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Student Learning Targets, and Objectives SLOs: Floating Point Arithmetic & Stability

Student Learning Targets, and Objectives

Target Backward Stability of Basic Floating Point Arithmetic

Objective Know the procedure for showing that ⊕, ⊖, ⊗, and ⊘ are
backward stable.

Objective

Target ...

Objective
Objective
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Last Time: Key Floating Point Axioms

Axiom (Floating Point Representation)

∀x ∈ R, there exists ε with |ε| ≤ εmach,
such that fl(x) = x(1 + ε).

Axiom (The Fundamental Axiom of Floating Point Arithmetic)

For all x , y ∈ Fn (where Fn is the set of n-bit floating point
numbers), there exists ε with |ε| ≤ εmach(Fn), such that

x ⊕ y = (x + y)(1 + ε), x ⊖ y = (x − y)(1 + ε),
x ⊗ y = (x ∗ y)(1 + ε), x ⊘ y = (x/y)(1 + ε)

Above, fl : R 7→ Fn is the “function” which takes a real number
and produces its n-bit floating point representation.
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Last Time: Key Stability Definitions 1 of 2

Definition (Stable Algorithm)

We say that f̃ is a stable algorithm if ∀~x ∈ X

‖f̃ (~x) − f (~̃x)‖
‖f (~̃x)‖

= O(εmach)

for some ~̃x with
‖~̃x − ~x‖
‖~x‖ = O(εmach)

“A stable algorithm gives approximately the right answer, to
approximately the right question.”
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Last Time: Key Stability Definitions 2 of 2

Definition (Backward Stable Algorithm)

An algorithm f̃ is backward stable if ∀~x ∈ X

f̃ (~x) = f (~̃x)

for some ~̃x with
‖~̃x − ~x‖
‖~x‖ = O(εmach)

“A backward stable algorithm gives exactly the right answer, to
approximately the right question.”
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Stability: The Road Ahead

• Algorithms: Backward stable, stable, and unstable.

• Backward Error Analysis — linking conditioning (which is a
property of the underlying mathematical problem) and stability
(which is a property of the algorithm).

• Detailed Stability Analysis (backward error analysis) of House-
holder Triangularization.
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Basic Operations
Inner Product; Outer Product
x + C

Floating Point Arithmetic Backward Stability, 1 of 4

We start off by showing that our algorithmic building blocks — the
floating point operations ⊕, ⊖, ⊗, and ⊘ are backward stable.

We look at subtraction, which may be the biggest cause for
concern due to cancellation errors. For ~x = [x1, x2]∗ ∈ C

2 the
subtraction problem corresponds to the function

f (x1, x2) = x1 − x2,

and the subtraction algorithm corresponds to the function

f̃ (x1, x2) = fl(x1) ⊖ fl(x2).

Peter Blomgren 〈blomgren@sdsu.edu〉 11. Stability... a Closer Look — (8/28)



Stability
Stability of Floating Point Arithmetic

Examples
Accuracy

Basic Operations
Inner Product; Outer Product
x + C

Floating Point Arithmetic 2 of 4

We apply the floating point representation axiom, and write

fl(x1) = x1(1 + ε1), fl(x2) = x2(1 + ε2)

for some |ε1|, |ε2| ≤ εmach.

By the fundamental axiom of floating point arithmetic, we have

fl(x1) ⊖ fl(x2) = (fl(x1) − fl(x2))(1 + ε3)

for some |ε3| ≤ εmach.
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Floating Point Arithmetic 3 of 4

Combining these results give us

fl(x1) ⊖ fl(x2) = [x1(1 + ε1) − x2(1 + ε2)](1 + ε3)
= x1(1 + ε1)(1 + ε3) − x2(1 + ε2)(1 + ε3)
= x1(1 + ε4)

︸ ︷︷ ︸

x̃1

− x2(1 + ε5)
︸ ︷︷ ︸

x̃2

,

for some |ε4|, |ε5| ≤ 2εmach + O(ε2
mach).

Hence f̃ (x1, x2) = x̃1 − x̃2 ≡ f (x̃1, x̃2), where

|x̃1 − x1|
|x1|

= O(εmach),
|x̃2 − x2|

|x2|
= O(εmach).

Hence floating point subtraction is a backward stable operation.
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Floating Point Arithmetic 4 of 4

We have shown that floating point subtraction is a backward
stable operation.

However, from [Lecture#9] we know that subtraction is
potentially ill-conditioned:

κ(~x) =
‖J(~x)‖∞

‖f (~x)‖/‖~x‖∞
=

2 max{|x1|, |x2|}
|x1 − x2|

.

