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Last Time: Stability of Householder Triangularization Backward Stability of Back Substitution
— We discussed the stability properties of QR-factorization by House- L . . .
. > STablly Prop Y Back substitution is one of the easiest non-trivial algorithms we study
holder Triangularization (HT-QR). : - .
in numerical linear algebra, and is therefore a good venue for a full
— Numerical “evidence” that HT-QR is backward stable. backward stability proof.
— Statement (proof by reference to Higham's Accuracy and The proof for backward stability of Householder triangularization follows
Stability of Numerical Algorithms) that HT-QR is backward the same pattern, but the details become more cumbersome.
stable . . L 7
Back-substitution applies to RX = b, where
—  Showed that solving AX = b using HT-QR and backward substitution ni f> o MAm X1 by
is backward stable, assuming that o m X0 by
(1) QR = A by HT-QR is backward stable N
~ o r X b
(2) W = Q*bis backward stable mm m m
(3) RX = w by back substitution is backward stable Upper (and lower) triangular matrices are generated by, e.g. the
QR-factorization [NoTes#6-7], Gaussian elimination [NoTes#16-17], and
— Today: Explicit proof of (3), and implicit proof of (2). the Cholesky factorization [Nores#17].
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Algorithm: Back-Substitution

Algorithm (Back-Substitution)

1: Xm < bm/rmm
2: for Le{(m—1),...,1} do

m
3: xp < | by — Z Xk ok /rgg
k=0+1
4: end for

Note that the algorithm breaks if r;p = 0 for some /.

For this discussion we make the assumption that by — > (xkrex) is
computed as (m — ¢) subtractions performed in k-increasing order.

Simplification: In the theorem/proof, we use the convention that if the
denominator in a statement like |\6:ZZI| < MEnmaen IS zero, we implicitly
assert that the numerator is also zero, as €m.cn — 0. This can be fully

formalized, but at this stage it unnecessarily complicates the discussion).
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Reference: Key Floating Point Axioms

Floating Point Representation Axiom

Vx € R, there exists € with |e|] < €.,
such that £1(x) = x(1 + ¢).

The Fundamental Axiom of Floating Point Arithmetic

For all x,y € [F, (where F, is the set of n-bit floating point
numbers), there exists € with |e| < €., such that

xOy=(x-y)(1+e),
x@y = (x/y)1+e€)

x@y=(x+y)(l+e),
x@y=(xxy)(1+e),
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Back-Substitution: Backward Stability Theorem

Theorem (Solving an Upper Triangular System RX = b Using
Back-Substitution is Backward Stable)

Let the back-substitution algorithm be applied to RX = b, where

R € C™*™ s upper triangular; 5, X € C™; in a floating-point
environment satisfying the floating point axioms. The algorithm is
backward stable in the sense that the computed solution X € C™ satisfies

(R+6R)%=b

for some upper triangular 6R € C™*™ with
ORI _

7*O€mac .
IR = Otemer)

Specifically, for each i,/

|0ric] 2
< ME pach + O(€5,20n)-
’riZ’ mach ( ach)

UNIVERSITY
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Proof: m=1

When m = 1, back substitution terminates in one step
xM=bomnm

The error introduced in this step is captured by

b
)?1 = 71(1 + 61®),

’61®’ S Emach+
r

Since we want the express the error in terms of perturbations of R, we

write

by
= mi+e) |€1] < Emach + O(Eraeh)-

Hence,

or
@ < Emach + O(Eiach) = O(gmach)'

(14 dn1)% = by, <
|1l
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A Note on (1 +¢€) and 1/(1+€')

Introduction: Algorithm, Conventions, Axioms, and Theorem
Proof
Comments

In backward stability proofs we frequently need to move terms of the
type (1 + €) from/to the numerator to/from the denominator.

We do this because we want to express all the floating point errors as
perturbations to a specific part of the expression, e.g. the matrix R in the

instance of backward substitution.
When € is small, we can set
—€
/

6:1+6

and thus (discarding O(€?) -terms)

1+4+e€ e lt+e—e

~ —€(l — e+ O(%)) = —¢ + O(€)

1 1

1+ =

l+e 14+e  14e¢

= =1 .
1+e€ = 1+¢ te

Bottom line: we can move (1 + €) terms (where |¢| < g < 1)
between the numerator and denominator, and only introduce errors of the

order O(e2_..), i.e. |€| < €macn + O(e

mach
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Proof: m=2
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Step one (which computes Xp) is exactly like the m =1 case:

b>
ro(l+€7)

X =

The second step is defined by

|€1| S Emach T O(giach)'

f1=bh0(R®rn2))oni.

