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Student Learning Targets, and Objectives SLOs: Gaussian Elimination & LU-Factorization

Student Learning Targets, and Objectives

Target Gaussian Elimination

Objective The three fundamental row-reduction operations

Objective Know how the L and U factors arise from Gaussian Elimination
(to Redueed Row Echelon Form)

Objective Stability issues, and potential remedies: Pivoting Strategies
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Introduction: GE — Something Familiar
GE, Backward Substitution, and LU-Factorization
Computational Complexity

Gaussian Elimination
GE: Instabilities, and Improvements

Gaussian Elimination: Introduction

We look at a familiar algorithm — Gaussian Elimination.

— The “pure” form.

— Connection to LU-factorization.

— Pivoting strategies to improve stability:
— Scaled Partial Pivoting
— (Rescaled) Scaled Partial Pivoting

— Complete Pivoting
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Introduction: GE — Something Familiar
GE, Backward Substitution, and LU-Factorization
Computational Complexity

The Augmented Matrix [A b]

—

Given a matrix A and a column vector b

Introduction: GE — Something Familiar
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Computational Complexity

Gaussian Elimination
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Three Basic Operations on the Linear System / Augmented Matrix

We use three operations to simplify a linear system:

d11 412 413 . by op#1 Scaling — Equation#i (E;) can be multiplied by any
A= | axn ax ax b= b |, non-zero constant A with the resulting equation used in
931 432 433 bs place of E;. We denote this operation (E;) < (AE;).
we define the augmented matrix op#2 Scaled Addition — Equation#j (E;) can be multiplied by
any non-zero constant A and added to Equation#i (E;) with
. a1 22 213 | by the resulting equation used in place of E;. We denote this
[A bl =1 an an 3| b operation (E;) < (E; + AE;).
a1 as asz | bs
) ) o op#3 Reordering — Equation#j (E;) and Equation#i (E;) can be
We are going to operate on this augmented matrix using 3 transposed in order. We denote this operation (E;) < (E;).
fundamental operations...
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The goal is to apply a sequence of the operations on the
augmented matrix

. an a2 a3z | b
[A b] - dp1 do2 arzs b2 s
a1 a3y a3z | b3

in order to transform it into the upper triangular form

il a2 a3 | bk
0 adx» axs|b
0 0 as3| b3

From this form we use backward substitution to get the solution:

x3 ¢ b3 /333, xo < (bo — d23x3) /32,
xi < (by — d12x0 — d13x3) /11
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Given an augmented matrix

all a2 a3 aim | b1

a1 ax»n ax am | bo

C=[Ab]=| a1 ax a3 asm | b3
| dml dm2 dm3 dmm bm ]

We first make all the sub-diagonal entries in the first column zero:

for j=2:m
fj < _le/cll
i <+« (bhn +rj)
end

[Eliminate the first column]

[r; denotes elements in the jth row]
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GE+BS+LU 4 MOVIE 2 of 4

The pattern is clear... For a full implementation we eliminate all
the sub-diagonal elements in columns 1—(m — 1):

for i=1:(m-1)
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GE+BS+LU 3of4

After the elimination step, we have the following scenario — the
augmented matrix is now upper triangular; we identify the upper
triangular part U, and the modified right-hand-side b, and collect
the multipliers in matrices M;

. L b L Utm 1:31 1
for j=(i+1):m [Eliminate the /ith column] R e
&= Bl = 33 .- 3m 3 M=
fj' < —Cj;/C,',' . : : ' :
G = i A= ) [r; —— elements in the jth row] o | B b O o 1
end
end We have the relation
Myt Mmz- M -C=M-C=M-[A| b =[U]|b]=C
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GE+BS+LU 4 of 4 Gaussian Elimination <» Matrix Multiplications Supplemental
. We can view the entire GE-algorithm as a sequence of matrix
Now, if we are looking for the solution to AX = b, we simply apply multiplications:
backward substitution to the [U | b] system.
Mp-1Mp—o---MoM; A= U
If we define L = M~1; — think of it as inverting (undoing) the N ~ 4
triangularization of A M
) and it follows that we can write
—{ 1 a1y -1 -1 -1 -1
—15,—1 -1 —{31 —{3 1 A=M U - [Ml] [M2] o [Mm_2] [Mm_l] U
=M "My M =
; ; The multiplication by the matrices [M;] correspond to scaled
b —tm2 ~tmm-1 1 row-addition; the inverse operation is scaled row-subtraction, hence
Then we have the LU-Factorization of A 1
A == LU [Mj]*1 = _ 1 . Next, we check this!
g 1
—tmj 1
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Checking the Inverses of M;
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Supplemental

- 11 _
_ 1 1
MM =
[ J] [ J] —{jt1j 1 £j+1’j 1
L —lmj 111 lm j 1]

