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Student Learning Targets, and Objectives SLOs:The Singular Value Decomposition

Student Learning Targets, and Objectives

Target The Singular Value Decomposition

Objective Existence and Uniqueness statements
Objective Impact: “diagonalizability”

Target The SVD <« Matrix Properties

Objective rank, range, null-space, norms
Objective relation to eigenvalues, determinant
Objective Linearly Optimal Low Rank Approximations
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Student Learning Targets, and Objectives SLOs:The Singular Value Decomposition

Gratuitous “Al”

Google Bard, 2004-02-01: create an image of a nerdy mathematician preparing slides

for a lecture on computational matrix algebra

“'Sup, bruh?!? | invert giant matrices
by hand. What's your superpower?!?”
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Recap
Existence and Uniqueness of the SVD
The SVD

Vector and Matrix Norm Inequalities
Missing Proof

Last Time

e Holder and Cauchy-[Bunyakovsky]-Schwarz inequalities:

. H . 1 1 v CBS . .
| < VlpIwWllg, —+—==1,  |[V?w| < [[V]2[|w]2

e Bounds on the norms of matrix products

IABI| < [IA[]BI]

e General matrix norms: The Frobenius norm ||A||%Z = > |a;|%.
e A geometrical introduction to the SVD.
e The reduced vs. the full SVD.
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Recap
Existence and Uniqueness of the SVD
The SVD

Vector and Matrix Norm Inequalities
Missing Proof

Missing Proof

We ended last lecture with: “If we can show that every matrix A
has a SVD, then it follows that the image of the unit sphere under
any linear map is a hyper-ellipse..."”

We now turn our attention to showing that this indeed is the case...

1.3127 0.6831 0.6124
Figure: The unit-sphere S?, and the image AS?, where A= | 0.0120 1.0928 0.6085
0.3840  0.0353  1.0158 B

INIVERSITY

Peter Blomgren (blomgren@sdsu.edu) 5. The Singular Value Decomposition — (6/28)



Recap
Existence and Uniqueness of the SVD
The SVD

The Theorem
Proof

Theorem: A= UXV* Existence and Uniqueness

Theorem (Existence and Uniqueness of the SVD)

Every matrix A € C™*" has a singular value decomposition
A = UXV*, where

u e cmxm is unitary
vV e Cm™” is unitary
Y e RmMxn is diagonal, non-negative.

Furthermore, the singular values {o\} are uniquely determined,
and if A is square and the oy are distinct, the left {dy} and right
{Vi} singular vectors are uniquely determined up to complex scalar
factors s € C : |s| = 1.

We present a proof that is very “matrix-y,” a completely different approach is
presented [MATH 524 (NOTES#7.1-7.2)]

SAN DIEGO STATE
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Recap
Existence and Uniqueness of the SVD
The SVD

The Theorem
Proof

Theorem: A= UXV* Proof, 1 of 5

THE PROOF IS BY INDUCTION. Let o7 = ||A]|2. There must exist
i € C™ ||ti||l2 =1, and vj € C", ||Vi]|2 = 1, such that
A\71 = (71!.712

/q Tk el
o1 = @, for some x*. Let v = i;
[[x* ]2 [[x*(]2
Clearly, Av; = p, for some p. Let 7 = || BH , and o1 = ||p]|2.
Pli2
Consider any extension (3 Movie, see also [Mati 524]) ¢ 7 6 an

orthonormal basis {Vi}x=1,.., of C" and of & to an orthonormal
basis { i }k=1,..n of C™. Let Uy and Vi denote the matrices with
columns iy and Vj, respectively.

