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Student Learning Targets, and Objectives SLOs: Linear Algebra Introduction

Student Learning Targets, and Objectives

Target Linear Algebra Fundamentals — “Objects”

Objective Vectors in R
n and C

n

Objective Real Rm×n and Complex C
m×n matrices

Objective Vandermonde Matrix; connection to polynomials and linear
least-squares (LLSQ)

Objective Range (image) and Nullspace (kernel) of a matrix; matrix rank

Target Linear Algebra Fundamentals — “Actions”

Objective Matrix-Vector Product (two points of view); linearity
Objective Matrix-Matrix Producs
Objective Matrix Transpose

Target Linear Algebra Fundamentals — “Properties”

Objective Equivalent Statements for Invertible Matrices
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Linear Algebra Intro, Review / Crash Course

Linear Algebra: Introduction / Review / Crash Course

We start off by a quick review(?) of basic linear algebra concepts and
algorithms.

Depending on your background this will either be a review of things you
know, possibly in a new notation / framework, or a crash course.

• • • • •

An n-dimensional vector ~x is an n-tuple∗ of either real ~x ∈ R
n or complex

~x ∈ C
n numbers, in this class all vectors are column vectors, i.e.

~x ∈ R
n ⇒ ~x =








x1
x2
...
xn







, where xi ∈ R, i = 1, 2, . . . , n.

∗ In python “tuples” (1,2,3) are immutable objects, “lists” [1,2,3] are mutable; so
generally you want a python list to represent a vector.
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Linear Algebra Intro, Review / Crash Course

Vectors: Transpose, Addition & Subtraction

We express a row vector using the transpose, i.e.

~x ∈ R
n ⇒ ~xT =

[
x1 x2 . . . xn

]
.

Vector addition and subtraction

~x , ~y ∈ R
n ⇒ ~x ± ~y =








x1
x2
...
xn







±








y1
y2
...
yn







=








x1 ± y1
x2 ± y2

...
xn ± yn







,

or ~z = ~x + ~y where

zi = xi + yi , i = 1, 2, . . . , n.

Comment: In [Math 524] we use F as a placeholder for “either R or C”, since both are
fields. We are not adopting this notation for this class, and will occasionally
use F to represent finite-precision floating-point numbers.
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Linear Algebra Intro, Review / Crash Course

Matrices Matrix-Vector Product

An (m × n) matrix (m rows, n columns) A with real or complex
entries is represented

A =








a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n
...

...
...

. . .
...

am1 am2 am3 . . . amn







,

{
aij ∈ R, or
aij ∈ C

We write A ∈ R
m×n (or A ∈ C

m×n.)

If A ∈ R
m×n and ~x ∈ R

n, then the matrix-vector product,
~b = A~x , is well defined, and ~b ∈ R

m, where

bi =
n∑

j=1

aijxj , i = 1, 2, . . . ,m.
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Linear Algebra Intro, Review / Crash Course

Matrix-Vector Product... ...Functional Definition








b1
b2
...
bm







=








a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n
...

...
...

. . .
...

am1 am2 am3 . . . amn

















x1
x2
x3
...
xn










b2 = a21x1 + a22x2 + a23x3 + · · ·+ a2nxn

Note: n multiplications and (n−1) additions are needed to compute each

entry in ~b. In total (m ·n) multiplications and (m ·(n−1)) additions
are performed. We say that the matrix-vector product requires
O(m · n) operations. Here, we are interpreting the matrix-vector
product as a sequence of inner/dot-products of the rows of A and
~x .

Note: This is the most “natural” definition for computational purposes...
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Linear Algebra Intro, Review / Crash Course

Matrix-Vector Product... ...as a Linear Combination








b1
b2
...
bm







=








a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n
...

...
...

. . .
...

am1 am2 am3 . . . amn

















x1
x2
x3
...
xn










= x1








a11
a21
...

am1







+ x2








a12
a22
...

am2







+ x3








a13
a23
...

am3







+ · · ·+ xn








a1n
a2n
...

amn








= x1~a1 + x2~a2 + x3~a3 + · · ·+ xn~an

Note: In most settings, this is the best definition for “intellectual” purposes...

