Numerical Matrix Analysis

Notes #10 — Conditioning and Stability Floating Point Arithmetic / Stability

> Peter Blomgren (blomgren@sdsu.edu)

Department of Mathematics and Statistics

Dynamical Systems Group Computational Sciences Research Center San Diego State University San Diego, CA 92182-7720

http://terminus.sdsu.edu/

Spring 2024

(Revised: January 18, 2024)

Peter Blomgren (blomgren@sdsu.edu)

10. Floating Point Arithmetic / Stability

-(1/25)

Student Learning Targets, and Objectives

SLOs: Floating Point Arithmetic & Stability

Student Learning Targets, and Objectives

Target Floating Point Arithmetic

Objective Know how to express a floating point unmber using the

IEEE-785-1985 (and successor) standard

Objective Know how to express the limits of the floating point

environment using $\varepsilon_{\mathsf{mach}}$.

Target Stability

Objective Know the definitions of absolute and relative error.

Objective Know the formal and informal definitions of stable and

backward stable algorithms.

— (3/25)

Outline

- Student Learning Targets, and Objectives
 - SLOs: Floating Point Arithmetic & Stability
- Pinite Precision
 - IEEE Binary Floating Point (from Math 541^{R.I.P.})
 - Non-representable Values a Source of Errors
- Second Property Pr
 - "Theorem" and Notation
 - Fundamental Axiom of Floating Point Arithmetic
 - Example
- 4 Stability
 - Introduction: What is the "correct" answer?
 - Accuracy Absolute and Relative Error
 - Stability, and Backward Stability

Peter Blomgren (blomgren@sdsu.edu)

10. Floating Point Arithmetic / Stability

-(2/25)

Finite Precision Floating Point Arithmetic Stability

IEEE Binary Floating Point (from Math 541 R.I.P.) Non-representable Values — a Source of Errors

Finite Precision

A 64-bit real number, double

The Binary Floating Point Arithmetic Standard 754-1985 (IEEE — The Institute for Electrical and Electronics Engineers) standard specified the following layout for a 64-bit real number:

$$s c_{10} c_{9} \ldots c_{1} c_{0} m_{51} m_{50} \ldots m_{1} m_{0}$$

Where

Symbol	Bits	Description
S	1	The sign bit — 0=positive, 1=negative
С	11	The characteristic (exponent)
m	52	The mantissa

$$r = (-1)^s 2^{c-1023} (1+f), \quad c = \sum_{n=0}^{10} c_n 2^n, \quad f = \sum_{k=0}^{51} \frac{m_k}{2^{52-k}}$$

— (4/25)

Peter Blomgren (blomgren@sdsu.edu)

10. Floating Point Arithmetic / Stability

Finite Precision

Floating Point Arithmetic

IEEE Binary Floating Point (from Math 541 R.I.P.) Non-representable Values — a Source of Errors

IEEE-754-1985 Special Signals

In order to be able to represent **zero**, $\pm \infty$, and **NaN** (not-a-number). the following special signals are defined in the IEEE-754-1985 standard:

Туре	S (1 bit)	C (11 bits)	M (52 bits)
signaling NaN	u	2047 (max)	.0uuuuu—u (*)
quiet NaN	u	2047 (max)	.1uuuuu—u
negative infinity	1	2047 (max)	.000000—0
positive infinity	0	2047 (max)	.000000—0
negative zero	1	0	.000000—0
positive zero	0	0	.000000—0

(*) with at least one 1 bit.

From http://www.freesoft.org/CIE/RFC/1832/32.htm

If you think IEEE-754-1985 is too "simple." There are some interesting additions in the IEEE 754-2008 revision; e.g. fused-multiply-add (fma) operations.

Some environments (e.g. AVX/AVX2/AVX-512 extensions) combine multiple fma operations into a single step, e.g. performing a four-element dot-product on two 128-bit SIMD registers $a_0 \times b_0 + a_1 \times b_1 + a_2 \times b_2 + a_3 \times b_3$ with single cycle throughput.