UNveRsITY
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Recap
Existence and Uniqueness of the SVD
The SVD

Theorem: A= UXV* Proof, 2 of 5

The Theorem
Proof

We have (by construction)

N P e T

where 0 is a column-vector of size (m—1), and w* is a row vector
of size (n — 1), and the matrix B € C(m=1)x(n=1),

Now,

7 %)%

v

2 2
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Recap
Existence and Uniqueness of the SVD
The SVD

Theorem: A= UXV* Proof, 3 of 5

The Theorem
Proof

We have ||S||2 > y/0? + w*w, and S = UfAV4. Since U; and V4
are unitary, we must have ||S||2 = ||Al|2 = o1.

*

Therefore | w||3 = w*w = 0, which means w = 0, hence

UrAV; = :[UOJ ?3} & A:Ul[%l %]vl*

If m=1, or n=1, we are done. Otherwise, the sub-matrix B
describes the action of A on the subspace orthogonal to V4.

We can now recursively (inductively) apply the same process to B,
and establish existence of the SVD of A:

1 0* o1 0* 1 0* * " "
A=Us | = 1 > Vi = USV*.
1[0 UQHO zzHo VJ 1

UNIVERSITY
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Recap
Existence and Uniqueness of the SVD
The SVD

Theorem: A= UXV* Proof, 4 of 5

The Theorem
Proof

THE UNIQUENESS PROOF REMAINS —

[Geometric Version] If the singular values O are distinct, then the
lengths of the semi-axes of the hyper-ellipse AS("~1) must be
distinct.

The semi-axes themselves are determined by the geometry, up to a
complex sign. Ogeometric-

[Algebraic Version] 01 = ||Al|2 is uniquely determined. Now,
suppose that in addition to Vi, there is another linearly
independent vector wy with ||wy|| = 1, and [|Aw || = o3.

We define a unit vector v», orthogonal to vi, as a linear
combination of v; and wx:

L oW — (Fw)v L g
h =5 = h=wi— ")
[wa — (' wa)va 2 .
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Recap
Existence and Uniqueness of the SVD
The SVD

The Theorem
Proof

Theorem: A= UXV* Proof, 5 of 5

Since [|A||2 = o1, ||AVh||2 < o1; but this must be an equality,
otherwise since for some ¢

wy = cos(f)in +sin(0)va, Vi L Vb, cos?(6) +sin?(f) =1

we would have HAI/I71H2 < 01.

This vector v, is a second right singular vector corresponding to
the singular value o7; it will lead to the appearance of a y (the last
(n — 1) elements of V{*\») with ||y]|2 =1, and ||By||2 = o1.
Hence, if the singular vector vj is not unique, then the

corresponding singular value oy is not simple (01 % 02). Therefore
there cannot exist a vector wy as above.

Now, the uniqueness of the remaining singular vectors follows by
induction. [, gepraic

SAN DIEGO STATE
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Recap “Every Matrix is Diagonal”
Existence and Uniqueness of the SVD Singular Values and Eigenvalues
The SVD The SVD ~~ Matrix Properties

The SVD: A= UXV*

Bold Statement

SVD enables us to say that every matrix is “diagonal” — as
long as we use the proper bases for the domain € C”, and range
(image) € C™ spaces.

Changing Bases — Rotating the Map!

Any b € C™ can be expanded in the basis of the left singular vectors of A
(i.e. the columns of U), and any X € C" in the basis of the right singular
vectors of A (i.e. the columns of V)...

The coordinates for these expansions are
b =Ub X =V=X
Now, the relation b = AX can be written in terms of b’ and X':
b=AX & U'bh=U'AX=U"ULV'X & b =z%
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Recap “Every Matrix is Diagonal”

Existence and Uniqueness of the SVD Singular Values and Eigenvalues
The SVD The SVD ~~ Matrix Properties
Singular Value vs. Eigenvalue Decomposition 1of2

The idea of diagonalizing a matrix by a change of basis is the
foundation for the study of eigenvalues.

