Numerical Matrix Analysis

Notes #22 — Eigenvalues
Computing the Singular Value Decomposition

Peter Blomgren
⟨blomgren@sdsu.edu⟩

Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego, CA 92182-7720

http://terminus.sdsu.edu/

Spring 2023
(Revised: April 12, 2023)
Outline

1. Flashback
 - The QR-Algorithm with Shifts

2. The Big Prize — Computing the SVD
 - $\sigma(A)$ and $\lambda(A^*A)$
 - Stable Approach for $\sigma(A)$

3. The Computation, Phase 1
 - Golub-Kahan Bidiagonalization
 - Lawson-Hanson-Chan Bidiagonalization, when $m \gg n$
 - Hybrid LHC/GK 3-Step Bidiagonalization

4. The Computation, Phase 2
 - OLD: QR-Like Algorithm, NEW: Divide-and-Conquer
 - Divide-and-Conquer
 - Implementations
Starting from the pure QR-Algorithm, which converges linearly, we made a number of critical connections with three other algorithms:

1. Inverse Iteration
2. Shifted Inverse Iteration
3. Rayleigh Quotient Iteration

Adding the tie-breaking Wilkinson shift, we were able to define an algorithm which diagonalizes a real symmetric matrix with **cubic convergence** in general, and **quadratic convergence** in the worst case.

We describe the algorithm to the point where we can quickly identify one eigenvalue/eigenvector pair. Deflation, i.e. further sub-division of the problem is necessary to identify the full diagonalization.

The Core QR-Algorithm with Wilkinson Shift

Algorithm (The QR-Algorithm with Wilkinson Shifts)

\[
A^{(0)} = \text{hessenberg form}(A)
\]

for \(k = 1: \ldots \)

Select \(\mu_w^{(k)} = a_m - \frac{\text{sign}(\delta)b_{m-1}^2}{|\delta| + \sqrt{\delta^2 + b_{m-1}^2}}, \quad \delta = \frac{a_{m-1} - a_m}{2} \)

\[
\begin{bmatrix}
Q^{(k)}, R^{(k)}
\end{bmatrix} = \text{qr}\left(A^{(k-1)} - \mu_w^{(k)}I \right)
\]

\[
A^{(k)} = R^{(k)}Q^{(k)} + \mu_w^{(k)}I
\]

endfor

Where,

\[
\begin{bmatrix}
a_{m-1} & b_{m-1} \\
b_{m-1} & a_m
\end{bmatrix} \overset{\text{def}}{=} A_{(m-1):m,(m-1):m}
\]
Result for Symmetric $A \in \mathbb{R}^{2048 \times 2048}$

"Peel-Off Deflation"

$\Lambda(A)$ from QR-Algorithm, symmetric A
Computing the SVD in a **stable** way is non-trivial.

Formally, computation of the SVD can be reduced to an eigenvalue decomposition of a Hermitian square matrix, but the most obvious approach is unstable. *(Which is not stopping some people from using it...)*

Better informed individuals base their SVD computations on a different form of reduction to Hermitian form. As with diagonalizations, **for maximum efficiency** SVD computations are usually done in two phases.
We know that every matrix $A \in \mathbb{C}^{m \times n}$ has a singular value decomposition $A = U\Sigma V^*$, and hence

$$A^* A = V\Sigma^* \Sigma V^* = V \text{diag}(\sigma_1^2, \ldots, \sigma_n^2) V^*.$$

Since $A^* A$ and $\text{diag}(\sigma_1^2, \ldots, \sigma_n^2)$ are related by a similarity transformation, we must have that $\lambda_i(A^* A) = \sigma_i^2$. Thus, in infinite precision the algorithm is clear:

Do-Not-Use-Algorithm (SVD in Infinite Precision)

1. Form $A^* A$.
2. Compute the eigenvalue decomposition $A^* A = V \Lambda V^*$.
3. Let $\Sigma = \sqrt{\Lambda}$, zero-padded to $(m \times n)$.
4. Solve $U \Sigma = AV$ for unitary U, via QR-factorization.
The algorithm described is unstable since it reduces the SVD to an eigenvalue problem which may be **extremely sensitive to perturbations** — due to ill-conditioning; here \(\kappa(A^*A) = (\sigma_1/\sigma_n)^2 \).

However, this algorithm is used quite frequently; usually by someone who has “rediscovered” the SVD; — even though it has many names: *the Proper Orthogonal Decomposition, the Karhunen-Loève (KL-) Decomposition, Principal Component Analysis, Empirical Orthogonal Functions, etc...*, the SVD keeps getting “rediscovered.”
Figure: The many names, faces, and close relatives of the Singular Value Decomposition... Number of hits for “Proper.Orthogonal.Decomposition”, “Empirical.Orthogonal.(Function|Functions)”, “Karhunen.Loeve”, “Canonical.Correlation.Analysis”
The matrix $A^* A$ has familiar and useful interpretations in many fields.