Peter Blomgren (blomgren@sdsu.edu)

Peter Blomgren (blomgren@sdsu.edu)

10. Floating Point Arithmetic / Stability

10. Floating Point Arithmetic / Stability

-(5/25)

Finite Precision

Floating Point Arithmetic Stability IEEE Binary Floating Point (from Math 541 R.I.P.) Non-representable Values — a Source of Errors

Examples: Finite Precision

$$r = (-1)^s 2^{c-1023} (1+f), \quad c = \sum_{k=0}^{10} c_n 2^k, \quad f = \sum_{k=0}^{51} \frac{m_k}{2^{52-k}}$$

Example #3 — (The Largest Positive Real Number)

$$r_3 = (-1)^0 \cdot 2^{1023} \cdot \left(1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{51}} + \frac{1}{2^{52}}\right)$$

= $2^{1023} \cdot \left(2 - \frac{1}{2^{52}}\right) \approx 1.798 \times 10^{308}$

Finite Precision Floating Point Arithmetic

IEEE Binary Floating Point (from Math 541R.I.P.) Non-representable Values — a Source of Errors

Examples: Finite Precision

$$r = (-1)^s 2^{c-1023} (1+f), \quad c = \sum_{k=0}^{10} c_n 2^k, \quad f = \sum_{k=0}^{51} \frac{m_k}{2^{52-k}}$$

Example #1 - 3.0

$$r_1 = (-1)^0 \cdot 2^{2^{10} - 1023} \cdot \left(1 + \frac{1}{2}\right) = 1 \cdot 2^1 \cdot \frac{3}{2} = 3.0$$

Example #2 — (The Smallest Positive Real Number)

$$r_2 = (-1)^0 \cdot 2^{0-1023} \cdot (1+2^{-52}) \approx 1.113 \times 10^{-308}$$

Peter Blomgren (blomgren@sdsu.edu)

10. Floating Point Arithmetic / Stability

-(6/25)

Finite Precision Floating Point Arithmetic

IEEE Binary Floating Point (from Math 541R.I.P.)

Non-representable Values — a Source of Errors

That's Quite a Range!

In summary, we can represent

$$\left\{\,\pm\,0,\quad \pm 1.113\times 10^{-308},\quad \pm 1.798\times 10^{308},\quad \pm\infty,\quad {\tt NaN}\right\}$$

and a whole bunch of numbers in

$$(-1.798 \times 10^{308}, -1.113 \times 10^{-308}) \cup (1.113 \times 10^{-308}, 1.798 \times 10^{308})$$

Bottom line: Over- or under-flowing is usually not a problem in IEEE floating point arithmetic.

The problem in **scientific computing** is what we **cannot** represent.

Finite Precision Floating Point Arithmetic IEEE Binary Floating Point (from Math 541R.I.	.P. ₎	Finite Precision	IEEE Binary Floating Point (from Math 541R.I.P.)
Floating Point Arithmetic Stability Non-representable Values — a Source of Errors	,	Floating Point Arithmetic Stability	Non-representable Values — a Source of Errors
Fun with Matlab	Integers	Something is Missing — Gaps in the	e Representation
		There are gaps in the floating-po	int representation!
$(2^{53}+2) - 2^{53} = 2$		Given the representation	
$egin{array}{cccccccccccccccccccccccccccccccccccc$		0 0000000000 00000000000000000000000000	000000000000000000000000000000000000000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		for the value $v_1 = 2^{-1023}(1 + 2^{-1023})$	⁵²),
		the next larger floating-point value is	
$ ag{realmax} = 1.7977 \cdot 10^{308} ext{realmin} = 2.2251 \cdot 10^{-308}$		0 0000000000 00000000000000000000000000	000000000000000000000000000000000000000
$\mathtt{eps} = 2.2204 \cdot 10^{-16}$	i.e. the value $v_2 = 2^{-1023}(1 + 2^{-51})$		
The smallest not-exactly-representable integer is		The difference between these two ($\sim 10^{-324}$).	o values is $2^{-1023} \cdot 2^{-52} = 2^{-1075}$
$(2^{53}+1)=9,007,199,254,740,993.$	SAN DIEGO STATE UNIVERSITY	Any number in the interval (v_1, v_2)	(2) is not representable!
Peter Blomgren (blomgren@sdsu.edu) 10. Floating Point Arithmetic / Stability	— (9/25)	Peter Blomgren (blomgren@sdsu.edu)	10. Floating Point Arithmetic / Stability —
Finite Precision Floating Point Arithmetic Stability Finite Precision Floating Precision Floating Point Arithmetic Stability IEEE Binary Floating Point (from Math 541R.I. Non-representable Values — a Source of Errors	.P.)	Finite Precision Floating Point Arithmetic Stability	IEEE Binary Floating Point (from Math 541R.I.P.) Non-representable Values — a Source of Errors
Something is Missing — Gaps in the Representation	2 of 3	Something is Missing — Gaps in the	e Representation
A gap of 2^{-1075} doesn't seem too bad	At the other extreme, the difference between		
However, the size of the gap depend on the value itself	0 11111111110 111111111111111111111111		
Consider $r = 3.0$		and the next value	
0 1000000000 10000000000000000000000000	0 1111111110 1111111111111111111111111		
and the next value	is $2^{1023} \cdot 2^{-52} = 2^{971} \approx 1.996 \cdot 10^{292}$.		
0.1000000000.10000000000000000000000000	That's a fairly significant gap!!! (A number large enough to		
Here, the difference is $2 \cdot 2^{-52} = 2^{-51}$ ($\sim 10^{-16}$).	comfortably count all the particle		
In general, in the interval $[2^n, 2^{n+1}]$ the gap is 2^{n-52} .		See, e.g.	
in general, in the interval [2], 2 is Julie gap is 2 is 3.		https://physics.stackexchange.com/ questions/47941/dumbed-down-explanation-how-scientis	sts-know-the-number-of-atoms-in-the-universe
	SAN DIIGO STATE UNIVERSITY	quadration in the particular of the particular in the particular i	are named of atoms in dictumverse
Peter Blomgren (blomgren@sdsu.edu) 10. Floating Point Arithmetic / Stability	— (11/25)	Peter Blomgren (blomgren@sdsu.edu)	10. Floating Point Arithmetic / Stability —

