \vec{q}_1 + \cdots + a_{mj} \vec{q}_m \\
\vec{v}_j^{(k)} &= \lambda_k^j a_{1j} \vec{q}_1 + \cdots + \lambda_m^k a_{mj} \vec{q}_m.
\end{align*}
\]

For simplicity we assume that the first \(n \) eigenvalues are distinct, and ordered so that

Assumption #1

\[
|\lambda_1| > |\lambda_2| > \cdots > |\lambda_n| > |\lambda_{n+1}| \geq |\lambda_{n+2}| \geq \cdots \geq |\lambda_m|
\]

We need one further assumption before we can state a theorem — Let \(\hat{Q} \) be the \(m \times n \) matrix whose columns are the eigenvectors \(\vec{q}_k \).

We need the following to be true

Assumption #2

All the leading principal sub-matrices of \(\hat{Q}^* V^{(0)} \) are non-singular.

A leading principal sub-matrix is anchored in the upper left corner (the \(m_{11} \)-element) and is a square matrix of size \(1 \times 1 \), or \(2 \times 2 \), \ldots, or \(n \times n \).

With these assumptions we case say something about how the vectors generated by the simultaneous iteration converge to the eigenvectors.

Theorem

Suppose the iteration defined by

\[
V^{(0)} = \begin{bmatrix} \vec{v}_1^{(0)} & \cdots & \vec{v}_n^{(0)} \end{bmatrix}, \quad V^{(k)} = A^k V^{(0)}, \quad \hat{Q}^{(k)} \hat{R}^{(k)} = V^{(k)}
\]

is carried out, and that the assumptions (see slide 13 and 14) are satisfied. Then, as \(k \to \infty \), the columns of the matrices \(\hat{Q}^{(k)} \) converge linearly to the eigenvectors of \(A \)

\[
\| \vec{q}_j^{(k)} + \vec{v}_j \| = O(c^k)
\]

for each \(j \in [1, n] \), where \(c < 1 \) is the constant

\[
c = \max_{1 \leq k < n} \left| \frac{\lambda_{k+1}}{\lambda_k} \right|
\]

We have a problem: As \(k \to \infty \), all the vectors \(\vec{v}_1^{(k)}, \ldots, \vec{v}_n^{(k)} \) in the unnormalized simultaneous iteration converge to the same dominant eigenvector \(\vec{q}_1(A) \).

Even though the span \(\langle \vec{v}_1^{(k)}, \ldots, \vec{v}_n^{(k)} \rangle \) converges to something useful, i.e. \(\langle \vec{q}_1, \ldots, \vec{q}_n \rangle \), these vectors constitute a highly ill-conditioned basis for that space. For practical purposes this approach is useless.

The fix is straight-forward:

Necessary Improvement

We must orthonormalize the basis in every iteration. Instead of forming the sequence \(V^{(k)} \), we form a sequence \(Z^{(k)} \) with the same column spaces, but where \(Z^{(k)} \) is orthonormal.
The QR-algorithm is equivalent to simultaneous iteration applied to the full set \((n = m)\) of initial vectors, i.e. \(Q^{(0)} = I_{m \times m}\).

We are now dealing with the full QR-factorizations, so we drop the hats on \(Q^{(k)}\) and \(R^{(k)}\). Further, let \(\hat{Q}^{(k)}\) denote the matrices generated by the simultaneous iteration, and \(Q^{(k)}\) be the matrices generated by the QR-algorithm...

<table>
<thead>
<tr>
<th>Simultaneous Iteration</th>
<th>Pure QR-Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{Q^{(0)}}{Z^{(k)}} = I)</td>
<td>(A^{(0)} = A)</td>
</tr>
<tr>
<td>(\frac{Q^{(k)}}{R^{(k)}} = Z^{(k)})</td>
<td>(Q^{(k)}R^{(k)} = A^{(k-1)})</td>
</tr>
<tr>
<td>(A^{(k)} = (Q^{(k)})^*AQ^{(k)})</td>
<td>(Q^{(k)} = Q^{(1)}Q^{(2)} \ldots Q^{(k)})</td>
</tr>
</tbody>
</table>

\(R^{(k)} = R^{(k)}R^{(k-1)} \ldots R^{(1)} \)

Table: The operations and quantities that define the Simultaneous Iteration algorithm and Pure QR-Algorithm.

