Numerical Matrix Analysis

Notes \#26 GMRES

```
            Peter Blomgren
    <blomgren@sdsu.edu)
Department of Mathematics and Statistics
            Dynamical Systems Group
    Computational Sciences Research Center
    San Diego State University
    San Diego, CA 92182-7720
    http://terminus.sdsu.edu/
    Spring 2024
(Revised: April 29, 2024)

\section*{Outline}
(1) GMRES
- Setup and Notation
- Moving Forward
- Polynomial Approximation, and Convergence
(2) GMRES: Matrix Polynomials
- \(\left\|p_{n}(A)\right\|\)
- Example: T\&B-35.1
- Example: T\&B-35.2

Arnoldi Iteration \(\rightsquigarrow A \vec{x}=\vec{b}\)
Last time we looked at the Arnoldi Iteration as a procedure for finding eigenvalues. Next, we leverage it to solve \(A \vec{x}=\vec{b}\); introducing GMRES, the "Generalized Minimal RESiduals" strategy.

\section*{Algorithm (Arnoldi Iteration)}

1: \(\vec{b} \leftarrow \operatorname{random}\left(\mathbb{R}^{m \times 1}\right)\),
2: \(\vec{q}_{1} \leftarrow \vec{b} /\|\vec{b}\|\)
3: for \(n \in\{1,2, \ldots\}\) do
4: \(\quad \vec{v} \leftarrow A \vec{q}_{n}\)
5: \(\quad\) for \(j \in\{1, \ldots, n\}\) do
6: \(\quad h_{j, n} \leftarrow \vec{q}_{j}^{*} \vec{v}\)
7: \(\quad \vec{v} \leftarrow \vec{v}-h_{j, n} \vec{q}_{j}\)
8: end for
9: \(\quad h_{n+1, n} \leftarrow\|\vec{v}\| \quad\) TB-33.2: \(h_{n+1, n}=0\) (Breakdown due to Convergence)
10: \(\quad \vec{q}_{n+1} \leftarrow \vec{v} / h_{n+1, n}\)
11: end for

Structure, Notation, Idea

\section*{Problem Structure and Notation}

We consider \(A \in \mathbb{C}^{m \times m}\), with \(\operatorname{dim}(\operatorname{null}(A))=0 ; \vec{b} \in \mathbb{C}^{m}\); \(K(A, \vec{b}, n)=\operatorname{span}\left(\vec{b}, A \vec{b}, \ldots, A^{n-1} \vec{b}\right)\); and \(\vec{x}_{*}=A^{-1} \vec{b}\) (exact solution).

\section*{GMRES Idea}

At the \(n^{\text {th }}\) step, \(\vec{x}_{n} \approx \vec{x}_{*}\) is the vector \(\vec{x}_{n} \in K(A, \vec{b}, n)\) which minimizes \(\left\|\vec{r}_{n}\right\|\), where \(\vec{r}_{n}=\left(\vec{b}-A \vec{x}_{n}\right)\); i.e. each \(\vec{x}_{n}\) is the solution to a least squares problem over an \(n\)-dimensional (Krylov) subspace.

Many iterative optimization methods do something similar (at least in "spirit") - seeking approximately optimal approximations in carefully nested sequences of subspaces. (See [Math 693A])

\section*{GMRES: "Obvious" Strategy}

With the Krylov matrix
\[
K_{n}=\left[\begin{array}{l|l|l|l} 
& \vec{b} & A \vec{b} & \cdots \\
& & & \\
A^{n-1} \vec{b}
\end{array}\right],
\]
on hand, the "obvious" (ill-conditioned) way is to form
\[
A K_{n}=\left[\begin{array}{l|l:l:l} 
& \vec{b} & A^{2} \vec{b} & \cdots \\
& & & A^{n} \vec{b}
\end{array}\right],
\]
which has the column space range \(\left(A K_{n}\right)\). We seek \(\vec{c}_{n}\)
\[
\vec{c}_{n}=\underset{\vec{c} \in \mathbb{C}^{n}}{\arg \min }\left\|\left(A K_{n}\right) \vec{c}-\vec{b}\right\|, \quad \text { and } \vec{x}_{n}=K_{n} \vec{c}_{n} .
\]

Note: arg min "returns" the argument-that-minimizes the given function (objective).

\section*{The "Obvious" Strategy Fails (in Finite Precision)}

A \(Q_{n} R_{n}\)-factorization of \(A K_{n}\) would provide the necessary components of the pseudo-inverse necessary for identification of the solution to the least squares problem.

But, alas, this approach is numerically unstable, and wasteful (the \(R_{n}\) factor is not needed.)

