Numerical Matrix Analysis
Notes #22 — Eigenvalues
Computing the Singular Value Decomposition

Peter Blomgren
⟨blomgren@sdsu.edu⟩

Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego, CA 92182-7720

http://terminus.sdsu.edu/

Spring 2023
(Revised: April 12, 2023)
Outline

1. Flashback
 - The QR-Algorithm with Shifts

2. The Big Prize — Computing the SVD
 - $\sigma(A)$ and $\lambda(A^*A)$
 - Stable Approach for $\sigma(A)$

3. The Computation, Phase 1
 - Golub-Kahan Bidiagonalization
 - Lawson-Hanson-Chan Bidiagonalization, when $m \gg n$
 - Hybrid LHC/GK 3-Step Bidiagonalization

4. The Computation, Phase 2
 - OLD: QR-Like Algorithm, NEW: Divide-and-Conquer
 - Divide-and-Conquer
 - Implementations
Last Time: The QR-Algorithm with Shifts

Starting from the pure QR-Algorithm, which converges linearly, we made a number of critical connections with three other algorithms:

1. Inverse Iteration
2. Shifted Inverse Iteration
3. Rayleigh Quotient Iteration

Adding the tie-breaking Wilkinson shift, we were able to define an algorithm which diagonalizes a real symmetric matrix with **cubic convergence** in general, and **quadratic convergence** in the worst case.

We describe the algorithm to the point where we can quickly identify one eigenvalue/eigenvector pair. **Deflation**, i.e. further sub-division of the problem is necessary to identify the full diagonalization.

Algorithm (The QR-Algorithm with Wilkinson Shifts)

\[A^{(0)} = \text{hessenberg form}(A) \]

for \(k = 1: \ldots \)

\[
\begin{align*}
\text{Select } & \mu_w^{(k)} = a_m - \frac{\text{sign}(\delta)b_{m-1}^2}{|\delta| + \sqrt{\delta^2 + b_{m-1}^2}}, \quad \delta = \frac{a_{m-1} - a_m}{2} \\
[Q^{(k)}, R^{(k)}] &= \text{qr} \left(A^{(k-1)} - \mu_w^{(k)} I \right) \\
A^{(k)} &= R^{(k)} Q^{(k)} + \mu_w^{(k)} I
\end{align*}
\]

endfor

Where,

\[
\begin{bmatrix}
 a_{m-1} & b_{m-1} \\
 b_{m-1} & a_m
\end{bmatrix} \overset{\text{def}}{=} A^{(m-1):m, (m-1):m}
\]
Flashback
The Big Prize — Computing the SVD
The Computation, Phase 1
The Computation, Phase 2

The QR-Algorithm with Shifts

Result for Symmetric $A \in \mathbb{R}^{2048 \times 2048}$

“Peel-Off Deflation”

$\Lambda(A)$ from QR-Algorithm, symmetric A

Peter Blomgren (blomgren@sdsu.edu)

Computing the SVD in a **stable** way is non-trivial.

Formally, computation of the SVD can be reduced to an eigenvalue decomposition of a Hermitian square matrix, but the most obvious approach is unstable. *(Which is not stopping some people from using it…)*

Better informed individuals base their SVD computations on a different form of reduction to Hermitian form. As with diagonalizations, **for maximum efficiency** SVD computations are usually done in two phases.
Singular Values of A and Eigenvalues of A^*A

We know that every matrix $A \in \mathbb{C}^{m \times n}$ has a singular value decomposition $A = U\Sigma V^*$, and hence

$$A^*A = V\Sigma^*\Sigma V^* = V \text{diag}(\sigma_1^2, \ldots, \sigma_n^2) V^*.$$

Since A^*A and $\text{diag}(\sigma_1^2, \ldots, \sigma_n^2)$ are related by a similarity transformation, we must have that $\lambda_i(A^*A) = \sigma_i^2$. Thus, in infinite precision the algorithm is clear:

Do-Not-Use-Algorithm (SVD in Infinite Precision)

1. Form A^*A.
2. Compute the eigenvalue decomposition $A^*A = V\Lambda V^*$.
3. Let $\Sigma = \sqrt{\Lambda}$, zero-padded to $(m \times n)$.
4. Solve $U\Sigma = AV$ for unitary U, via QR-factorization.
The algorithm described is unstable since it reduces the SVD to an eigenvalue problem which may be extremely sensitive to perturbations — due to ill-conditioning; here \(\kappa(A^*A) = (\sigma_1/\sigma_n)^2 \).

