Numerical Matrix Analysis
Lecture Notes #23 — Eigenvalues
Computing the Singular Value Decomposition

Peter Blomgren,
⟨blomgren.peter@gmail.com⟩

Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego, CA 92182-7720

http://terminus.sdsu.edu/

Spring 2016
Outline

1. Flashback
 - The QR-Algorithm with Shifts

2. The Big Prize — Computing the SVD
 - $\sigma(A)$ and $\lambda(A^*A)$
 - Stable Approach for $\sigma(A)$

3. The Computation, Phase 1
 - Golub-Kahan Bidiagonalization
 - Lawson-Hanson-Chan Bidiagonalization, when $m \gg n$
 - Hybrid LHC/GK 3-Step Bidiagonalization

4. The Computation, Phase 2
 - OLD: QR-Like Algorithm, NEW: Divide-and-Conquer
 - Divide-and-Conquer
 - Implementations
Starting from the pure QR-Algorithm, which converges linearly, we made a number of critical connections with three other algorithms:

1. Inverse Iteration
2. Shifted Inverse Iteration
3. Rayleigh Quotient Iteration

Adding the tie-breaking Wilkinson shift, we were able to define an algorithm which diagonalizes a real symmetric matrix with cubic convergence in general, and quadratic convergence in the worst case.

We describe the algorithm to the point where we can quickly identify one eigenvalue/eigenvector pair. Deflation, i.e. further sub-division of the problem is necessary to identify the full diagonalization.
Algorithm (The QR-Algorithm with Wilkinson Shifts)

\[A^{(0)} = \text{hessenberg_form}(A) \]

for \(k = 1: \ldots \)

Select \(\mu_w^{(k)} = a_m - \frac{\text{sign}(\delta)b_{m-1}^2}{|\delta| + \sqrt{\delta^2 + b_{m-1}^2}}, \quad \delta = \frac{a_{m-1} - a_m}{2} \)

\[[Q^{(k)}, R^{(k)}] = \text{qr}(A^{(k-1)} - \mu_w^{(k)} I) \]

\[A^{(k)} = R^{(k)}Q^{(k)} + \mu_w^{(k)} I \]

endfor

Where,

\[
\begin{bmatrix}
 a_{m-1} & b_{m-1} \\
 b_{m-1} & a_m
\end{bmatrix}
\overset{\text{def}}{=} A_{(m-1):m,(m-1):m}
\]
Computing the SVD in a **stable** way is non-trivial.

Formally, computation of the SVD can be reduced to an eigenvalue decomposition of a Hermitian square matrix, but the most obvious approach is unstable. *(Which is not stopping some people from using it...)*

Better informed individuals base their SVD computations on a different form of reduction to Hermitian form. As with diagonalizations, **for maximum efficiency** SVD computations are usually done in two phases.
Singular Values of A and Eigenvalues of A^*A

We know that every matrix $A \in \mathbb{C}^{m \times n}$ has a singular value decomposition $A = U\Sigma V^*$, and hence

$$A^*A = V\Sigma^*\Sigma V^* = V[\text{diag}(\sigma_1^2, \ldots, \sigma_n^2)] V^*.$$

Since A^*A and $[\text{diag}(\sigma_1^2, \ldots, \sigma_n^2)]$ are related by a similarity transformation, we must have that $\lambda_i(A^*A) = \sigma_i^2$. Thus, in infinite precision the algorithm is clear:

Do-Not-Use-Algorithm (SVD in Infinite Precision)

1. Form A^*A.
2. Compute the eigenvalue decomposition $A^*A = V\Lambda V^*$.
3. Let $\Sigma = \sqrt{\Lambda}$, zero-padded to $m \times n$.
4. Solve $U\Sigma = AV$ for unitary U, via QR-factorization.
The algorithm described is unstable since it reduces the SVD to an eigenvalue problem which may be extremely sensitive to perturbations (ill-conditioned).

However, this algorithm is used quite frequently; usually by someone who has “rediscovered” the SVD; — even though it has many names: the Proper Orthogonal Decomposition, the Karhunen-Loève (KL-) Decomposition, Principal Component Analysis, Empirical Orthogonal Functions, etc..., the SVD keeps getting “rediscovered.”
The matrix A^*A has familiar and useful interpretations in many fields. It shows up in linear least squares, as the normal equations, and also in the general orthogonal projector, $P = A(A^*A)^{-1}A^*$ built from a non-orthogonal matrix. Further, in statistics and other fields, it (or something very much like it) is known as the co-variance matrix.