A non-defective square matrix A can be expressed as a diagonal
matrix of eigenvalues A, if the range (image) and domain are
expressed in a basis of the eigenvectors. The eigenvalue
decomposition of A € C™ ™ js

A= XAX"T

where A = diag(A1,..., Am), and the columns of X € C™*™
contain linearly independent eigenvectors of A.
We can change basis for the expression b = AX:

b =X"'h  %=X'x

and find that

.
b’ = NAX
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Recap “Every Matrix is Diagonal”
Existence and Uniqueness of the SVD Singular Values and Eigenvalues
The SVD The SVD ~~ Matrix Properties

Singular Value vs. Eigenvalue Decomposition 2 of 2

The SVD and Eigenvalue Decomposition

The SVD, A= UXV* Eigenvalue Decomp., A = XAX !

Properties

Uses two different bases — the set of right
and left singular vectors.

Uses one basis — the eigenvectors.

Uses orthonormal bases

Uses a basis which is generally not orthog-
onal.

All matrices (even rectangular ones) have a
singular value decomposition.

Not all matrices (even square ones) have an
eigenvalue decomposition.

(Typical) Application Relevance

Behavior of A itself, or A=L.
Information in A.

Behavior of Ak, etA.

Peter Blomgren (blomgren@sdsu.edu)
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Recap “Every Matrix is Diagonal”

Existence and Uniqueness of the SVD Singular Values and Eigenvalues
The SVD The SVD ~» Matrix Properties
The SVD ~» Matrix Properties The Rank

The SVD has many connections with other fundamental topics in linear
algebra...
In the following slides, assume that A € C™*", let p = min(m, n), and let

r < p denote the number of non-zero singular values of A; finally let
span(Xy, X, . . ., Xm) denote the space spanned by the vectors

X1, X2, ..., Xm, i.e. all linear combinations of the vectors.

Theorem (Rank of a Matrix)
rank(A) = r.

Proof (Rank of a Matrix)

The rank of a diagonal matrix is the number of non-zero entries. In the
decomposition A = UL V™, both U and V are full rank. Therefore
rank(A) = rank(X) = r. O

Peter Blomgren (blomgren@sdsu.edu) 5. The Singular Value Decomposition — (16/28)



Recap “Every Matrix is Diagonal”

Existence and Uniqueness of the SVD Singular Values and Eigenvalues
The SVD The SVD ~» Matrix Properties
The SVD ~~» Matrix Properties The Range (Image) and Null-space

Theorem (Range (Image) and Nullspace of a Matrix)
range(A) = span(uy, i, . . ., Uy),

null(A) = span(V,41, Vr42,. .-, Vp).

Proof (Range (Image) and Nullspace of a Matrix)

This follows directly from the change of bases induced by
A = UXV* and the fact that

N

cm,
Cn.

range(T) = span(éi,&,..., &)

N

null(¥) = span(é41,€42,...,€n)
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Recap “Every Matrix is Diagonal”

Existence and Uniqueness of the SVD Singular Values and Eigenvalues
The SVD The SVD ~» Matrix Properties
The SVD ~» Matrix Properties Euclidean and Frobenius Norms

Theorem (Euclidean and Frobenius Matrix Norms)

||A||2:0'1, and ||A||F: \/0'%+U§++O'%

Proof (Euclidean and Frobenius Matrix Norms)

We already established that o1 = ||A]|2 in the existence proof,
since A = UYL V* with unitary U and V,

[All2 = [[E]l2 = max{loi|} = o1.

Now, since the Frobenius norm is invariant under unitary
transformations, [|AllF = [Z]lr = \/oF + 03 + - + 2.

SAN DIEGO STATE
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Recap “Every Matrix is Diagonal”

Existence and Uniqueness of the SVD Singular Values and Eigenvalues
The SVD The SVD ~» Matrix Properties
The SVD ~» Matrix Properties Singular Values / Eigenvalues
Theorem

The non-zero singular values of A are the square roots of the
non-zero eigenvalues of A*A or AA* (these two matrices have the
same non-zero eigenvalues).