However, this algorithm is used quite frequently; usually by someone who has “rediscovered” the SVD; — even though it has many names: the Proper Orthogonal Decomposition, the Karhunen-Loève (KL-) Decomposition, Principal Component Analysis, Empirical Orthogonal Functions, etc..., the SVD keeps getting “rediscovered.”
Figure: The many names, faces, and close relatives of the Singular Value Decomposition... Number of hits for “Proper.Orthogonal.Decomposition”
Figures: The many names, faces, and close relatives of the Singular Value Decomposition... Number of hits for “Proper.Orthogonal.Decomposition”, “Empirical.Orthogonal.(Function|Functions)”
Rewind — [Notes#4]

Hits on scholar.google.com

Figure: The many names, faces, and close relatives of the Singular Value Decomposition... Number of hits for “Proper.Orthogonal.Decomposition”, “Empirical.Orthogonal.(Function|Functions)”, “Karhunen.Loeve”

Peter Blomgren (blomgren@sdsu.edu)
Rewind — [NOTES#4]

Hits on scholar.google.com

Figure: The many names, faces, and close relatives of the Singular Value Decomposition... Number of hits for "Proper.Orthogonal.Decomposition", "Empirical.Orthogonal.(Function|Functions)", "Karhunen.Loeve", "Canonical.Correlation.Analysis"
Rewind — [Notes#4]

Rewind — [NOTES#4]

Rewind — [NOTES#4]

The matrix A^*A has familiar and useful interpretations in many fields.

It shows up in linear least squares, as the *normal equations*, and also in the *general orthogonal projector*, $P = A(A^*A)^{-1}A^*$ built from a non-orthogonal matrix. Further, in statistics and other fields, it (or something very much like it) is known as the *co-variance matrix*.

Bottom Line

There are many tempting reasons to form A^*A... Don’t!!!
Singular Values of A and Eigenvalues of A^*A

We can quantify the instability.

When the Hermitian matrix A^*A is perturbed by δB, the following holds for the perturbation of the eigenvalues

$$|\lambda_k (A^*A + \delta B) - \lambda_k (A^*A)| \leq \|\delta B\|_2$$
We can quantify the instability.

When the Hermitian matrix A^*A is perturbed by δB, the following holds for the perturbation of the eigenvalues

$$|\lambda_k (A^*A + \delta B) - \lambda_k (A^*A)| \leq \|\delta B\|_2$$

A similar bound holds for the perturbation of the singular values

$$|\sigma_k (A + \delta A) - \sigma_k (A)| \leq \|\delta A\|_2.$$
Singular Values of A and Eigenvalues of A^*A

We can quantify the instability.

When the Hermitian matrix A^*A is perturbed by δB, the following holds for the perturbation of the eigenvalues

$$|\lambda_k (A^*A + \delta B) - \lambda_k (A^*A)| \leq \|\delta B\|_2$$

A similar bound holds for the perturbation of the singular values

$$|\sigma_k (A + \delta A) - \sigma_k (A)| \leq \|\delta A\|_2.$$

A backward stable SVD algorithm must give $\tilde{\sigma}_k$ satisfying

$$\tilde{\sigma}_k = \sigma_k (A + \delta A), \quad \frac{\|\delta A\|}{\|A\|} = O(\varepsilon_{\text{mach}}),$$
Singular Values of A and Eigenvalues of A^*A

We can quantify the instability.