It shows up in linear least squares, as the normal equations, and also in the general orthogonal projector, $P = A(A^* A)^{-1} A^*$ built from a non-orthogonal matrix. Further, in statistics and other fields, it (or something very much like it) is known as the co-variance matrix.

Bottom Line

There are many tempting reasons to form $A^* A$... Don’t!!!
Singular Values of A and Eigenvalues of A^*A

We can quantify the instability.

When the Hermitian matrix A^*A is perturbed by δB, the following holds for the perturbation of the eigenvalues

$$|\lambda_k (A^*A + \delta B) - \lambda_k (A^*A)| \leq \|\delta B\|_2$$

A similar bound holds for the perturbation of the singular values

$$|\sigma_k (A + \delta A) - \sigma_k (A)| \leq \|\delta A\|_2.$$

A backward stable SVD algorithm must give $\tilde{\sigma}_k$ satisfying

$$\tilde{\sigma}_k = \sigma_k (A + \delta A), \quad \frac{\|\delta A\|}{\|A\|} = \mathcal{O}(\varepsilon_{\text{mach}}),$$

which implies

$$|\tilde{\sigma}_k - \sigma_k| = \mathcal{O}(\|A\| \varepsilon_{\text{mach}}).$$
Now, consider $\tilde{\lambda}_k(A^*A)$... If computed using a backward stable algorithm, we expect

$$|\tilde{\lambda}_k - \lambda_k| = \mathcal{O}(\|A^*A\| \varepsilon_{\text{mach}}) = \mathcal{O}(\|A\|^2 \varepsilon_{\text{mach}}).$$

Since $\sigma_k = \sqrt{\lambda_k}$ we get

$$|\tilde{\sigma}_k - \sigma_k| = \mathcal{O} \left(\frac{|\tilde{\lambda}_k - \lambda_k|}{\sqrt{\lambda_k}} \right) = \mathcal{O} \left(\frac{\|A\|^2 \varepsilon_{\text{mach}}}{\sigma_k} \right).$$

This result is off by a factor of $\frac{\|A\|}{\sigma_k}$, which is OK for the dominant singular values, but a disaster for small singular values $\sigma_k \ll \|A\|$, in this case we expect a loss of accuracy of order $\kappa(A)$. In a sense we are “squaring the condition number,” much like in the least squares case.
Toward a Correct, Stable, Approach...

Given $A \in \mathbb{C}^{m \times m}$, consider (intellectually) the Hermitian matrix

$$H = \begin{bmatrix} 0 & A^* \\ A & 0 \end{bmatrix} = \begin{bmatrix} 0 & V \Sigma U^* \\ U \Sigma V^* & 0 \end{bmatrix}.$$

We can now write the eigenvalue decomposition of H

$$\begin{bmatrix} 0 & A^* \\ A & 0 \end{bmatrix} \begin{bmatrix} V & V \\ U & -U \end{bmatrix} = \begin{bmatrix} V & V \\ U & -U \end{bmatrix} \begin{bmatrix} \Sigma & 0 \\ 0 & -\Sigma \end{bmatrix}.$$

It is clear that from the eigenvalue decomposition of H, we can identify the singular values and singular vectors of A. Many SVD computations are (implicitly) based on / derived from this observation. We never explicitly form H, and are thus not constrained by the requirement that A is square.
The Two Phases of SVD Computation

The **Bi-Diagonalization** in **Phase 1** requires a finite number of operations \(\sim O(mn^2) \).

The **Diagonalization** in **Phase 2** is done iteratively, and requires “infinitely many” operations. In practice \(O(n^2) \) operations are sufficient to identify the singular values.
Phase 1: Golub-Kahan Bidiagonalization

Phase-1-Bidiagonalization (for the SVD) is very similar to Phase-1-Hessenberg-transformation (for the QR-algorithm); the main difference here is that we are **not** constrained to a similarity transform, and hence we can apply a different sequence of unitary transforms from the left and right.

\[
\begin{pmatrix}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
\end{pmatrix}
\rightarrow
\begin{pmatrix}
* & * & * & * \\
0 & * & * & * \\
0 & 0 & * & * \\
0 & 0 & 0 & * \\
\end{pmatrix}
\rightarrow
\begin{pmatrix}
* & 0 & 0 \\
0 & * & * \\
0 & * & * \\
* & * & * \\
\end{pmatrix}
\]

Peter Blomgren (blomgren@sdsu.edu)
Phase 1: Golub-Kahan Bidiagonalization

The unitary matrices U_i are built from full Householder reflectors, and V_i are built from “one-short” reflectors (like in the Hessenberg transformation algorithm)

\[
U^*AV = U_m^* \cdots U_1^* A V_1 \cdots V_{n-2}\]