Bottom Line

There are many tempting reasons to form A^*A... **Don't!!!**
We can quantify the instability.

When the Hermitian matrix A^*A is perturbed by δB, the following holds for the perturbation of the eigenvalues

$$|\lambda_k (A^*A + \delta B) - \lambda_k (A^*A)| \leq \|\delta B\|_2$$

A similar bound holds for the perturbation of the singular values

$$|\sigma_k(A + \delta A) - \sigma_k(A)| \leq \|\delta A\|_2.$$

A backward stable SVD algorithm must give $\tilde{\sigma}_k$ satisfying

$$\tilde{\sigma}_k = \sigma_k(A + \delta A), \quad \frac{\|\delta A\|}{\|A\|} = O(\epsilon_{\text{mach}}),$$

which implies

$$|\tilde{\sigma}_k - \sigma_k| = O(\|A\|\epsilon_{\text{mach}}).$$
Now, consider \(\tilde{\lambda}_k(A^*A) \)... If computed using a backward stable algorithm, we expect

\[
|\tilde{\lambda}_k - \lambda_k| = \mathcal{O}(\|A^*A\|\epsilon_{\text{mach}}) = \mathcal{O}(\|A\|^2\epsilon_{\text{mach}}).
\]

Since \(\sigma_k = \sqrt{\lambda_k} \) we get

\[
|\tilde{\sigma}_k - \sigma_k| = \mathcal{O}
\left(\frac{|\tilde{\lambda}_k - \lambda_k|}{\sqrt{\lambda_k}}\right) = \mathcal{O}
\left(\frac{\|A\|^2\epsilon_{\text{mach}}}{\sigma_k}\right).
\]

This result is off by a factor of \(\frac{\|A\|}{\sigma_k} \), which is OK for the dominant singular values, but a disaster for small singular values \(\sigma_k \ll \|A\| \), in this case we expect a loss of accuracy of order of \(\kappa(A) \). In a sense we are “squaring the condition number,” much like in the least squares case.
The Correct, Stable, Approach

Given $A \in \mathbb{C}^{m \times m}$, consider the Hermitian matrix

$$H = \begin{bmatrix} 0 & A^* \\ A & 0 \end{bmatrix} = \begin{bmatrix} 0 & V \Sigma U^* \\ U \Sigma V^* & 0 \end{bmatrix}. $$

We can now write the eigenvalue decomposition of H

$$\begin{bmatrix} 0 & A^* \\ A & 0 \end{bmatrix} \begin{bmatrix} V & V \\ U & -U \end{bmatrix} = \begin{bmatrix} V & V \\ U & -U \end{bmatrix} \begin{bmatrix} \Sigma & 0 \\ 0 & -\Sigma \end{bmatrix}. $$

It is clear that from the eigenvalue decomposition of H, we can identify the singular values and singular vectors of A. SVD computations are (implicitly) based on this observation, but never explicitly form H, and are thus not constrained by the requirement that A is square.
The Two Phases of SVD Computation

The Bi-Diagonalization in Phase 1 requires a finite number of operations $\sim O(mn^2)$.

The Diagonalization in Phase 2 is done iteratively, and requires “infinitely many” operations. In practice $O(n^2)$ operations are sufficient to identify the singular values.
Phase 1: Golub-Kahan Bidiagonalization

Phase-1-Bidiagonalization (for the SVD) is very similar to Phase-1-Hessenberg-transformation (for the QR-algorithm); the main difference here is that we are not constrained to a similarity transform, and hence we can apply a different sequence of unitary transforms from the left and right.

\[
\begin{bmatrix}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
\end{bmatrix}
\xrightarrow{U_1^*}
\begin{bmatrix}
0 & * & * & * \\
0 & * & * & * \\
0 & * & * & * \\
0 & * & * & * \\
\end{bmatrix}
\xrightarrow{V_1}
\begin{bmatrix}
* & * & 0 & 0 \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
* & * & * & * \\
* & * & * & * \\
0 & * & * & * \\
0 & * & * & * \\
\end{bmatrix}
\xrightarrow{U_2^*}
\begin{bmatrix}
* & * & * & * \\
0 & * & * & * \\
0 & * & * & * \\
0 & * & * & * \\
\end{bmatrix}
\xrightarrow{V_2}
\begin{bmatrix}
* & * & * & 0 \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
\end{bmatrix}
\]
The unitary matrices U_i and V_i are standard Householder reflectors

$$U^*AV = U_n^* \cdots U_1^* A V_1 \cdots V_{n-2} = \begin{bmatrix} * & * & & & & & \vline & * & * & * \hline * & * \end{bmatrix}$$