Proof (Singular Values from AA* or A*A)

From

A*A = (USV*)*(UZV*) = VE*U*USV* = V(E'E)V* = V(D ) V1
we see that A*A and ¥*¥ = diag(of,03,...,03) have the same
eigenvalues, \; =02, i =1,2,...,p.

If n > p, we have an additional (n — p) zero eigenvalues.

The same argument works for AA* (just substitute m for n)...
v

Un
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Recap “Every Matrix is Diagonal”

Existence and Uniqueness of the SVD Singular Values and Eigenvalues
The SVD The SVD ~» Matrix Properties
The SVD ~» Matrix Properties Singular Values / Eigenvalues

Theorem (ox = |\«| for Hermitian Matrices)

If A= A*, then the singular values of A are the absolute values of the
eigenvalues of A. Note: In the language of [IVIATH 524] A is self-adjoint.
V.

Proof (part 1)

The eigenvalues of a Hermitian matrix are real since if (A, V) is an
eigenvalue-eigenvector pair (A # 0), then

(V, A7) = VAV = (A7) = (A7, V)
(V, A7) = (V,\V) =NV, V)
(V, A7) = (A7, V) = (AV, V) = (\V, V) = (¥, V)

Hence, A = A* = X € R. Further, a Hermitian matrix has a complete set
of orthogonal eigenvectors. This means that we can diagonalize A

A= QAQ* = Q(|A|sign(A))Q*

for some unitary matrix Q and A a real diagonal matrix...

s Ducosare
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Recap “Every Matrix is Diagonal”

Existence and Uniqueness of the SVD Singular Values and Eigenvalues
The SVD The SVD ~» Matrix Properties
The SVD ~» Matrix Properties Singular Values / Eigenvalues

Proof (part 2)

Since sign(A)Q* is unitary, we have
A= Q[N (sign(A)Q7)
u = v

a SVD of A, where o; = |\;|, i =1,2,...,p. (An appropriate
ordering of the columns of U guarantees that the singular values
are ordered in decreasing order.) [J

SAN DIEGO STATE
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Recap “Every Matrix is Diagonal”
Existence and Uniqueness of the SVD Singular Values and Eigenvalues
The SVD The SVD ~» Matrix Properties

The SVD ~» Matrix Properties The Determinant

Theorem
For A e C™™ |det(A)| =[]i2; oi.

Proof (Magnitude of Determinant is Product of Singular Values)
|det(A)| = |det(ULV™*)| = |det(V)] - |det(X)]- |det(V*)]
— 1 Jdet(E)]-1 = [det(E)] = [T o

where we have used the fact that det(AB) = det(A)det(B) and
that the magnitude of the determinant of a unitary matrix is one. )

nnnnnnnnnnn
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Recap “Every Matrix is Diagonal”

Existence and Uniqueness of the SVD Singular Values and Eigenvalues
The SVD The SVD ~» Matrix Properties
The SVD ~~» Matrix Properties Low-Rank Approximations, 1 of 5

This discussion is a significant part of WHY this course exists!

Given the SVD of A, A= UXV*, we can represent A as a sum of r
rank-one matrices

.
A= g Ok Uk Vi
k=1

This is certainly not the only way to write A as a sum of rank-one
matrices: it could be written as a sum of its m rows, n columns, or
even its mn entries...

The decomposition above has the special property that if we
truncate the sum at v < r, then that partial sum captures as much
“energy” of A as possible for a rank-v sub-matrix of A.

We formalize this in a theorem...