When the Hermitian matrix A^*A is perturbed by δB, the following holds for the perturbation of the eigenvalues

$$ |\lambda_k (A^*A + \delta B) - \lambda_k (A^*A)| \leq \|\delta B\|_2 $$

A similar bound holds for the perturbation of the singular values

$$ |\sigma_k(A + \delta A) - \sigma_k(A)| \leq \|\delta A\|_2. $$

A backward stable SVD algorithm must give $\tilde{\sigma}_k$ satisfying

$$ \tilde{\sigma}_k = \sigma_k(A + \delta A), \quad \frac{\|\delta A\|}{\|A\|} = \mathcal{O}(\varepsilon_{\text{mach}}), $$

which implies

$$ |\tilde{\sigma}_k - \sigma_k| = \mathcal{O}(\|A\|\varepsilon_{\text{mach}}). $$

Peter Blomgren (blomgren@sdsu.edu)
Now, consider $\tilde{\lambda}_k(A^*A)$... If computed using a backward stable algorithm, we expect

$$|\tilde{\lambda}_k - \lambda_k| = O(\|A^*A\| \varepsilon_{\text{mach}}) = O(\|A\|^2 \varepsilon_{\text{mach}}).$$
Singular Values of A and Eigenvalues of A^*A

Now, consider $\tilde{\lambda}_k(A^*A)$... If computed using a backward stable algorithm, we expect

$$|\tilde{\lambda}_k - \lambda_k| = O(\|A^*A\|\varepsilon_{\text{mach}}) = O(\|A\|^2\varepsilon_{\text{mach}}).$$

Since $\sigma_k = \sqrt{\lambda_k}$ we get

$$|\tilde{\sigma}_k - \sigma_k| = O \left(\frac{|\tilde{\lambda}_k - \lambda_k|}{\sqrt{\lambda_k}} \right) = O \left(\frac{\|A\|^2\varepsilon_{\text{mach}}}{\sigma_k} \right).$$
Now, consider $\tilde{\lambda}_k(A^*A)$. If computed using a backward stable algorithm, we expect

$$|\tilde{\lambda}_k - \lambda_k| = O(\|A^*A\|\varepsilon_{\text{mach}}) = O(\|A\|^2\varepsilon_{\text{mach}}).$$

Since $\sigma_k = \sqrt{\lambda_k}$ we get

$$|\tilde{\sigma}_k - \sigma_k| = O\left(\frac{|\tilde{\lambda}_k - \lambda_k|}{\sqrt{\lambda_k}}\right) = O\left(\frac{\|A\|^2\varepsilon_{\text{mach}}}{\sigma_k}\right).$$

This result is off by a factor of $\frac{\|A\|}{\sigma_k}$, which is OK for the dominant singular values, but a disaster for small singular values $\sigma_k \ll \|A\|$, in this case we expect a loss of accuracy of order $\kappa(A)$. In a sense we are “squaring the condition number,” much like in the least squares case.
Toward a Correct, Stable, Approach...

Given $A \in \mathbb{C}^{m \times m}$, consider (intellectually) the Hermitian matrix

$$H = \begin{bmatrix} 0 & A^* \\ A & 0 \end{bmatrix} = \begin{bmatrix} 0 & V \Sigma U^* \\ U \Sigma V^* & 0 \end{bmatrix}.$$
Given $A \in \mathbb{C}^{m \times m}$, consider (intellectually) the Hermitian matrix

$$H = \begin{bmatrix} 0 & A^* \\ A & 0 \end{bmatrix} = \begin{bmatrix} 0 & V \Sigma U^* \\ U \Sigma V^* & 0 \end{bmatrix}.$$

We can now write the eigenvalue decomposition of H

$$\begin{bmatrix} 0 & A^* \\ A & 0 \end{bmatrix} \begin{bmatrix} V & V \\ U & -U \end{bmatrix} = \begin{bmatrix} V & V \\ U & -U \end{bmatrix} \begin{bmatrix} \Sigma & 0 \\ 0 & -\Sigma \end{bmatrix}.$$