Peter Blomgren 〈blomgren@sdsu.edu〉 2. Linear Algebra Introduction / Review — (8/27)



Linear Algebra Intro, Review / Crash Course

Matrix-Vector Product: Linearity

The map ~x 7→ A~x (from R
n to R

m, or from C
n to C

m) is linear,
i.e. ∀~x , ~y ∈ R

n (Cn), and α, β ∈ R (C)

A(~x + ~y) = A~x + A~y

A(α~x) = αA~x

A(α~x + β~y) = αA~x + βA~y

Note: Every linear map from R
n to R

m can be expressed as multiplication
by an (m × n)-matrix.

More generally, every linear map from a vector space to another
vector space, can — given bases for the two spaces — be described
by a matrix. [Math 524]
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Linear Algebra Intro, Review / Crash Course

Example: The Vandermonde Matrix

Given a set of points {x1, x2, . . . , xm}, we can express the
evaluation of the polynomial

p(x) = c0 + c1x + c2x
2 + · · ·+ cn−1x

n−1

at those points using the (m × n) Vandermonde matrix A, and
the vector ~c , containing the polynomial coefficients

A =








1 x1 x21 · · · xn−1
1

1 x2 x22 · · · xn−1
2

...
...

...
...

1 xm x2m · · · xn−1
m







, ~c =










c0
c1
c2
...

cn−1










Forming ~p = A~c gives us an m-vector containing the values of
p(xi ), i = 1, 2, . . . ,m.
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Linear Algebra Intro, Review / Crash Course

The Vandermonde Matrix... ...Linear Least Squares

Evaluating polynomials using matrix notation may seem cute and
useless?!?

But, wait a minute — this notation looks vaguely familiar from the
discussion of linear least squares (LLSQ) problems from
[Math 541]RIP (or possibly [Math 340]).

In case you forgot (or never studied) LLSQ: The goal is to find the
best model in a class (i.e. low-dimensional polynomials) to
measured data (observations yi , made at the points xi ).

The discrepancy (error) between the model and the observations is
measured in the sum-of-squares norm.
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Linear Algebra Intro, Review / Crash Course

Linear Least Squares: Explicit Example 1 of 4

Find the best straight line p(x) = c0 + c1x fitting the observations
(x , y) ∈ {(0, 1), (1, 2), (2, 2.5), (3, 4), (4, 7)}.

We have the (5× 2) Vandermonde matrix A =
[

~1 ~x
]

, the 2-vector

~c (of polynomial coefficients) and the 5-vector ~y (of
measurements):

A =









1 0
1 1
1 2
1 3
1 4









, ~c =

[
c0
c1

]

, ~y =









1
2
2.5
4
7









The Linear Least Squares Problem: Find the ~c which minimizes
the least squares error ‖A~c − ~y‖22.
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Linear Algebra Intro, Review / Crash Course

Linear Least Squares: Explicit Example 2 of 4

0 1 2 3 4
0

1

2

3

4

5

6

7

Figure: The data points (xi , yi ) and the straight line corresponding to the
best fit (in the least-squares-sense), i.e. p∗(x) = c∗0 + c∗1 x .
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Linear Algebra Intro, Review / Crash Course

Linear Least Squares: Explicit Example 3 of 4

Given a model ~c , we can evaluate to corresponding linear
polynomial p(x) = c0 + c1x at the points xi : ~p = A~c . The
pointwise error in the model is ~e = ~p − ~y :

~p =









c0 + 0c1
c0 + 1c1
c0 + 2c1
c0 + 3c1
c0 + 4c1









, ~e =









c0 + 0c1 − 1
c0 + 1c1 − 2
c0 + 2c1 − 2.5
c0 + 3c1 − 4
c0 + 4c1 − 7.5









The least squares error is given by

rLSQ = ‖~e‖22 =
5∑

i=1

e2i = ‖A~c − ~y‖22
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Linear Algebra Intro, Review / Crash Course

Linear Least Squares: Explicit Example 4 of 4

In order to identify the optimal choice of ~c , we compute the partial
derivatives with respect to the model parameters, and set those
expressions to be zero (in order to identify the optimum)

∂rLSQ
∂c0

=
∂rLSQ
∂c1

= 0.