These are NOT contradictory statements!
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Example: Inner Product ~x∗~y

Given two vectors ~x , ~y ∈ C
m, the computed value of the inner

product

α = ~x∗~y =
m∑

i=1

x∗i yi

is (usually) given by

α̃ =
(
fl(x∗1 )⊗fl(y1)

)
⊕
(
fl(x∗2 )⊗fl(y2)

)
⊕· · ·⊕

(
fl(x∗m)⊗fl(ym)

)
.

Built from the backward stable fundamental operations in this
manner, the inner product is also backward stable. (We leave
the proof of this for later).
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Example: Outer Product ~x~y∗

Given ~x ∈ C
m, and ~y ∈ C

n, the A ∈ C
m×n rank-1 outer product is

given by

A = ~x~y∗ =








x1~y
∗

x2~y
∗

...
xm~y

∗








The obvious algorithm is to compute the mn products xiy
∗
j with ⊗

and collect the results into the matrix Ã.

This algorithm is stable, but not backward stable. — The
matrix Ã will most likely not have rank 1, and can therefore not be
written in the form (~x + δ~x)(~y + δ~y)∗.
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Example: (x + C)

Let C ∈ C be a fixed non-zero constant, and consider computing
(x + C), given x ∈ C, we get

f̃ (x) = fl(x) ⊕ fl(C)
= (x(1 + ε1) + C(1 + ε2)) (1 + ε3)
= x(1 + ε4) + C(1 + ε5),

with |ε1|, |ε2|, |ε3| ≤ εmach, |ε4|, |ε5| ≤ 2εmach + O(ε2
mach).

When C 6= 0, and x ≈ 0 we are introducing errors of size O(εmach),
independent of x . Relative to the size of x , these errors may
become unbounded.

Therefore, we cannot interpret the errors as being caused by small
perturbations in the data. Hence (x + C) is not backward stable.
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Notes

Rule of Thumb:
As a rule, algorithms F̃ : X 7→ Y , where the dimension of
Y is greater than the dimension of X are rarely backward
stable.
In the outer product example, X has dimension (m + n),
and Y has dimension (m · n).

Confusing?
Note that f̃ (x) = (x + C) is not backward stable for fixed
C 6= 0, but the algorithm for f̃ (x , y) = (x + y) is backward
stable.
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Example: sin(x) and cos(x) 1 of 2

Floating point calculations of sin(x) and cos(x) are stable, but not
backward stable.

Consider sin(x) for x =
(
π

2 − δ
)
, 0 < δ ≪ 1,

1.5 1.55 1.6
0.995

0.996

0.997

0.998

0.999

1

1.001
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Example: sin(x) and cos(x) 2 of 2

1.5 1.55 1.6
0.995

0.996

0.997

0.998

0.999

1

1.001

Suppose we have computed f̃ (x) = fl(sin(x)) = sin(x)(1 + ε1).
Since f ′(x) = cos(x) ≈ δ, we have [Remember Taylor, δf = f ′(x) δx ]

f̃ (x) = f (x̃) for some x̃ with (x̃ − x) ≈ 1

δ
(f̃ (x) − f (x)) = O

(εmach

δ

)

.

Since δ can be arbitrarily small, the backward error is not of magnitude O(εmach).
We have an “exact solution”, but not to a “nearby problem.”
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Example: Eigenvalues of a Matrix 1 of 4

One way of computing the eigenvalues of a square matrix, A ∈ R
m×m, is

through the use of the characteristic polynomial

p(λ) = det(λI − A).

The m roots {λ1, λ2, . . . , λm}, where p(λi ) = 0 are the eigenvalues of A.
Hence, the following algorithm seems reasonable at first glance:

1. Find the coefficients of the characteristic polynomial.
2. Find its roots.

Unfortunately, this algorithm is not only not backward stable, but also
unstable; and performs especially badly when the polynomial is expressed
in the monomial standard basis { xk }k=0,1,...,m.

Even when the eigenvalue problem is well-conditioned, this algorithm may
produce answers with large relative errors.

Peter Blomgren 〈blomgren@sdsu.edu〉 11. Stability... a Closer Look — (18/28)



Stability
Stability of Floating Point Arithmetic

Examples
Accuracy

sin and cos

Matrix Eigenvalues

Example: Eigenvalues of a Matrix 2 of 4

The instability manifests itself in the root-finding step. Recall Wilkinson’s
example [Lecture#9], where relative perturbations of the coefficients of

pWilkinson(x) =
20∏

i=1

(x − i) = a0 + a1x + · · · + a19x
19 + x20

by ∼ 10−10 resulted in perturbation of size ∼ 1–10 of the roots

0 5 10 15 20
−6

−4

−2

0

2

4

6
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Example: Eigenvalues of a Matrix 3 of 4

The characteristic polynomial of the diagonal matrix

A1 = diag(1, 2, . . . , 20)

is a Wilkinson polynomial or degree 20.

