Last Time: The QR-Algorithm with Shifts

Starting from the pure QR-Algorithm, which converges linearly, we made a number of critical connections with three other algorithms:

1. Inverse Iteration
2. Shifted Inverse Iteration
3. Rayleigh Quotient Iteration

Adding the tie-breaking Wilkinson shift, we were able to define an algorithm which diagonalizes a real symmetric matrix with cubic convergence in general, and quadratic convergence in the worst case.

We describe the algorithm to the point where we can quickly identify one eigenvalue/eigenvector pair. Deflation, i.e. further sub-division of the problem is necessary to identify the full diagonalization.
Computing the SVD

Computing the SVD in a **stable** way is non-trivial.

Formally, computation of the SVD can be reduced to an eigenvalue
decomposition of a Hermitian square matrix, but the most obvious
approach is unstable. *(Which is not stopping some people from
using it...)*

Better informed individuals base their SVD computations on a
different form of reduction to Hermitian form. As with
diagonalizations, **for maximum efficiency** SVD computations are
usually done in two phases.

Singular Values of A and Eigenvalues of A^*A

We know that every matrix $A \in \mathbb{C}^{m \times n}$ has a singular value
decomposition $A = U\Sigma V^*$, and hence

$$A^*A = V\Sigma^*\Sigma V^* = V[\text{diag}(\sigma_2^2, \ldots, \sigma_n^2)] V^*. $$

Since A^*A and $\text{diag}(\sigma_1^2, \ldots, \sigma_n^2)$ are related by a similarity
transformation, we must have that $\lambda_i(A^*A) = \sigma_i^2$. Thus, in
infinite precision the algorithm is clear:

Do-Not-Use-Algorithm (SVD in Infinite Precision)

1. Form A^*A.
2. Compute the eigenvalue decomposition $A^*A = V\Lambda V^*$.
3. Let $\Sigma = \sqrt{\Lambda}$, zero-padded to $m \times n$.
4. Solve $U\Sigma = AV$ for unitary U, via QR-factorization.

Bottom Line

There are many tempting reasons to form A^*A... **Don’t!!!**
The Correct, Stable, Approach

We can quantify the instability.

When the Hermitian matrix A^*A is perturbed by δB, the following holds for the perturbation of the eigenvalues

$$|\lambda_k (A^*A + \delta B) - \lambda_k (A^*A)| \leq \|\delta B\|_2$$

A similar bound holds for the perturbation of the singular values

$$|\sigma_k(A + \delta A) - \sigma_k(A)| \leq \|\delta A\|_2.$$

A backward stable SVD algorithm must give $\tilde{\sigma}_k$ satisfying

$$\tilde{\sigma}_k = \sigma_k(A + \delta A), \quad \frac{\|\delta A\|}{\|A\|} = O(\epsilon_{\text{mach}}),$$

which implies

$$|\tilde{\sigma}_k - \sigma_k| = O(\|A\| \epsilon_{\text{mach}}).$$

Now, consider $\tilde{\lambda}_k(A^*A)$... If computed using a backward stable algorithm, we expect

$$|\tilde{\lambda}_k - \lambda_k| = O(\|A^*A\| \epsilon_{\text{mach}}) = O(\|A\|^2 \epsilon_{\text{mach}}).$$

Since $\sigma_k = \sqrt{\lambda_k}$ we get

$$|\tilde{\sigma}_k - \sigma_k| = O \left(\frac{\|\tilde{\lambda}_k - \lambda_k\|}{\sqrt{\lambda_k}} \right) = O \left(\frac{\|A\|^2 \epsilon_{\text{mach}}}{\sigma_k} \right).$$

This result is off by a factor of $\frac{\|A\|}{\sigma_k}$, which is OK for the dominant singular values, but a disaster for small singular values $\sigma_k \ll \|A\|$, in this case we expect a loss of accuracy of order $\kappa(A)$. In a sense we are “squaring the condition number,” much like in the least squares case.

The Two Phases of SVD Computation

Given $A \in \mathbb{C}^{m \times m}$, consider the Hermitian matrix

$$H = \begin{bmatrix} 0 & A^* \\ A & 0 \end{bmatrix} = \begin{bmatrix} 0 & V \Sigma U^* \\ U \Sigma V^* & 0 \end{bmatrix}.$$

We can now write the eigenvalue decomposition of H

$$\begin{bmatrix} 0 & A^* \\ A & 0 \end{bmatrix} \begin{bmatrix} V & V \\ U & -U \end{bmatrix} = \begin{bmatrix} V & V \\ U & -U \end{bmatrix} \begin{bmatrix} \Sigma & 0 \\ 0 & -\Sigma \end{bmatrix}.$$

It is clear that from the eigenvalue decomposition of H, we can identify the singular values and singular vectors of A.

SVD computations are (implicitly) based on this observation, but never explicitly form H, and are thus not constrained by the requirement that A is square.

The Bi-Diagonalization in Phase 1 requires a finite number of operations $\sim O(mn^2)$.