After some work (which is not central to this discussion), we get
the Normal Equations

ATA~c = AT~y ⇔ AT (A~c − ~y) = 0

Even though the matrix A is (usually) tall and skinny (here
(5× 2)), the matrix ATA is square; here (2× 2). The (formal)
solution ~c = [ATA]−1AT~y , to this linear system gives us the
coefficients for the optimal polynomial (the red line on slide 13).
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Linear Algebra Intro, Review / Crash Course

Unanswered Questions... ...to be Revisited

The previous LLSQ example raises more questions than it answers,
the most important one “Would anyone in his/her right mind
form the matrix ATA, then invert it [ATA]−1, then multiply
the vector AT~y by the inverse?”

The answer is “No!” ...which raises even more questions!

This class is all about how to solve linear systems... taking issues
like (i) speed; (ii) accuracy; and (iii) stability into consideration.

We will revisit the questions raised by the example in more detail
later... However, we will use the example to introduce some further
linear algebra functionality and terminology...
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Linear Algebra Intro, Review / Crash Course

Matrix-Matrix Product

The matrix-matrix product B = AC is well defined if the matrix C
has as many rows as the matrix A has columns

Bk×n = Ak×m · Cm×n

The elements of B are defined by

biℓ =
m∑

k=1

aikckℓ

Sometimes it is useful to think of the columns of B , ~bℓ as linear
combinations of the columns of A:

~bℓ = A~cℓ =
m∑

k=1

ckℓ~ak
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The Transpose of a Matrix (AT )

The transpose of a matrix A = {aij} is the matrix AT = {aji}, e.g.:

A =







a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44






, AT =







a11 a21 a31 a41
a12 a22 a32 a42
a13 a23 a33 a43
a14 a24 a34 a44







— just mirror across the diagonal — but can be quite
(memory-access) expensive, especially for large matrices.

For complex matrices C = {cij}, the complex (Hermitian)
transpose is given by C ∗ = {c∗ji}, where c∗ is the complex
conjugate of c :

c = a+ bi , c∗ = a− bi .

Note: Mathematically, the transpose is a no-op; but if implemented carelessly, it
can trigger a lot of data-shuffling.

Peter Blomgren 〈blomgren@sdsu.edu〉 2. Linear Algebra Introduction / Review — (18/27)



Linear Algebra Intro, Review / Crash Course

The Range and Nullspace of a Matrix A

The range (or image) of a matrix, written range(A), is the set of
vectors that can be expressed as a linear combination of the
columns of Am×n, i.e.

range(A) = {~y ∈ R
m : ~y = A~x , for some ~x ∈ R

n}

we say “range(A) is the space spanned by the columns of A.”

The nullspace (or kernel) of a matrix A, written null(A), is the set
of vectors that satisfy A~x = 0, i.e.

null(A) = {~x ∈ R
n : A~x = 0}

Note: In [Math 254], we tend to talk about the image and kernel; and in [Math 524]
we lean in the direction of the range – nullspace terminology.
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The Rank of a Matrix Am×n

The column rank of a matrix is the dimension of range(A), its
“column space.” The row rank of a matrix is the dimension of its
“row space,” or range(AT ).

The column rank is always equal to the row rank (we will see the
proof of this in a few lectures), hence we only refer to the Rank of
a matrix

rank(A)

An (m× n) matrix, A ∈ R
m×n, is of full rank if it has the maximal

possible rank min(m, n).

If an (m × n) matrix, A ∈ R
m×n where m ≥ n, has full rank; then

it must have n linearly independent columns.
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Recall: The Normal Equations

ATA~c = AT~y ⇔ AT (A~c − ~y) = 0

Due to the “tall-and-skinniness” of A, the equation A~c − ~y = 0
does not necessarily have a solution.

Given a vector ~c we can define the residual, ~r(~c) = A~c − ~y , which
measures how far (point-wise) from solving the system we are.