It is clear that from the eigenvalue decomposition of H, we can identify the singular values and singular vectors of A.
Given $A \in \mathbb{C}^{m \times m}$, consider (intellectually) the Hermitian matrix

$$
H = \begin{bmatrix} 0 & A^* \\ A & 0 \end{bmatrix} = \begin{bmatrix} 0 & V \Sigma U^* \\ U \Sigma V^* & 0 \end{bmatrix}.
$$

We can now write the eigenvalue decomposition of H

$$
\begin{bmatrix} 0 & A^* \\ A & 0 \end{bmatrix} \begin{bmatrix} V & V \\ U & -U \end{bmatrix} = \begin{bmatrix} V & V \\ U & -U \end{bmatrix} \begin{bmatrix} \Sigma & 0 \\ 0 & -\Sigma \end{bmatrix}.
$$

It is clear that from the eigenvalue decomposition of H, we can identify the singular values and singular vectors of A.

Many SVD computations are (implicitly) based on / derived from this observation. We never explicitly form H, and are thus not constrained by the requirement that A is square.
The Two Phases of SVD Computation

The **Bi-Diagonalization** in **Phase 1** requires a finite number of operations $\sim O(mn^2)$.

The **Diagonalization** in **Phase 2** is done iteratively, and requires “infinitely many” operations. In practice $O(n^2)$ operations are sufficient to identify the singular values.
Phase 1: Golub-Kahan Bidiagonalization

Phase-1-Bidiagonalization (for the SVD) is very similar to Phase-1-Hessenberg-transformation (for the QR-algorithm); the main difference here is that we are not constrained to a similarity transform, and hence we can apply a different sequence of unitary transforms from the left and right.

\[
\begin{bmatrix}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{bmatrix}
\xrightarrow{U_1^*}
\begin{bmatrix}
* & * & * & * \\
0 & * & * & * \\
0 & 0 & * & * \\
0 & 0 & 0 & *
\end{bmatrix}
\xrightarrow{V_1}
\begin{bmatrix}
* & * & 0 & 0 \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{bmatrix}
\]

\[
\begin{bmatrix}
* & * & * \\
0 & * & * \\
0 & 0 & *
\end{bmatrix}
\xrightarrow{U_2^*}
\begin{bmatrix}
* & * & * \\
0 & * & * \\
0 & 0 & *
\end{bmatrix}
\xrightarrow{V_2}
\begin{bmatrix}
* & * & * \\
* & * & * \\
* & * & *
\end{bmatrix}
\]
Phase 1: Golub-Kahan Bidiagonalization

The unitary matrices U_i are built from full Householder reflectors, and V_i are built from “one-short” reflectors (like in the Hessenberg transformation algorithm)

$$U^* A V = U_m^* \cdots U_1^* A V_1 \cdots V_{n-2} = \begin{bmatrix} * & * & & \\ * & * & * & \\ & & * & * \end{bmatrix}$$

Essentially, this is a QR-factorization from the right and the left, so the total work ends up being

$$\text{Work} \sim \left(4mn^2 - \frac{4}{3}n^3\right).$$
When $A \in \mathbb{R}^{m \times n}$, $m \gg n$, Golub-Kahan bidiagonalization is wasteful. In this case, a QR-factorization of A, followed by a the Golub-Kahan bidiagonalization of R is better.

\[
\begin{bmatrix}
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & *
\end{bmatrix}
\xrightarrow{\text{Phase 1a}}
\begin{bmatrix}
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & *
\end{bmatrix}
\xrightarrow{\text{Phase 1b}}
\begin{bmatrix}
* & * \\
* & * \\
* & * \\
* & *
\end{bmatrix}
\]

i.e. $A \rightarrow Q^*A \rightarrow U^*Q^*AV$. This is known as the Lawson-Hanson-Chan bidiagonalization, and it requires

\[\text{Work} \sim (2mn^2 + 2n^3)\].
Golub-Kahan vs. Lawson-Hanson-Chan Bidiagonalization