When we perform the matrix-matrix multiplication, the sub-diagonal elements of
[M;]71 (in column j, row k > j) will multiply elements in row j (column k) of [M]]
(only the 1 on the diagonal). When that happens, the diagonal k-k element of [M;]~!
will multiply the k-j-element of [M;], and we get

Nailing Down the Lin A=L-U
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Supplemental

We now have expression for all the [M;]~!-matrices in the product
M1 = [Ml]il[MQ]il . [Mmfz]il[/\/’mfl]il. Consider [M]_]il[/\/lz]ili

1| 1] 1
_EZ,I 1 1 —2271 1
—£31 1 —€32 1 B —€371 —f32 1
_Zm,l 1 7€m,2 1 _em,l _em,Z 1

The argument can be extended to the entire product to show that

1

_Z2,1 1
Product(k,j) = —fxj-14+1-4;; =0, k> j Lemlo| 1 2 1 Which is the matrix we build in
our LU-factorization core.
All other off-diagonal elements are formed by (something) multiplying zero. B . : . L
—tm,1 —tm,2 “Em,m—1
In summary, the only non-zeros elements in the product are the diagonal elements,
which are all 1.
In the same way [M;][M;]~! = I,, hence the matrix we denoted [M;] ™1 really is the
. S DrrGosTAT sanDaoSTTE
inverse of | Mj]~ SR o
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Gaussian Elimination: Consider the k th elimination step:

M columns

k-1 untouched rows/cols

M rows

M-(k-1) changed rows/cols

In this step we need to touch (read from cache/memory, apply
addition and/or multiplication) the shaded elements. The work
required is directly proportional to the number shaded elements 2,
where i = (M — (k — 1)).

SAN DIEGO STATE
UNIVERSITY

Peter Blomgren (blomgren@sdsu.edu) 16. GE / LU-Factorization with Pivoting — (15/31)

We have (M — 1) elimination steps where k runs from 1 to
(M —1), hence i runs from M down to 2. The total work is

M, M(M+1)2M +1) 2M3
=2

Solving AX = b by factorization — work comparison for the
factorization step (m = n):

SAN DIEGO STATE
UNIVERSITY
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GE+BS: Work Required 30f 3

Elimination Steps

LU-Factorization @
. R
- “ ” 4m3 g
5| QR: Householder, “Q-less = | 3
2 "
v &
5 g
€| QR: Gram-Schmidt omd | F
! S
1

SVD 13m3

* GS-QR is not necessarily more stable than H-QR...

Partial Pivoting
Scaled Partial Pivoting
Complete Pivoting

Gaussian Elimination
GE: Instabilities, and Improvements

Instability of Gaussian Elimination / LU-Factorization

As described, GE/LU can run into stability issues — consider the
multipliers in the light of stability and floating-point errors

C..
Ej,' = —C,'j @ Cij = _7I'J'(1 + 6), ’6’ S Emach

n

Hence, the absolute errors introduced in the multipliers are

Cij
66_/1 ™~ Emach <>
Cii

and if ¢;; is close to zero, then the error may be very large (especially in
comparison with other entries in the matrix).

We need to fix this...

Clearly, the smaller the multipliers, the smaller the errors...
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. P Partial Pivoting . L Partial Pivoting
- Gaussian Elimination Scaled Partial Pivoting P Gaussian Elimination Scaled Partial Pivoting
GE: Instabilities, and Improvements P GE: Instabilities, and Improvements A
Complete Pivoting Complete Pivoting
-
Pivoting Strategies Partial Pivoting Gaussian Elimination with Partial Pivoting U=[ADb]

It is fairly easy to re-arrange the computation so that all multipliers are
bounded by 1.

2
Partial pivoting adds ’”7 comparisons to
the algorithm.

Figure: lllustration of elimination on the kth level. We search for the largest
(in magnitude) pivot element in the kth column, among the diagonal+sub-
diagonal elements (vertical blue band). Then we interchange the k th row with
the row with the maximal pivot (illustrated with two horizontal red bands).

SAN DIEGO STATE
UNIVERSITY
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1|L = eye(m); P=eye(m); U = [A Db];

2 | for k = 1:(m-1)

3 Umax = max( abs(U(k:m,k)) );

4 Umax_index = find( abs(U(k:m,k)) == Umax );
5 j = Umax_index (1) + (k-1);

6 UCLj k],k:(m+1)) = UCLk jl,k:(m+1));

7 L([j k],1:(k-1)) = L([k jl,1:(k-1));

8 P([j k1,:) = P([k j1,:);

9 for j=(k+1):m

10 L(j,k) = U(j,k) / U(k,k);

11 UGj,k:(m+1)) = U(j,k:m+1) - L(j,k)*U(k,k:(m+1));
12 end

13 | end

The algorithm yields
PA = LU.