An even simpler example is given by A2 = diag(1, 1), the
(2 × 2)-identity. Trying to find the roots of the characteristic
polynomial p2(λ) = λ2 − 2λ + 1, reminds us of the example (also
in [Lecture#9]) leading up to Wilkinson’s polynomial:

x2 − 2x + 1 = (x − 1)2

x2 − 2x + 0.9999 = (x − 0.99)(x − 1.01)
x2 − 2x + 0.999999 = (x − 0.999)(x − 1.001).

Where the algorithm above produces errors O(
√
εmach).
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Example: Eigenvalues of a Matrix 4 of 4

But really... This is a little too pessimistic. IEEE-785-1985 floating
point F64 can represent (“small×”) integers exactly... But if we try

A =

[
1 + 10−14 0

0 1

]

with p(λ) = λ2 − (2 + 10−14)λ + (1 + 10−14), then in an environment
where εmach = 2.22 × 10−16 we get

{λ̃1, λ̃2} = {0.99999998509884, 1.00000001490117}

with errors

{λ̃1 − 1, λ̃2 − (1 + 10−14)} = {−1.49 × 10−8, 1.49 × 10−8} ∼ O(
√
εmach)

× Definition of small in F64: |n| ≤ 9, 007, 199, 254, 740, 992.
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Accuracy of a Backward Stable Algorithm 1 of 3

Suppose we have a backward stable algorithm f̃ for the problem
f : X 7→ Y .

The Real Question: Will the results be accurate?

Answer: It depends... on the condition number κ = κ(x).

If κ(x) is small, the results will be accurate. When κ(x) is large,
the results may be unreliable.

We always lose accuracy in proportion to the size of κ(x).

We make this dependence precise in a theorem...
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Accuracy of a Backward Stable Algorithm 2 of 3

Theorem (Computational Accuracy)

Suppose a backward stable algorithm f̃ is applied to solve a
problem f : X 7→ Y with condition number κ(x) in a floating point
environment satisfying the floating point representation axiom, and
the fundamental axiom of floating point arithmetic.

Then the relative errors satisfy

‖f̃ (x) − f (x)‖
‖f (x)‖ = O(κ(x)εmach)

We have tied conditioning, stability, and accuracy together!

Peter Blomgren 〈blomgren@sdsu.edu〉 11. Stability... a Closer Look — (23/28)



Stability
Stability of Floating Point Arithmetic

Examples
Accuracy

Accuracy of a Backward Stable Algorithm
Stability + Conditioning  Quality
Backward Error Analysis
Looking Forward: Application of Backward Error Analysis

Accuracy of a Backward Stable Algorithm 3 of 3

Proof (Computational Accuracy)

By the definition of backward stability, we have f̃ (x) = f (x̃) for some
x̃ ∈ X , with

‖x̃ − x‖
‖x‖ = O(εmach).

By the definition of κ(x)

κ(x) = sup
δx

[ ‖δf ‖
‖f (x)‖

/‖δx‖
‖x‖

]

,

we have

‖f̃ (x) − f (x)‖
‖f (x)‖ ≤ (κ(x) + o(1))

‖x̃ − x‖
‖x‖ = O(κ(x)εmach). �

Note: o(1) is a quantity which converges to zero as εmach → 0.
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Backward Error Analysis

The method of proof we used defines the strategy for backward
error analysis.

We obtain the accuracy estimate in two steps:

1. Analyze the condition of the problem.
2. Analyze the stability of the algorithm.

Conclusion: If the algorithm is backward stable, then the ac-
curacy is proportional to the condition number.

At this point, this may seem natural and straight-forward?

Naively, Forward Error Analysis may seem like a tempting
alternative...
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Forward Error Analysis... ...and Backward Error Analysis

At first glance, the most natural form of error analysis is to apply
the the floating point representation axiom, and the fundamental
axiom of floating point arithmetic directly to the algorithms and

1. Introduce error bounds on each operations.
2. Track how the errors compound throughout the computation.

It turns out that this approach is very difficult to carry out
successfully.

Here there is no separation of algorithm and problem; hence the
forward error analysis must capture both the stability behavior of
the algorithm, and the conditioning of the problem. How do we
“detect” the conditioning in operation-level analysis?!?
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Backward Error Analysis

Backward Error Analysis is the right tool: in general, the best al-
gorithms for a problem will compute the exact solution to a slightly
perturbed problem. The method of backward error analysis is per-
fectly tailored to this slightly “backward view.”
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Next Time ...and The Near Future

We carefully analyze the stability of two of our most important
algorithms:

• The Householder Triangularization algorithm for computing
the QR-factorization.

• The back (and forward) substitution algorithm.

Together they are the foundation upon with we build our solvers
for A~x = ~b for both square and non-square A.

Then, we re-visit the Least Squares problem — and carefully look
at the conditioning of the problem, and stability of the algorithms
we use for solving the problem.
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