Figure: Comparing the work for Golub-Kahan and Lawson-Hanson-Chan bidiagonalization. The break-even point is $\frac{m}{n} = \frac{5}{3}$.
It is possible to define a hybrid algorithm, which switches from Golub-Kahan to Lawson-Hanson-Chan bidiagonalization at the optimal point. We end up with a 3-step method, pictorially defined by

We perform Golub-Kahan bidiagonalization for k steps, until $\frac{m-k}{n-k} = 2$, and then perform Lawson-Hanson-Chan bidiagonalization to the remaining, non-diagonalized part of the matrix.
Figure: The work for the hybrid method is \(\sim (4mn^2 - \frac{4}{3} n^3 - \frac{2}{3}(m-n)^3) \), and provides a small improvement in the range \(n < m < 2n \).
Computing the SVD: Phase 2

Until recently (1990’s), the standard approach to Phase 2 was a variant of the QR-algorithm, applied to the bidiagonal matrix generated during phase 1. E.g. Lapack’s \texttt{sgesvd}, \texttt{cgesvd}, \texttt{dgesvd}, and \texttt{zgesvd}.

More recently, \textit{divide-and-conquer} algorithms, based on subdivision into smaller subproblems have gained favor in the computational community.

For instance Lapack’s \texttt{sgesdd}, \texttt{cgesdd}, \texttt{dgesdd}, and \texttt{zgesdd} algorithms are based on this paradigm.

One main advantage of this approach is that it can be parallelized, and thus phase 2 can be computed very rapidly in a multi-core environment. Implementations in e.g. ScaLAPACK, cuSOLVER.
In essence divide-and-conquer works like this: We want to compute the diagonalization of B, which we decompose into three parts $B = B_1 + B_2 + \delta B$, where $\text{rank}(\delta B) = 1$:

$$
\begin{bmatrix}
* & * & * \\
* & * & * \\
* & * & * \\
\end{bmatrix}
=
\begin{bmatrix}
B_1 \\
B_2 \\
\end{bmatrix}
+
\begin{bmatrix}
* \\
* \\
\end{bmatrix}
$$

Now, the diagonalization of the B_1 and B_2 blocks are computed (using the same strategy), then we (iteratively) correct for the rank-1 perturbation

$$
\begin{bmatrix}
\Sigma(B_1) \\
\Sigma(B_2) \\
\end{bmatrix}
\rightarrow
\begin{bmatrix}
\Sigma(B) \\
\end{bmatrix}
.$$
Phase 2 Implementations

We leave phase 2 implementations as suggested projects.

- Phase 2 implementation based on the QR-algorithm is quite straight-forward.

- Phase 2 implementation based on the divide-and-conquer paradigm requires careful consideration of all the “book-keeping” details. While not necessarily more difficult in a mathematical sense, the practical implementation of this approach is more challenging.

- The implementations in the referenced libraries: Lapack, ScaLAPACK, and cuSOLVER are thousands of lines long.
Phase 2 Implementations in the “Wild”

- LAPACK’s `dbdsqr/zbdbsqr` implements an iterative variant of the QR algorithm

Source: https://en.wikipedia.org/wiki/Singular_value_decomposition#Numerical_approach
Reference: http://www.netlib.org/lapack/explore-html/d0/da6/group__complex16__ot__h__e_rcomputational_gae7f455622680c22921ba25be440a726f.html
The GNU Scientific Library (GSL) also implements an alternative approach: a one-sided Jacobi orthogonalization; the SVD of the bidiagonal matrix is obtained by solving a sequence of (2×2) SVD problems, similar to how the Jacobi eigenvalue algorithm solves a sequence of (2×2) eigenvalue methods.

Source: https://en.wikipedia.org/wiki/Singular_value_decomposition#Numerical_approach