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Arnoldi Iteration  A~x = ~b

Last time we looked at the Arnoldi Iteration as a procedure for finding
eigenvalues. Next, we leverage it to solve A~x = ~b; introducing GMRES,
the “Generalized Minimal RESiduals” strategy.

Algorithm (Arnoldi Iteration)

1: ~b ← random(Rm×1),

2: ~q1 ← ~b/‖~b‖
3: for n ∈ {1, 2, . . .} do
4: ~v ← A~qn
5: for j ∈ {1, . . . , n} do
6: hj,n ← ~q∗

j ~v
7: ~v ← ~v − hj,n~qj
8: end for
9: hn+1,n ← ‖~v‖ TB-33.2: hn+1,n = 0 (Breakdown due to Convergence)

10: ~qn+1 ← ~v/hn+1,n

11: end for
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Structure, Notation, Idea

Problem Structure and Notation

We consider A ∈ C
m×m, with dim(null(A)) = 0; ~b ∈ C

m;

K (A, ~b, n) = span
(

~b,A~b, . . . ,An−1~b
)

; and ~x∗ = A−1~b (exact

solution).

GMRES Idea

At the nth step, ~xn ≈ ~x∗ is the vector ~xn ∈ K (A, ~b, n) which
minimizes ‖~rn‖, where ~rn = (~b−A~xn); i.e. each ~xn is the solution to
a least squares problem over an n-dimensional (Krylov) subspace.

Many iterative optimization methods do something similar (at least in
“spirit”) — seeking approximately optimal approximations in carefully
nested sequences of subspaces. (See [Math 693a])

Peter Blomgren 〈blomgren@sdsu.edu〉 26. GMRES — (4/24)



GMRES

GMRES: Matrix Polynomials

Setup and Notation
Moving Forward
Polynomial Approximation, and Convergence

GMRES: “Obvious” Strategy

With the Krylov matrix

Kn =



 ~b A~b · · · An−1~b



 ,

on hand, the “obvious” (ill-conditioned) way is to form

AKn =



 A~b A2~b · · · An~b



 ,

which has the column space range(AKn). We seek ~cn

~cn = argmin
~c∈Cn

‖(AKn)~c − ~b‖, and ~xn = Kn~cn.

Note: arg min “returns” the argument-that-minimizes the given function (objective).
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The “Obvious” Strategy Fails (in Finite Precision)

A QnRn-factorization of AKn would provide the necessary
components of the pseudo-inverse necessary for identification of
the solution to the least squares problem.

But, alas, this approach is numerically unstable, and wasteful (the
Rn factor is not needed.)

Instead, we use the Arnoldi Iteration to construct Krylov Matrices
Qn, whose columns satisfy

span (~q1, ~q2, . . . , ~qn) = K (A, ~b, n),

thus we can represent ~xn = Qn~yn rather than ~xn = Kn~cn; the
associated Least Squares Problem is

~yn = argmin
~y∈Cn

‖AQn~y − ~b‖.
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“Shrinking” the Problem 1 of 2

As stated ~yn = argmin~y∈Cn ‖AQn~y − ~b‖ is an (m × n)-dimensional
Least Squares Problem, but using the structure of Krylov
subspaces, its essential dimension is reduced to ((n + 1)× n):

We use the “Arnoldi relation” AQn = Qn+1H̃n to transform the
problem into

~yn = argmin
~y∈Cn

‖Qn+1H̃n~y − ~b‖,

multiplication by Q∗
n+1 preserves the norm, since both (Qn+1H̃n~y)

and ~b are — by construction — in the column space of Qn; we get

~yn = argmin
~y∈Cn

‖H̃n~y − Q∗
n+1

~b‖.
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“Shrinking” the Problem 2 of 2

Finally, by construction of Q‡
n, we get Q∗

n+1
~b = ‖~b‖~e1, so our

problem is

~yn = argmin
~y∈Cn

‖H̃n~y − β~e1‖, where β = ‖~b‖;

and ~xn = Qn~yn.

~e1 is as usual the first standard basis vector in the appropriate
space; it has a single “1” in the first component, and the
remaining components are “0”.

‡ span(Q1) = span(~b)
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GMRES Algorithm

Algorithm (GMRES)

1: ~b ← random(Rm×1),

2: β ← ‖~b‖

3: ~q1 ← ~b/β
4: for n ∈ {1, 2, . . . } do
5: ~v ← A~qn
6: for j ∈ {1, . . . , n} do
7: hj,n ← ~q∗

j ~v
8: ~v ← ~v − hj,n~qj
9: end for

10: hn+1,n ← ‖~v‖
11: ~qn+1 ← ~v/hn+1,n

12: ~yn ← argmin~y∈Cn ‖H̃n~y − β~e1‖
13: ~xn ← Qn~yn
14: end for
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Comments

In each step we solve an ((n + 1)× n) Least Squares Problem
with Hessenberg structure; the cost via QR-factorization is
O

(

n2
)

(exploiting the Hessenberg structure).

It is possible to save work by identifying an updating strategy
for the QnRn factorization of H̃n from Qn−1Rn−1 = H̃n−1.
The cost is then one Givens rotation∗ [T&B problems 10.4 & 35.4]

and O(n) work.

∗ The Givens rotations are the building blocks for a slightly (50%) more
expensive alternative to the Householder reflection method for computing
the QR-factorization.
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Polynomial Approximation 1 of 2

Polynomial Class Pn

Pn = { Polynomials of degree ≤ n, with p(0) = 1 },

i.e. the constant coefficient c0 = 1.