Essentially, this is a QR-factorization from the right and the left, so the total work ends up being

$$\text{Work} \sim 4mn^2 - \frac{4}{3}n^3.$$
Faster Methods for Phase 1

When \(m \gg n \), Golub-Kahan bidiagonalization is wasteful. In this case, a QR-factorization of \(A \), followed by a the Golub-Kahan bidiagonalization of \(R \) is better

\[
\begin{pmatrix}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
\end{pmatrix}
\xrightarrow{\text{Phase 1a}}
\begin{pmatrix}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
\end{pmatrix}
\xrightarrow{\text{Phase 1b}}
\begin{pmatrix}
* & * \\
* & * \\
* & * \\
* & * \\
\end{pmatrix}
\]

i.e. \(A \rightarrow Q^*A \rightarrow U^*Q^*AV \). This is known as the Lawson-Hanson-Chan bidiagonalization, and it requires

\[
\text{Work} \sim 2mn^2 + 2n^3.
\]
Golub-Kahan vs. Lawson-Hanson-Chan Bidiagonalization

Figure: Comparing the work for Golub-Kahan and Lawson-Hanson-Chan bidiagonalization. The break-even point is $\frac{m}{n} = \frac{5}{3}$.

Peter Blomgren, ⟨blomgren.peter@gmail.com⟩
It is possible to define a hybrid algorithm, which switches from Golub-Kahan to Lawson-Hanson-Chan bidiagonalization at the optimal point. We end up with a 3-step method, pictorially defined by

We perform Golub-Kahan bidiagonalization for k steps, until $\frac{m-k}{n-k} = 2$, and then perform Lawson-Hanson-Chan bidiagonalization to the remaining, non-diagonalized part of the matrix.
Hybrid Golub-Kahan / Lawson-Hanson-Chan Bidiagonalization

Figure: The work for the hybrid method is $\sim 4mn^2 - \frac{4}{3}n^3 - \frac{2}{3}(m-n)^3$, and provides a small improvement in the range $n < m < 2n$.

Peter Blomgren, ⟨blomgren.peter@gmail.com⟩

Computing the Singular Value Decomposition — (18/21)
Until recently (1990’s), the standard approach to Phase 2 was a variant of the QR-algorithm, applied to the bidiagonal matrix generated during phase 1.

More recently, *divide-and-conquer* algorithms, based on subdivision into smaller subproblems have gained favor in the computational community.

For instance Lapack’s *cgesdd*, *dgesdd*, *sgesdd*, and *zgesdd* algorithms are based on this paradigm.

One main advantage of this approach is that it can be parallelized, and thus phase 2 can be computed very rapidly in a multi-core environment.
Divide-and-Conquer: Vigorous Hand-waving

In essence divide-and-conquer works like this: We want to compute the diagonalization of B, which we decompose into three parts $B = B_1 + B_2 + \delta B$, where $\text{rank}(\delta B) = 1$:

$$
\begin{bmatrix}
 * & * & * \\
 * & * & \\
 * & * & *
\end{bmatrix}
= \begin{bmatrix}
 B_1 \\
 B_2
\end{bmatrix}
+ \begin{bmatrix}
 * \\
\end{bmatrix}
$$

Now, the diagonalization of the B_1 and B_2 blocks are computed (using the same strategy), then we (iteratively) correct for the rank-1 perturbation

$$
\begin{bmatrix}
 \Sigma(B_1) & * \\
 * & \Sigma(B_2)
\end{bmatrix}
\rightarrow
\begin{bmatrix}
 \Sigma(B)
\end{bmatrix}
$$
Phase 2 Implementations

We leave phase 2 implementations as suggested projects.

- Phase 2 implementation based on the QR-algorithm is quite straight-forward.

- Phase 2 implementation based on the divide-and-conquer paradigm requires careful consideration of all the “book-keeping” details. While not necessarily more difficult in a mathematical sense, the practical implementation of this approach is more challenging.