1 of 3

— (10/25)

3 of 3

— (12/25)

The Relative Gap

It makes more sense to factor the exponent out of the discussion and talk about the relative gap:

Stability

Exponent	Gap	Relative Gap (Gap/Exponent)
2^{-1023}	2^{-1075}	$2^{-52} pprox 2.22 imes 10^{-16}$
2^1	2^{-51}	2^{-52}
2^{1023}	2 ⁹⁷¹	2^{-52}

Any difference between numbers smaller than the local gap is not representable, e.g. any number in the interval

$$\left[3.0, \, 3.0 + \frac{1}{2^{51}}\right)$$

is represented by the value 3.0.

Peter Blomgren (blomgren@sdsu.edu)

10. Floating Point Arithmetic / Stability

-(13/25)

Finite Precision Floating Point Arithmetic Stability

"Theorem" and Notation

Fundamental Axiom of Floating Point Arithmetic Example

The Floating Point $\varepsilon_{\mathsf{mach}}$

The relative gap defines $\varepsilon_{\text{mach}}$; and

 $\forall x \in \mathbb{R}$, there exists ε with $|\varepsilon| \leq \varepsilon_{\text{mach}}$, such that $fl(x) = x(1+\varepsilon)$.

In 64-bit floating point arithmetic $\varepsilon_{\rm mach} \approx 2.22 \times 10^{-16}$.

In matlab, eps returns this value.

In Python, print(np.finfo(float).eps)

Peter Blomgren (blomgren@sdsu.edu)

In C, #include <float.h> to define the value of _DBL_EPSILON_

10. Floating Point Arithmetic / Stability

— (15/25)

The Floating Point "Theorem"

"Theorem"

Floating point "numbers" represent intervals!

Finite Precision

Floating Point Arithmetic

Notation

We let fl(x) denote the floating point representation of $x \in \mathbb{R}$.

Let the symbols \oplus , \ominus , \otimes , and \oslash denote the floating-point operations: addition, subtraction, multiplication, and division.