Essentially, this is a QR-factorization from the right and the left, so the total work ends up being

\[
\text{Work} \sim \left(4mn^2 - \frac{4}{3}n^3\right).
\]
Faster Methods for Phase 1

When $A \in \mathbb{R}^{m \times n}$, $m \gg n$, Golub-Kahan bidiagonalization is wasteful. In this case, a QR-factorization of A, followed by a the Golub-Kahan bidiagonalization of R is better

\[
\begin{bmatrix}
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
\end{bmatrix}
\xrightarrow{\text{Phase 1a}}
\begin{bmatrix}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
\end{bmatrix}
\xrightarrow{\text{Phase 1b}}
\begin{bmatrix}
* & * \\
* & * \\
* & * \\
* & * \\
* & * \\
\end{bmatrix}
\]

i.e. $A \rightarrow Q^*A \rightarrow U^*Q^*AV$. This is known as the Lawson-Hanson-Chan bidiagonalization, and it requires

\[\text{Work} \sim (2mn^2 + 2n^3).\]
Golub-Kahan vs. Lawson-Hanson-Chan Bidiagonalization

Figure: Comparing the work for Golub-Kahan and Lawson-Hanson-Chan bidiagonalization. The break-even point is \(\frac{m}{n} = \frac{5}{3} \).
A Hybrid 3-Step Method

It is possible to define a hybrid algorithm, which switches from Golub-Kahan to Lawson-Hanson-Chan bidiagonalization at the optimal point. We end up with a 3-step method, pictorially defined by

We perform Golub-Kahan bidiagonalization for k steps, until \(\frac{m-k}{n-k} = 2 \), and then perform Lawson-Hanson-Chan bidiagonalization to the remaining, non-diagonalized part of the matrix.
Figure: The work for the hybrid method is $\sim \left(4mn^2 - \frac{4}{3}n^3 - \frac{2}{3}(m - n)^3\right)$, and provides a small improvement in the range $n < m < 2n$.
Until recently (1990’s), the standard approach to Phase 2 was a variant of the QR-algorithm, applied to the bidiagonal matrix generated during phase 1. *E.g.* Lapack’s `sgesvd`, `cgesvd`, `dgesvd`, and `zgesvd`.

More recently, *divide-and-conquer* algorithms, based on subdivision into smaller subproblems have gained favor in the computational community.

For instance Lapack’s `sgesdd`, `cgesdd`, `dgesdd`, and `zgesdd` algorithms are based on this paradigm.

One main advantage of this approach is that it can be parallelized, and thus phase 2 can be computed very rapidly in a multi-core environment. Implementations in *e.g.* ScaLAPACK, cuSOLVER.
Divide-and-Conquer: Vigorous Hand-waving

In essence divide-and-conquer works like this: We want to compute the diagonalization of B, which we decompose into three parts $B = B_1 + B_2 + \delta B$, where $\text{rank}(\delta B) = 1$:

$$
\begin{bmatrix}
\ast & \ast & \ast & \ast \\
\ast & \ast & \ast & \ast \\
\end{bmatrix}
=
\begin{bmatrix}
B_1 \\
B_2 \\
\end{bmatrix}
+
\begin{bmatrix}
\ast \\
\ast \\
\end{bmatrix}
$$

Now, the diagonalization of the B_1 and B_2 blocks are computed (using the same strategy), then we (iteratively) correct for the rank-1 perturbation

$$
\begin{bmatrix}
\Sigma(B_1) & \ast \\
\ast & \Sigma(B_2) \\
\end{bmatrix}
\rightarrow
\begin{bmatrix}
\Sigma(B_1) & \ast \\
\ast & \Sigma(B_2) \\
\end{bmatrix}.
$$
Phase 2 Implementations

We leave phase 2 implementations as suggested projects.

- Phase 2 implementation based on the QR-algorithm is quite straight-forward.

- Phase 2 implementation based on the divide-and-conquer paradigm requires careful consideration of all the “book-keeping” details. While not necessarily more difficult in a mathematical sense, the practical implementation of this approach is more challenging.

- The implementations in the referenced libraries: Lapack, ScaLAPACK, and cuSOLVER are thousands of lines long.
Phase 2 Implementations in the “Wild”

- LAPACK’s dbdsqr/zbdsqr implements an iterative variant of the QR algorithm

Source: https://en.wikipedia.org/wiki/Singular_value_decomposition#Numerical_approach
Reference: http://www.netlib.org/lapack/explore-html/d0/da6/group__complex16__o__t__h__e__rcomputational_gae7f455622680c22921ba25be440a726f.html
Phase 2 Implementations in the “Wild”

- The GNU Scientific Library (GSL) also implements an alternative approach: a one-sided Jacobi orthogonalization; the SVD of the bidiagonal matrix is obtained by solving a sequence of (2×2) SVD problems, similar to how the Jacobi eigenvalue algorithm solves a sequence of (2×2) eigenvalue methods.