Instead, we use the Arnoldi Iteration to construct Krylov Matrices \(Q_{n}\), whose columns satisfy
\[
\operatorname{span}\left(\vec{q}_{1}, \vec{q}_{2}, \ldots, \vec{q}_{n}\right)=K(A, \vec{b}, n)
\]
thus we can represent \(\vec{x}_{n}=Q_{n} \vec{y}_{n}\) rather than \(\vec{x}_{n}=K_{n} \vec{c}_{n}\); the associated Least Squares Problem is
\[
\vec{y}_{n}=\underset{\vec{y} \in \mathbb{C}^{n}}{\arg \min }\left\|A Q_{n} \vec{y}-\vec{b}\right\| .
\]

\section*{"Shrinking" the Problem}

As stated \(\vec{y}_{n}=\arg \min _{\vec{y} \in \mathbb{C}^{n}}\left\|A Q_{n} \vec{y}-\vec{b}\right\|\) is an \((m \times n)\)-dimensional Least Squares Problem, but using the structure of Krylov subspaces, its essential dimension is reduced to \(((n+1) \times n)\) :
We use the "Arnoldi relation" \(A Q_{n}=Q_{n+1} \tilde{H}_{n}\) to transform the problem into
\[
\vec{y}_{n}=\underset{\vec{y} \in \mathbb{C}^{n}}{\arg \min }\left\|Q_{n+1} \tilde{H}_{n} \vec{y}-\vec{b}\right\|
\]
multiplication by \(Q_{n+1}^{*}\) preserves the norm, since both \(\left(Q_{n+1} \tilde{H}_{n} \vec{y}\right)\) and \(\vec{b}\) are - by construction - in the column space of \(Q_{n}\); we get
\[
\vec{y}_{n}=\underset{\vec{y} \in \mathbb{C}^{n}}{\arg \min }\left\|\tilde{H}_{n} \vec{y}-Q_{n+1}^{*} \vec{b}\right\| .
\]

\section*{"Shrinking" the Problem}

Finally, by construction of \(Q_{n}^{\ddagger}\), we get \(Q_{n+1}^{*} \vec{b}=\|\vec{b}\| \vec{e}_{1}\), so our problem is
\[
\vec{y}_{n}=\underset{\vec{y} \in \mathbb{C}^{n}}{\arg \min }\left\|\tilde{H}_{n} \vec{y}-\beta \vec{e}_{1}\right\|, \quad \text { where } \beta=\|\vec{b}\| ;
\]
and \(\vec{x}_{n}=Q_{n} \vec{y}_{n}\).
\(\overrightarrow{e_{1}}\) is as usual the first standard basis vector in the appropriate space; it has a single " 1 " in the first component, and the remaining components are " 0 ".
\(\ddagger \operatorname{span}\left(Q_{1}\right)=\operatorname{span}(\vec{b})\)

\section*{GMRES Algorithm}

\section*{Algorithm (GMRES)}

1: \(\vec{b} \leftarrow \operatorname{random}\left(\mathbb{R}^{m \times 1}\right)\),
2: \(\beta \leftarrow\|\vec{b}\|\)
3: \(\vec{q}_{1} \leftarrow \vec{b} / \beta\)
4: for \(n \in\{1,2, \ldots\}\) do
5: \(\quad \vec{v} \leftarrow A \vec{q}_{n}\)
6: \(\quad\) for \(j \in\{1, \ldots, n\}\) do
7: \(\quad h_{j, n} \leftarrow \vec{q}_{j}^{*} \vec{v}\)
8: \(\quad \vec{v} \leftarrow \vec{v}-h_{j, n} \vec{q}_{j}\)
9: end for
10: \(\quad h_{n+1, n} \leftarrow\|\vec{v}\|\)
11: \(\quad \vec{q}_{n+1} \leftarrow \vec{v} / h_{n+1, n}\)
12: \(\quad \vec{y}_{n} \leftarrow \arg \min _{\vec{y} \in \mathbb{C}^{n}}\left\|\tilde{H}_{n} \vec{y}-\beta \vec{e}_{1}\right\|\)
13: \(\quad \vec{x}_{n} \leftarrow Q_{n} \vec{y}_{n}\)
14: end for

\section*{Comments}
- In each step we solve an \(((n+1) \times n)\) Least Squares Problem with Hessenberg structure; the cost via \(Q R\)-factorization is \(\mathcal{O}\left(n^{2}\right)\) (exploiting the Hessenberg structure).
- It is possible to save work by identifying an updating strategy for the \(Q_{n} R_{n}\) factorization of \(\tilde{H}_{n}\) from \(Q_{n-1} R_{n-1}=\tilde{H}_{n-1}\). The cost is then one Givens rotation* [T\&B problems \(10.4 \& 35.4]\) and \(\mathcal{O}(n)\) work.
* The Givens rotations are the building blocks for a slightly (50\%) more expensive alternative to the Householder reflection method for computing the \(Q R\)-factorization.