Just as in the Arnoldi Iteration case, we can discuss the GMRES
iteration in terms of polynomial approximations:

~xn = qn(A)~b

where qn(·) is a polynomial of degree (n− 1) with coefficients from
the vector ~cn = argmin~c∈Cn ‖AKn~c − ~b‖.
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Polynomial Approximation 2 of 2

With pn(z) = 1− zqn(z), we have

~rn = ~b − A~xn = (I − Aqn(A))~b = pn(A)~b,

for some pn ∈ Pn.

GMRES solves the following problem

GMRES Approximation Problem

Find pn ∈ Pn such that

pn = argmin
p∈Pn

‖p(A)~b‖.
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Invariance Properties

Theorem

Let the GMRES iteration be applied to a matrix A ∈ C
m×m, then

the following holds:

[Scale-Invariance] If A is changed to σA for some σ ∈ C, and ~b
is changed to σ~b, the residuals ~rn change to σ~rn.

[Invariance under Unitary Transformations] If A is changed to
UAU∗ for some unitary matrix U, and ~b is changed to U~b, the
residuals ~rn change to U∗~rn.
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Convergence

Theorem (GMRES Convergence Property#1: Monotonic Convergence)

GMRES converges monotonically,

‖~rn+1‖ ≤ ‖~rn‖.

This must be the case since we are minimizing over expanding
subspaces, i.e. K (A, ~b, n) ⊂ K (A, ~b, n + 1).

Theorem (GMRES Converence Property#2: m-step Convergence)

In infinite precision, GMRES converges in at most m steps

‖~rm‖ = 0.

This must be the case since K (A, ~b,m) = C
m.
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Convergence

The factor that gives us more useful convergence estimates is
related to the polynomial pn:

‖~rn‖

‖~b‖
≤ inf

pn∈Pn

‖pn(A)‖,

which brings us back to studying matrix polynomials related to
Krylov subspaces.
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How small can ‖pn(A)‖ be?

The standard way to get bounds on the behavior of ‖pn(A)‖ is to study
polynomials on the spectrum λ(A).

Definition

If p is a polynomial and S ⊂ C, then

‖p‖S := sup
z∈S

|p(z)|.

In the case where S is a finite set of points in the complex plane, the
supremum (sup) is just the maximum (max).

When A is diagonalizable A = VΛV−1, then

‖p(A)‖ ≤ ‖V ‖ ‖p(Λ)‖ ‖V−1‖ = κ(V ) ‖p‖λ(A).

κ(V ) is the conditioning of the Eigenbasis.
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How small can ‖pn(A)‖ be?

Theorem

At step n of the GMRES iteration, the residual ~rn satisfies

‖~rn‖

‖~b‖
≤ inf

pn∈Pn

‖pn(A)‖ ≤ κ(V ) inf
pn∈Pn

‖pn‖λ(A),

where λ(A) is the set of eigenvalues of A, V is a non-singular
matrix of eigenvectors (assuming A is diagonalizable), and
‖pn‖λ(A) = supz∈λ(A) |pn(z)|.

As long as κ(V ) is not too large — i.e. the closer A is to being
normal (unitarily diagonalizable) — and if polynomials pn which
decrease quickly on λ(A) exist, then GMRES converges quickly.
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T&B-35.1 1 of 2

m = 256; b = ones(m,1);

A = 2*eye(m) + 0.5 * randn(m)/sqrt(m);

κ(A) = 2.065 κ(V ) = 216.490
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T&B-35.1 2 of 2

The eigenvalue spectrum of A is roughly contained in the disk
of radius 1

2 , centered at z = 2.

‖p(A)‖ is approximately minimized by p(z) = (1− z/2)n;

λ(I − A/2) is roughly contained in the disc of radius 1
4 ,

centered at z = 0, so the convergence rate is
‖pn(A)‖ = ‖(I − A/2)n‖ ∼ 1

4n .

A is quite well-conditioned: κ(A) = 2.065.

A is “not too far” from normal: κ(V ) = 216.490.
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T&B-35.2 1 of 2

m = 256; b = ones(m,1); th = (0:(m-1))*pi / (m-1);

A = 2*eye(m) + 0.5 * randn(m)/sqrt(m) + diag(-2+2*sin(th)+i*cos(th));

κ(A) = 3.802 κ(V ) = 150.711
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T&B-35.2 2 of 2

The eigenvalue spectrum of A now “surrounds” the origin.

A is quite well-conditioned: κ(A) = 3.802.

A is not too far from normal: κ(V ) = 150.711.

The convergence is quite slow in this case (observed
∼ 1.23−n).

Note that the slowdown in convergence does not depend on
conditioning, but on the location of the eigenvalues.

Clearly, understanding the impact of the “structure” of the
eigenvalue spectrum is a non-trivial topic...
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T&B-35.2+

m = 256; b = ones(m,1); th = 1.5*(0:(m-1))*pi / (m-1);

A = 2*eye(m) + 0.5 * randn(m)/sqrt(m) + diag(-2+2*sin(th)+i*cos(th));

κ(A) = 3.9371 κ(V ) = 73.7831
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T&B-35.2++

m = 256; b = ones(m,1); th = 1.75*(0:(m-1))*pi / (m-1);

A = 2*eye(m) + 0.5 * randn(m)/sqrt(m) + diag(-2+2*sin(th)+i*cos(th));

κ(A) = 3.7551 κ(V ) = 58.6277
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T&B-35.2+++

m = 1024; b = ones(m,1); th = 6.00*(0:(m-1))*pi / (m-1);

A = 2*eye(m) + 0.5 * randn(m)/sqrt(m) + diag(-2+(1+th/(6*pi)).*(2*sin(th)+i*cos(th)));

κ(A) = 4.7704 κ(V ) = 40.2912
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