We notice that the solution to the normal equations requires that
the residual is in the nullspace of AT .

The solution is in range(A) such that the residual is orthogonal
(perpendicular) to range

(
AT

)
.

Note: The solution can also be thought of as the orthogonal projection of ~y onto
range(A). We will adopt this view soon...
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The Inverse of a Matrix A 1 of 2

An invertible or nonsingular matrix A is a square matrix of full rank.

The m columns of an invertible matrix form a basis for the whole space
R

m (or Cm) — any vector ~x ∈ R
m can be expressed as a unique linear

combination of the columns of A.

In particular we can express the unit vector ~ej (which has a 1 in position j
and zeros in all other positions):

~ej =

m∑

i=1

zij~ai , ⇔ ~ej = A~zj

If we play this game for j = 1 . . .m, we get

[~e1 ~e2 . . . ~em]
︸ ︷︷ ︸

Im×m

= A [~z1 ~z2 . . . ~zm]
︸ ︷︷ ︸

Z
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The Inverse of a Matrix A 2 of 2

We have
Im×m = A · Z

The (m ×m) matrix Im×m which has ones on the diagonal and
zeros everywhere else is the identity matrix.

The matrix Z is the inverse of A.

Any square nonsingular matrix A has a unique inverse, written
A−1, which satisfies

A · A−1 = A−1 · A = I
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Equivalent Statements for a Square Matrix A ∈ C
m×m

For a matrix A ∈ C
m×m the following are equivalent

A has an inverse A−1

The linear system A~x = ~b has a unique solution ~x , ∀~b ∈ R
m

rank(A) = m

range(A) = C
m

null(A) = {~0}

0 is not an eigenvalue of A

0 is not a singular value of A

det(A) 6= 0

Note: The determinant is rarely useful in numerical algorithms —
it is usually too expensive to compute.
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Homework #1 Due Date in Canvas/Gradescope

TB-1.2: Suppose the masses m1, m2, m3, m4 are located at positions x1, x2, x3,
x4 in a line and connected by springs with spring constants k12, k23,
k34 whose natural lengths of extension are ℓ12, ℓ23, ℓ34. Let f1, f2, f3, f4
denote the rightward forces on the masses, e.g. f1 = k12((x2−x1)−ℓ12).

(a) Write the (4×4) matrix equation relating the column vectors
~f and ~x . Let K denote the matrix in this equation.

(b) What are the units of the entries of K in the physics sense
(e.g. mass × time, distance / mass, etc...)

(c) What are the units of det(K ), again in the physics sense?

(d) Suppose K is given numerical values based on the units
meters, kilograms and seconds. Now the system is rewritten
with a matrix K ′ based on centimeters, grams, and seconds.
What is the relationship of K ′ to K? What is the relationship
of det(K ′) to det(K )?
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Illustration: Homework #1

m1 m2 m3 m4

x1 x2 x3 x4

f4f3f1 f2

Figure: Note that the illustration is not necessarily complete. In
particular, recall Newton’s 3rd Law of Motion: When one body
exerts a force on a second body, the second body simultaneously
exerts a force equal in magnitude and opposite in direction to that
of the first body.

Notes: You may want to look up Newton’s 3rd Law, and Hooke’s Law.

The purpose of this assignment is to (1)remind outselves that ma-
trices and vectors usually describe something “real”; and (2)work
on problem-solving skills for a potentially unfamiliar problem.
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Homework AI-Policy Spring 2024

AI-era Policies — SPRING 2024

AI-3 Documented: Students can use AI in any manner for this
assessment or deliverable, but they must provide appropriate
documentation for all AI use.

This applies to ALL MATH-543 WORK during the SPRING 2024
semester.

The goal is to leverage existing tools and resources to generate HIGH
QUALITY SOLUTIONS to all assessments.

You MUST document what tools you use and HOW they were used
(including prompts); AND how results were VALIDATED.

BE PREPARED to DISCUSS homework solutions and AI-strategies. Par-
ticipation in the in-class discussions will be an essential component
of the grade for each assessment.
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