 $arepsilon_{\mathsf{mach}}$

Peter Blomgren (blomgren@sdsu.edu)

10. Floating Point Arithmetic / Stability

-(14/25)

Finite Precision Floating Point Arithmetic

"Theorem" and Notation Fundamental Axiom of Floating Point Arithmetic

Floating Point Arithmetic

All floating-point operations are performed up to some precision, i.e.

$$x \oplus y = fl(x + y),$$
 $x \ominus y = fl(x - y),$
 $x \otimes y = fl(x * y),$ $x \oslash y = fl(x/y)$

This paired with our definition of $\varepsilon_{\text{mach}}$ gives us

Axiom (The Fundamental Axiom of Floating Point Arithmetic)

For an *n*-bit floating point environment —

For all $x, y \in \mathbb{F}_{64}$ (where \mathbb{F}_{64} is the set of 64-bit floating point numbers), there exists ε with $|\varepsilon| \leq \varepsilon_{\mathsf{mach}}(\mathbb{F}_{64})$, such that

$$x \oplus y = (x + y)(1 + \varepsilon),$$
 $x \ominus y = (x - y)(1 + \varepsilon),$
 $x \otimes y = (x * y)(1 + \varepsilon),$ $x \oslash y = (x/y)(1 + \varepsilon)$

That is every operation of floating point arithmetic is exact up to a relative error of size at most $\varepsilon_{\text{mach}}$.

Example: Floating Point Error

Scaled by 10^{10}

Consider the following polynomial on the interval [1.92, 2.08]:

$$p(x) = (x-2)^9$$

= $x^9 - 18x^8 + 144x^7 - 672x^6 + 2016x^5 - 4032x^4 + 5376x^3 - 4608x^2 + 2304x - 512$

Peter Blomgren (blomgren@sdsu.edu)

10. Floating Point Arithmetic / Stability

-(17/25)

Finite Precision Floating Point Arithmetic Stability Introduction: What is the "correct" answer? Accuracy — Absolute and Relative Error

Stability, and Backward Stability

Stability: Introduction 1 of 3

With the knowledge that "(floating point) errors happen," we have to re-define the concept of the "right answer."

Previously, in the context of **conditioning** we defined a mathematical problem as a map

$$f:X\mapsto Y$$

where $X \subseteq \mathbb{C}^n$ is the set of data (input), and $Y \subseteq \mathbb{C}^m$ is the set of solutions.

10. Floating Point Arithmetic / Stability

Stability

680 pages of details...

Peter Blomgren (blomgren@sdsu.edu)

10. Floating Point Arithmetic / Stability

-(18/25)

Finite Precision Floating Point Arithmetic Stability

Introduction: What is the "correct" answer? Accuracy — Absolute and Relative Error

Stability, and Backward Stability

Stability: Introduction 2 of 3

We now define an implementation of an algorithm — on a floating-point device, where ${\mathbb F}$ satisfies the fundamental axiom of floating point arithmetic — as another map

$$\tilde{f}:X\mapsto Y$$

i.e. $\tilde{f}(\vec{x}) \in Y$ is a numerical solution of the problem.

Wiki-History: Pentium FDIV bug (≈ 1994)

The Pentium FDIV bug was a bug in Intel's original Pentium FPU. Certain FP division operations performed with these processors would produce incorrect results. According to Intel, there were a few missing entries in the lookup table used by the divide operation algorithm.

Although encountering the flaw was extremely rare in practice (Byte Magazine estimated that 1 in 9 billion FP divides with random parameters would produce inaccurate results), both the flaw and Intel's initial handling of the matter were heavily criticized. Intel ultimately recalled the defective processors.

— (20/25)

Introduction: What is the "correct" answer?
Accuracy — Absolute and Relative Error

Stability, and Backward Stability

Stability: Introduction

3 of 3

The task at hand is to make **useful** statements about $\tilde{f}(\vec{x})$.

Even though $\tilde{f}(\vec{x})$ is affected by many factors — roundoff errors, convergence tolerances, competing processes on the computer*, etc; we will be able to make (maybe surprisingly) clear statements about $\tilde{f}(\vec{x})$.

* Note that depending on the memory model, the previous state of a memory location *may* affect the result in *e.g.* the case of cancellation errors: If we subtract two 16-digit numbers with 13 common leading digits, we are left with 3 digits of valid information. We tend to view the remaining 13 digits as "random." But really, there is nothing random about what happens inside the computer (we hope!) — the "randomness" will depend on what happened previously...

Peter Blomgren (blomgren@sdsu.edu)

10. Floating Point Arithmetic / Stability

— (21/25)

Finite Precision
Floating Point Arithmetic
Stability

Introduction: What is the "correct" answer?