\section*{Polynomial Approximation}

\section*{Polynomial Class \(P_{n}\)}
\[
P_{n}=\{\text { Polynomials of degree } \leq n, \text { with } p(0)=1\},
\]
i.e. the constant coefficient \(c_{0}=1\).

Just as in the Arnoldi Iteration case, we can discuss the GMRES iteration in terms of polynomial approximations:
\[
\vec{x}_{n}=q_{n}(A) \vec{b}
\]
where \(q_{n}(\cdot)\) is a polynomial of degree \((n-1)\) with coefficients from the vector \(\vec{c}_{n}=\arg \min _{\vec{c} \in \mathbb{C}^{n}}\left\|A K_{n} \vec{c}-\vec{b}\right\|\).

With \(p_{n}(z)=1-z q_{n}(z)\), we have
\[
\vec{r}_{n}=\vec{b}-A \vec{x}_{n}=\left(I-A q_{n}(A)\right) \vec{b}=p_{n}(A) \vec{b},
\]
for some \(p_{n} \in P_{n}\).
GMRES solves the following problem

\section*{GMRES Approximation Problem}

Find \(p_{n} \in P_{n}\) such that
\[
p_{n}=\underset{p \in P_{n}}{\arg \min }\|p(A) \vec{b}\|
\]

\section*{Invariance Properties}

\section*{Theorem}

Let the GMRES iteration be applied to a matrix \(A \in \mathbb{C}^{m \times m}\), then the following holds:
- [Scale-Invariance] If \(A\) is changed to \(\sigma A\) for some \(\sigma \in \mathbb{C}\), and \(\vec{b}\) is changed to \(\sigma \vec{b}\), the residuals \(\vec{r}_{n}\) change to \(\sigma \vec{r}_{n}\).
- [Invariance under Unitary Transformations] If \(A\) is changed to \(U A U^{*}\) for some unitary matrix \(U\), and \(\vec{b}\) is changed to \(U \vec{b}\), the residuals \(\vec{r}_{n}\) change to \(U^{*} \vec{r}_{n}\).

\section*{Convergence}

\section*{Theorem (GMRES Convergence Property\#1: Monotonic Convergence)}

GMRES converges monotonically,
\[
\left\|\vec{r}_{n+1}\right\| \leq\left\|\vec{r}_{n}\right\| .
\]

This must be the case since we are minimizing over expanding subspaces, i.e. \(K(A, \vec{b}, n) \subset K(A, \vec{b}, n+1)\).

\section*{Theorem (GMRES Converence Property\#2: m-step Convergence)}

In infinite precision, GMRES converges in at most \(m\) steps
\[
\left\|\vec{r}_{m}\right\|=0
\]

This must be the case since \(K(A, \vec{b}, m)=\mathbb{C}^{m}\).

\section*{Convergence}

The factor that gives us more useful convergence estimates is related to the polynomial \(p_{n}\) :
\[
\frac{\left\|\vec{r}_{n}\right\|}{\|\vec{b}\|} \leq \inf _{p_{n} \in P_{n}}\left\|p_{n}(A)\right\|,
\]
which brings us back to studying matrix polynomials related to Krylov subspaces.

\section*{How small can \(\left\|p_{n}(A)\right\|\) be?}

The standard way to get bounds on the behavior of \(\left\|p_{n}(A)\right\|\) is to study polynomials on the spectrum \(\lambda(A)\).

\section*{Definition}

If \(p\) is a polynomial and \(S \subset \mathbb{C}\), then
\[
\|p\|_{S}:=\sup _{z \in S}|p(z)|
\]

In the case where \(S\) is a finite set of points in the complex plane, the supremum (sup) is just the maximum (max).

When \(A\) is diagonalizable \(A=V \wedge V^{-1}\), then
\[
\|p(A)\| \leq\|V\|\|p(\Lambda)\|\left\|V^{-1}\right\|=\kappa(V)\|p\|_{\lambda(A)} .
\]
\(\kappa(V)\) is the conditioning of the Eigenbasis.

\section*{How small can \(\left\|p_{n}(A)\right\|\) be?}

\section*{Theorem}

At step \(n\) of the GMRES iteration, the residual \(\vec{r}_{n}\) satisfies
\[
\frac{\left\|\vec{r}_{n}\right\|}{\|\vec{b}\|} \leq \inf _{p_{n} \in P_{n}}\left\|p_{n}(A)\right\| \leq \kappa(V) \inf _{p_{n} \in P_{n}}\left\|p_{n}\right\|_{\lambda(A)}
\]
where \(\lambda(A)\) is the set of eigenvalues of \(A, V\) is a non-singular matrix of eigenvectors (assuming \(A\) is diagonalizable), and \(\left\|p_{n}\right\|_{\lambda(A)}=\sup _{z \in \lambda(A)}\left|p_{n}(z)\right|\).