The Diagonalization in Phase 2 is done iteratively, and requires “infinitely many” operations. In practice $O(n^2)$ operations are sufficient to identify the singular values.
Phase 1: Golub-Kahan Bidiagonalization

Phase-1-Bidiagonalization (for the SVD) is very similar to Phase-1-Hessenberg-transformation (for the QR-algorithm); the main difference here is that we are not constrained to a similarity transform, and hence we can apply a different sequence of unitary transforms from the left and right.

\[
\begin{bmatrix}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{bmatrix} \xrightarrow{U^*_1} \begin{bmatrix}
* & * & * & * \\
0 & * & * & * \\
0 & 0 & * & * \\
0 & 0 & 0 & *
\end{bmatrix} \xrightarrow{V_1} \begin{bmatrix}
* & * & 0 & 0 \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{bmatrix}
\]

\[
\begin{bmatrix}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{bmatrix} \xrightarrow{U^*_2} \begin{bmatrix}
* & * & * & * \\
0 & * & * & * \\
0 & 0 & * & * \\
0 & 0 & 0 & *
\end{bmatrix} \xrightarrow{V_2} \begin{bmatrix}
* & * & 0 & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{bmatrix}
\]

i.e. \(A \rightarrow Q^*A \rightarrow U^*Q^*AV \). This is known as the Lawson-Hanson-Chan bidiagonalization, and it requires

\[\text{Work} \sim 2mn^2 + 2n^3.\]

Faster Methods for Phase 1

When \(m \gg n \), Golub-Kahan bidiagonalization is wasteful. In this case, a QR-factorization of \(A \), followed by a the Golub-Kahan bidiagonalization of \(R \) is better

\[
\begin{bmatrix}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{bmatrix} \xrightarrow{\text{Phase 1a}} \begin{bmatrix}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{bmatrix} \xrightarrow{\text{Phase 1b}} \begin{bmatrix}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{bmatrix}
\]

The unitary matrices \(U_i \) and \(V_i \) are standard Householder reflectors

\[
U^*AV = U_n^* \cdots U_1^* A V_1 \cdots V_{n-2} = \begin{bmatrix}
* & * & * \\
* & * & * \\
* & * & *
\end{bmatrix}
\]

Essentially, this is a QR-factorization from the right and the left, so the total work ends up being

\[\text{Work} \sim 4mn^2 - \frac{4}{3} n^3.\]

Figure: Comparing the work for Golub-Kahan and Lawson-Hanson-Chan bidiagonalization. The break-even point is \(\frac{m}{n} = \frac{5}{3} \).
A Hybrid 3-Step Method

It is possible to define a hybrid algorithm, which switches from Golub-Kahan to Lawson-Hanson-Chan bidiagonalization at the optimal point. We end up with a 3-step method, pictorially defined by

We perform Golub-Kahan bidiagonalization for \(k \) steps, until \(\frac{m-k}{n-k} = 2 \), and then perform Lawson-Hanson-Chan bidiagonalization to the remaining, non-diagonalized part of the matrix.

Computing the SVD: Phase 2

Until recently (1990’s), the standard approach to Phase 2 was a variant of the QR-algorithm, applied to the bidiagonal matrix generated during phase 1.

More recently, divide-and-conquer algorithms, based on subdivision into smaller subproblems have gained favor in the computational community.

For instance Lapack’s cgesdd, dgesdd, sgesdd, and zgesdd algorithms are based on this paradigm.

One main advantage of this approach is that it can be parallelized, and thus phase 2 can be computed very rapidly in a multi-core environment.

Divide-and-Conquer: Vigorous Hand-waving

In essence divide-and-conquer works like this: We want to compute the diagonalization of \(B \), which we decompose into three parts \(B = B_1 + B_2 + \delta B \), where \(\text{rank}(\delta B) = 1 \):

\[
\begin{bmatrix}
\ast & \ast & \ast & \ast \\
\ast & \ast & \ast & \ast \\
\ast & \ast & \ast & \ast \\
\ast & \ast & \ast & \ast
\end{bmatrix}
=
\begin{bmatrix}
\ast & \ast & \ast & \ast \\
\ast & \ast & \ast & \ast \\
\ast & \ast & \ast & \ast \\
\ast & \ast & \ast & \ast
\end{bmatrix}
+
\begin{bmatrix}
\ast & \ast & \ast & \ast \\
\ast & \ast & \ast & \ast \\
\ast & \ast & \ast & \ast \\
\ast & \ast & \ast & \ast
\end{bmatrix}
+
\begin{bmatrix}
\ast & \ast & \ast & \ast \\
\ast & \ast & \ast & \ast \\
\ast & \ast & \ast & \ast \\
\ast & \ast & \ast & \ast
\end{bmatrix}.
\]

Now, the diagonalization of the \(B_1 \) and \(B_2 \) blocks are computed (using the same strategy), then we (iteratively) correct for the rank-1 perturbation

\[
\begin{bmatrix}
\Sigma(B_1) \\
\Sigma(B_2)
\end{bmatrix}
\rightarrow
\begin{bmatrix}
\Sigma(B_1) \\
\Sigma(B_2) \\
\Sigma(B)
\end{bmatrix}.
\]
Phase 2 Implementations

We leave phase 2 implementations as suggested projects.

- Phase 2 implementation based on the QR-algorithm is quite straightforward.

- Phase 2 implementation based on the divide-and-conquer paradigm requires careful consideration of all the “bookkeeping” details. While not necessarily more difficult in a mathematical sense, the practical implementation of this approach is more challenging.

Peter Blomgren, ⟨blomgren.peter@gmail.com⟩