Proof: By Induction. The base case \((k = 0)\) is trivial, for both SI and QR-Alg we immediately see that

\[A^0 = Q^{(0)} = R^{(0)} = I, \quad A^0 = A, \]

from which

\[A^0 = Q^{(0)}R^{(0)}, \quad A^0 = (Q^{(0)})^*AQ^{(0)}. \]

Now, consider \(k \geq 1\) for SI: The second part of the theorem is valid by definition — \(A^{(k)} = (Q^{(k)})^*AQ^{(k)}\). The first part follows from

\[A^k = \begin{bmatrix} AQ^{(k-1)}R^{(k-1)} \end{bmatrix} = Q^{(k)}R^{(k)}R^{(k-1)} = Q^{(k)}R^{(k)} \]

\[Q^{(k)}R^{(k)} = Z^{(k)} = AQ^{(k-1)} \]

\[R^{(k)} = R^{(k)}R^{(k-1)} \ldots R^{(1)} \]

[1] Follows from the inductive hypothesis \(A^{k-1} = Q^{(k-1)}R^{(k-1)}\)

[2] From \(Q^{(k)}R^{(k)} = Z^{(k)} = AQ^{(k-1)} \)

[3] From \(R^{(k)} = R^{(k)}R^{(k-1)} \ldots R^{(1)} \)
From the inductive hypothesis

\[A^k = [Q(k-1)R(k-1)]^2 Q(k-1)A(k-1)R(k-1)^2 = Q(k)R(k) \]

\[[1] \] Follows from the inductive hypothesis \(A^{k-1} = Q^{(k-1)}R^{(k-1)} \)

\[[2] \] From the inductive hypothesis \(A^{k-1} = (Q^{(k-1)})^*AQ^{(k-1)} \)

\[[3] \] From \(Q(k)R(k) = A^{k-1} \), \(Q(k) = Q(1)Q(2) \ldots Q(k) \), and \(R(k) = R(k)R(k-1) \ldots R(1) \)

Next we consider \(k \geq 1 \) for QR-Alg: We verify the first part of the theorem by the sequence

Finally, we verify the second part by the sequence

\[A^{(k)} = ([Q^{(k)})^*A(k-1)Q^{(k)}] = (Q^{(k)})^*AQ^{(k)} \]

\[[1] \] Follows from \(Q(k)R(k) = A^{(k-1)} \), and \(A^{(k)} = R^{(k)}Q^{(k)} \)

\[[2] \] From the inductive hypothesis \(A^{(k-1)} = (Q^{(k-1)})^*AQ^{(k-1)} \), and \(Q^{(k)} = Q^{(1)}Q^{(2)} \ldots Q^{(k)} \)

Let’s put together the pieces of the “QR-Algorithm Jigsaw Puzzle”

- The relations (from the theorem)

 \[[i] \] \(Q^{(k)}R^{(k)} = A^{k} \), tell us why we expect to find the eigenvectors — the QR-Algorithm constructs orthonormal bases for successive powers of \(A^{k} \)

 \[[ii] \] \(A^{(k)} = (Q^{(k)})^*AQ^{(k)} \) explain why we find the eigenvalues — the diagonal elements of \(A^{(k)} \) are the Rayleigh coefficients of \(A \) corresponding to the columns of \(Q^{(k)} \). As the columns converge to eigenvectors, the Rayleigh coefficients converge (“quadratically faster”) to the corresponding eigenvalues. Since \(Q^{(k)} \) converge to an orthonormal matrix, the off-diagonal elements in \(A^{(k)} \) must converge to zero.

Next, we look into adding shifts to the QR-Algorithm in order to speed up the convergence.