As long as \(\kappa(V)\) is not too large - i.e. the closer \(A\) is to being normal (unitarily diagonalizable) - and if polynomials \(p_{n}\) which decrease quickly on \(\lambda(A)\) exist, then GMRES converges quickly.

\section*{T\&B-35.1}
\[
\begin{gathered}
m=256 ; b=\operatorname{ones}(m, 1) ; \\
A=2 * \operatorname{eye}(m)+0.5 * \operatorname{randn}(m) / \operatorname{sqrt}(m) ;
\end{gathered}
\]

Eigenvalue Spectrum

\(\kappa(A)=2.065\)

\[
\kappa(V)=216.490
\]

\section*{T\&B-35.1}
- The eigenvalue spectrum of \(A\) is roughly contained in the disk of radius \(\frac{1}{2}\), centered at \(z=2\).
- \(\|p(A)\|\) is approximately minimized by \(p(z)=(1-z / 2)^{n}\);
- \(\lambda(I-A / 2)\) is roughly contained in the disc of radius \(\frac{1}{4}\), centered at \(z=0\), so the convergence rate is
\[
\left\|p_{n}(A)\right\|=\left\|(I-A / 2)^{n}\right\| \sim \frac{1}{4^{n}} .
\]
- \(A\) is quite well-conditioned: \(\kappa(A)=2.065\).
- \(A\) is "not too far" from normal: \(\kappa(V)=216.490\).

\section*{T\&B-35.2}
\[
\begin{gathered}
m=256 ; b=\operatorname{ones}(m, 1) ; \operatorname{th}=(0:(m-1)) * p i /(m-1) ; \\
A=2 * \operatorname{eye}(m)+0.5 * \operatorname{randn}(m) / \operatorname{sqrt}(m)+\operatorname{diag}(-2+2 * \sin (\operatorname{th})+i * \cos (t h)) ;
\end{gathered}
\]

Eigenvalue Spectrum

\[
\kappa(A)=3.802
\]

\[
\kappa(V)=150.711
\]

\section*{T\&B-35.2}
- The eigenvalue spectrum of \(A\) now "surrounds" the origin.
- \(A\) is quite well-conditioned: \(\kappa(A)=3.802\).
- \(A\) is not too far from normal: \(\kappa(V)=150.711\).
- The convergence is quite slow in this case (observed \(\sim 1.23^{-n}\) ).
- Note that the slowdown in convergence does not depend on conditioning, but on the location of the eigenvalues.
- Clearly, understanding the impact of the "structure" of the eigenvalue spectrum is a non-trivial topic...

\section*{T\&B-35.2+}
\[
\begin{aligned}
m & =256 ; b=\operatorname{ones}(m, 1) ; \text { th }=1.5 *(0:(m-1)) * p i /(m-1) ; \\
A & =2 * \operatorname{eye}(m)+0.5 * \operatorname{randn}(m) / \operatorname{sqrt}(m)+\operatorname{diag}(-2+2 * \sin (t h)+i * \cos (t h)) ;
\end{aligned}
\]

Eigenvalue Spectrum


Relative Residual


\section*{T\&B-35.2++}
\[
\begin{gathered}
\mathrm{m}=256 ; \mathrm{b}=\operatorname{ones}(\mathrm{m}, 1) ; \mathrm{th}=1.75 *(0:(\mathrm{m}-1)) * \mathrm{pi} /(\mathrm{m}-1) ; \\
\mathrm{A}=2 * \operatorname{eye}(\mathrm{~m})+0.5 * \operatorname{randn}(\mathrm{~m}) / \operatorname{sqrt}(\mathrm{m})+\operatorname{diag}(-2+2 * \sin (\mathrm{th})+\mathrm{i} * \cos (\mathrm{th})) ;
\end{gathered}
\]

Eigenvalue Spectrum


Relative Residual


\section*{T\&B-35.2 \({ }^{+++}\)}
\[
\mathrm{m}=1024 ; \mathrm{b}=\operatorname{ones}(\mathrm{m}, 1) ; \mathrm{th}=6.00 *(0:(\mathrm{m}-1)) * \mathrm{pi} /(\mathrm{m}-1) ;
\]
\[
\mathrm{A}=2 * \operatorname{eye}(\mathrm{~m})+0.5 * \operatorname{randn}(\mathrm{~m}) / \operatorname{sqrt}(\mathrm{m})+\operatorname{diag}(-2+(1+\operatorname{th} /(6 * \mathrm{pi})) \cdot *(2 * \sin (\operatorname{th})+\mathrm{i} * \cos (\mathrm{th}))) ;
\]
```