San AT
UNveRsITY

Peter Blomgren (blomgren@sdsu.edu) 5. The Singular Value Decomposition — (23/28)



Recap “Every Matrix is Diagonal”

Existence and Uniqueness of the SVD Singular Values and Eigenvalues
The SVD The SVD ~» Matrix Properties
The SVD ~» Matrix Properties Low-Rank Approximations, 2 of 5

Theorem (Optimal Low-Rank Approximation)
For any v with 0 < v < r, define

v
A, = Z oKUK Vi
k=1
if v = p = min(m, n), define 0,41 = 0. Then

[A=Ayll2=inf |JA=Bll2 =011
B ecmxn

rank(B) < v
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Recap “Every Matrix is Diagonal”

Existence and Uniqueness of the SVD Singular Values and Eigenvalues
The SVD The SVD ~» Matrix Properties
The SVD ~~» Matrix Properties Low-Rank Approximations, 2.5 of 5

Low Rank Approximations in DS/Machine Learning/Generative Al

Low-Rank Adaptation (LoRA) is a family of methods for fine-tuning large-scale
Al/Machine Learning models in an efficient manner.

“Base-Models” (e.g. LLMs like ChatGPT; or image-generative models like the Stable
Diffusion SD1.5 or SDXL models) are trained on extremely large data sets — this
training uses significant resources, i.e. they are “expensive.”

Very Simplified: fine-tuning is “retraining” (parts of) the model using a smaller
specific data set; e.g. published peer-reviewed mathematics research papers, or images
created in a particular “style.”

The Model parameters use usually collected in a large matrix A € RM*N; and the
fine-tuning computes “a few” — collected in much smaller matrices B € RM*P, and
C € RP*N 5o that the effective fine-tuned model can be represented as

A+ BC

M and N are usually “quite large” (> 1,000), and p “small” (< 10). 9
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Recap “Every Matrix is Diagonal”

Existence and Uniqueness of the SVD Singular Values and Eigenvalues
The SVD The SVD ~» Matrix Properties
The SVD ~~» Matrix Properties Low-Rank Approximations, 3 of 5

Proof (Optimal Low-Rank Approximation)

Suppose that there is some B with rank(B) < v such that
A= Blla < [|A=All2 = o1

Then there is an (n — v)-dimensional subspace null(B) = W C C" such
that w e W= Bw = 0. Thus Vw € W:

[AW 2 = [[(A = B)w|2 < [A = Bll2[|Wll2 < o1 Wll2-

Now, W is an (n — v)-dimensional subspace where ||AW||2 < opy1]|W /2.
But there is a (v 4 1)-dimensional subspace where ||AW |2 > o 41||W]|2
— V =span(uy, ..., u,11) the space spanned by the first (v + 1) right
singular vectors of A.

Since the sum of the dimensions of the two subspaces
(v+ 1)+ (n—v) = (n+1) exceeds n, there must be a non-zero vector
lying in both. This is a contradiction.
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Recap “Every Matrix is Diagonal”

Existence and Uniqueness of the SVD Singular Values and Eigenvalues
The SVD The SVD ~» Matrix Properties
The SVD ~~» Matrix Properties Low-Rank Approximations, 4 of 5

The preceding theorem has a nice geometrical interpretation.

Ponder the issue of finding the best approximation of an
n-dimensional hyper-ellipsoid.

= The best approximation by a 2-dimensional ellipse must be the
ellipse spanned by the largest and second largest axis.

= We get the best 3-dimensional approximation by adding the span
of the 3rd largest axis, etc...

This is useful in many applications, e.g. signal compression
(images, audio, etc.), analysis of large data sets, etc.

U
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Recap “Every Matrix is Diagonal”

Existence and Uniqueness of the SVD Singular Values and Eigenvalues
The SVD The SVD ~» Matrix Properties
The SVD ~~» Matrix Properties Low-Rank Approximations, 5 of 5

We state the following theorem, and leave the proof as an “exercise.”

Theorem
For the matrix A, as defined in the previous theorem

|4~ Al = inf A= Bl = \/gg+1+05+2+...+03
c mXn

rank(B) < v

We will get back to how to compute the SVD later. For now, we note
that it is a powerful tool which can be used to

e find the numerical rank of a matrix;

e find the orthonormal basis for the range (image) and null-space;

e computing ||A||2;

e computing low-rank approximations.

The SVD shows up in least squares fitting, regularization, intersection of
subspaces (video games?), and many, many other problems.
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