We get

= (bl — )?2!‘12(1

X1 = (bl ) (>"<gr12(1 + 6?))) @ n1

+6))(1+€e5) 0 m

(b1 — Soria(1 4 €5))(1 4+ €5)(1 + €7)
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2 of 2

As before, we can shift the (1 + ¢) and (1 + €5) terms to the

denominator

. b1 — )?grlg(]. —+ 658) . b1 — )?2I"12(1 + 6?)

N I’11(1 + Ege)(]. + 6:1®)

where |€5 4, 5| < Emach + O(E7,an)-

mach

Now

r11(1 + 265@’®)

(R+6R)%=b

since ry1 is perturbed by the factor (1 + 26567®), r12 by the factor
(14 €3), and rx by the factor (1 + €7). The entries satisfy

|61/ | |5f12|/|f12]
|62/ 2]

Thus [|6R[|/[[ Rl = O(Emach)-
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Proof: m =3
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Comments

The first two steps are as before, and we get

. b3
X3 = b3Qrs3 = —
r33(1 + €1®)
. . by — X3r23(1 + €2
% = (ho(@ms)omm = —— 23( 2)

r22(1 + 26?’@)

where superscipts on es indicate the source operation; now

[ =]

2 1

1 } Emach + O(ggwach)

We take a deep breath, and write down the third step
X1=[ho(Re®n2))e(B®n3)]omnm
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Proof: m=3 2 of 3

We expand the two ® operations, and write
%1 = [(b1 © %r2(l+€7)) © X3rz(1+ €
1= |(b1 ©Xr2 €;)) © X3ni3(1+ e )] @ n1
We introduce error bounds for the © operations
1= [(b —foro(l+ €)1+ eg) — Xrz(1+€2)] (1+€7) @ 1

Finally, we convert @ to a mathematical division with a perturbation eg;
and move both the (1 + €7,g) expressions to the denominator

(b] — )?2/’12(1 + 6?))(1 + 669) — )?3/’13(1 + €?)
r1(l+ €)1+ eg)

X1 =

As it stands, we have introduced a perturbation in b;. This was not our
intention, so we ship (1 + €f’) to the denominator as well...
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Proof: m =3 30of3

We now have an expression with perturbations in only ryy:

5 b1 —)?2!’12(1—{—6?) —)?3/‘13(].—1—6?)(1—1—6%@)
1 p—
r1(1+ ege)(l + 6’76)(1 + eg®)

where |e4 5| < €maen, and |e’6,778| < Emacn + O(€2.).

If we collect the limits on the relative sizes of the perturbations
|0rie|/|rie| we get the following 6 relations

|6r11|/|r1| |6r2l/|r2| |6rs]/|rs] 312
|6ro2|/|r22|  |6r23|/|r2s] | < 2 1 | cnantO(e2)
6r33] /| r33] 1

We are now ready to identify the pattern for general values of m...

ﬁ STATE
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Proof: General m 1of4

The division by rj; induces perturbations dr;; only, since we always
immediately shift that (1 + €,)-term to the denominator
1/(1+€.), hence the perturbation pattern is of the form

@ ~ /angmach + O(giach)

The multiplications X;ry; induces perturbations dry; of relative size
< Emach, the perturbation pattern is of the form

o1 1 ... 1
o 1 ... 1
® ~ " . - . Emach
0 1
: -
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Proof: General m 2 of 4

The most complicated contribution comes from the subtractions
(and this is where the order of evaluation has an effect on the
answer) — in computing Xx

Ik k is perturbed by (14 ¢.)™K
rk.k+1 is perturbed by 0

rkk+2 is perturbed by (14 €))

Ik, k+3 (1+¢€.)?

is perturbed by

I, m is perturbed by

See next slide for the pattern.
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Proof: General m 30of 4
(m—1) 0 1 2 3 (m—2)
4 0 1
O ~ 3 6mach_|—C9(6r2nach)

N
= O = N

Putting all this together gives...
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Proof: General m — Collecting It All 4 of 4
[m 1 2 3 4 (m—1) ]
| 5 R[ 5 1 2 3 4
TR < 4 1 2 3 Emacn + O(€2,01)
3 1 2
2 1
L 1 -

Which completes the proof. [
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Comments

This is the standard approach for a backward stability analysis.

Errors introduced by the floating point operations &, ©, ®, and ©
(in accordance with the axiom) are reinterpreted as errors in the
initial data / or “problem.”

Where appropriate, errors ~ O(&n.) are freely moved between
numerators and denominators.

Perturbations of order O(e...n) are accumulated additively, e.g.
(14 e1)(1+e) = (1+2e3)+0O(2)

where €12 3] < €macn-
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Least Squares Problems

Next, we turn our attention back to least squares problems.

—  We take a detailed look at the conditioning of least squares
problems; it is a subtle topic and has nontrivial implications
for the stability (and ultimately, the accuracy) of least
squares algorithms.

— Further, this will serve as our main example on de-
tailed conditioning analysis (as Back-substitution served
as the main example on detailed backward stability analysis).
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