Accuracy — Absolute and Relative Error

Stability, and Backward Stability

Interpretation: $\mathcal{O}(\varepsilon_{\mathsf{mach}})$

Since all floating point errors are functions of $\varepsilon_{\rm mach}$ (the relative error in each operation is bounded by $\varepsilon_{\rm mach}$), the relative error of the algorithm must be a function of $\varepsilon_{\rm mach}$:

$$rac{\| ilde{f}(ec{x}) - f(ec{x})\|}{\|f(ec{x})\|} = e(arepsilon_{\mathsf{mach}})$$

The statement

$$e(\varepsilon_{\mathsf{mach}}) = \mathcal{O}(\varepsilon_{\mathsf{mach}})$$

means that $\exists C \in \mathbb{R}^+$ such that

$$e(\varepsilon_{\mathsf{mach}}) \leq C\varepsilon_{\mathsf{mach}}, \quad \mathsf{as} \quad \varepsilon_{\mathsf{mach}} \searrow 0$$

In practice $\varepsilon_{\rm mach}$ is fixed; the notation means that **if** we were to decrease $\varepsilon_{\rm mach}$, **then** our error would decrease at least proportionally to $\varepsilon_{\rm mach}$.

— (23/25)

Finite Precision Floating Point Arithmetic Stability Introduction: What is the "correct" answer?

Accuracy — Absolute and Relative Error

Stability, and Backward Stability

Accuracy

The absolute error of a computation is

$$\|\tilde{f}(\vec{x}) - f(\vec{x})\|$$

and the relative error is

$$\frac{\|\tilde{f}(\vec{x}) - f(\vec{x})\|}{\|f(\vec{x})\|}$$

this latter quantity will be our standard measure of error.

If \tilde{f} is a good algorithm, we expect the relative error to be small, of the order $\varepsilon_{\rm mach}$. We say that \tilde{f} is **accurate** if $\forall \vec{x} \in X$

$$rac{\| ilde{f}(ec{x}) - f(ec{x})\|}{\|f(ec{x})\|} = \mathcal{O}(arepsilon_{\mathsf{mach}})$$

Peter Blomgren (blomgren@sdsu.edu)

10. Floating Point Arithmetic / Stability

— (22/25)

Finite Precision
Floating Point Arithmetic
Stability

Introduction: What is the "correct" answer? Accuracy — Absolute and Relative Error Stability, and Backward Stability

Stability

If the **problem** $f: X \mapsto Y$ is ill-conditioned, then the accuracy goal

$$rac{\| ilde{f}(ec{x}) - f(ec{x})\|}{\|f(ec{x})\|} = \mathcal{O}(arepsilon_{\mathsf{mach}})$$

may be unreasonably ambitious. Instead we aim for stability.

We say that \tilde{f} is a **stable algorithm** if $\forall \vec{x} \in X$

$$rac{\| ilde{f}(ec{x}) - f(ilde{ec{x}})\|}{\|f(ilde{ec{x}})\|} = \mathcal{O}(arepsilon_{\mathsf{mach}})$$

for some $\tilde{\vec{x}}$ with

$$rac{\| ilde{ec{x}}-ec{x}\|}{\|ec{x}\|}=\mathcal{O}(arepsilon_{\mathsf{mach}})$$

"A stable algorithm gives approximately the right answer, to approximately the right question."

— (24/25)

Peter Blomgren (blomgren@sdsu.edu)

10. Floating Point Arithmetic / Stability

Finite Precision
Floating Point Arithmetic

Introduction: What is the "correct" answer? Accuracy — Absolute and Relative Error

Stability Stability, and Backward Stability

Backward Stability

For many algorithms we can tighten this somewhat vague concept of stability.

An algorithm \tilde{f} is **backward stable** if $\forall \vec{x} \in X$

$$\tilde{f}(\vec{x}) = f(\tilde{\vec{x}})$$

for some $\tilde{\vec{x}}$ with

$$rac{\| ilde{ec{x}}-ec{x}\|}{\|ec{x}\|}=\mathcal{O}(arepsilon_{\mathsf{mach}})$$

"A backward stable algorithm gives exactly the right answer, to approximately the right question."

Next: Examples of stable and unstable algorithms; Stability of Householder triangularization.

Peter Blomgren (blomgren@sdsu.edu)

10. Floating Point Arithmetic / Stability

— (25/25)