It is much more stable than our initial two implementations of Gaussian
Elimination, but it is not fail-safe.
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Row- and Column-Swapping in Python

# Swap Rows rl and r2
A = np.array([[...], ..., [...1D)
Al[r1, r2]] = A[[r2, ri]l

# Swap Columns cl and c2
A = np.array([[...], ..., [...1D)
Al:, [c1l, c2]]1 = A[:, [c2, c1]]

Partial Pivoting
Scaled Partial Pivoting
Complete Pivoting

Gaussian Elimination
GE: Instabilities, and Improvements

Gaussian Elimination with Partial Pivoting: Breakdown

If we apply GE4-PP to a system where the scales of the different
equations are significantly different, the algorithm may break down
(unnecessarily lose precision) e.g

1 -2 3 4
1,000,000 2,000,000 3,000,000 [ x= | 5,000,000
0.000001 —0.000002 —0.000003 0.000001

In order to improve stability of GE+PP we must take scale into
consideration.

One definition of scale: s(i) = max(abs(B(i,:))), i.e. the scale
of row #i equals to the magnitude of the largest element on that
row.
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Gaussian Elimination with Scaled Partial Pivoting “Scale Invariant PP"777 GE+SPP: Work Comparison
We can pre-compute the scales s(i) and make the pivoting decision s = zeros(m,1);
. . P ; i=(i+1) :n. for i=1:m
based on the values of B(i,i)/s(i) and B(j,1)/s(j), j=(i+1):n ) = max(abs (B(i,1)));
d
s = zeros(m,1); for i=1:(m-1)
for i=1:m Bmax = max(abs(B(iim,i)./s(i:m)));
s(i) = max(abs(B(i,:))); T e (1) s gy M) /3 (imm)) == Bmax );
end B([j il,i:(@m+1)) = B([i j1,i:(m+1));
i1 (e L([G i),1:(i-1)) = L([i j1,1:Gi-1));
for i=1: (m-1) ([ 101G = Ll 913 G)
: PCL] il,: = P([i jl,:);
Bmax = max(abs(B(i:m,i)./s(i:m))); for j=(i+1):m
i = i i - i i == . L(J,l) = _B(J;l) / B(lyl);
Bmax,lnde}.c find( abg(B(l.m,l) ./s(i:m)) Bmax ); BOI 1 1)) 2 1O, DB 1: @H)) + BG,i: (@)
j = Bmax_index(1) + (i-1); end
B([j il,i:(m+1)) = B([i jl,i:(m+1)); end
gg%q i%’};(l;lgi[z L;[%)q],lz(l—l)); Note that the scale computation touches every element in the matrix,
£ J._(f;l). I1-00s hence it adds 9 . .
OLr( J= )1 'én(. 5/ BGD O (m?) additional operations.
J,1) = —b{],1 1,1); . . . . 3 .
B(j,i:(m+1)) = L(j,1)*B(i,i: (1)) + B(j,i:(m+1)); Since this a.\lgor'lthrr'l overall requires O (m ) operations, the overhead of
end scaled partial pivoting does not add a significant amount of work.

S DiGoSTATE
en ears
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Since we are modifying the rows in each elimination step, it seems likely that the scale
of the row change. Should we recompute them?7??
s = zeros(m,1);
for i=1:(m-1)
for k=i:m
s(k) = max(abs(B(k,:)));

end
Bmax = max(abs(B(i:m,i)./s(i:m)));
Bmax_index = find( abs(B(i:m,i)./s(i:m)) == Bmax );

j = Bmax_index(1) + (i-1);
B([j i],i:(m+1)) = B([1i jl,i:(m+1));
L([j i],1:(i-1)) = L([i j1,1:(i-1));
P([j i1,:) = P([i j1,:);
for j=(i+1):m
L(j,i) = -B(j,1i) / B(i,i);
B(j,i:(m+1)) = L(j,i)*B(i,i:(m+1)) + B(j,i:(m+1));
end
end
Let's call this GE+Rescaled-SPP (GE4RSPP). Since we are touching all the

remaining elements in the matrix in each iteration, this configuration adds

@] (m3) additional operations,

SAN DI
Univi

which is a significant amount of work.
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GE with Complete Pivoting GE+CP

If /when a problem warrants this (GE+RSPP) approach due to
high accuracy demands, and we are willing to trade significant
time/work for it) complete pivoting should be used instead.

for i=1:(m-1)
Bmax = max(max(abs(B(i:m,i:m))));
[Bmax_r,Bmax_c] = find( abs(B(i:m,i:m)) == Bmax );
j-r = Bmax_r(1) + (i-1);
j-c = Bmax_c(1) + (i-1);
B([jr i],i:(m+1)) = B([i jr],i:(m+1));
L([jr i],1:(i-1)) = L([i jrl,1:(i-1));
P([jr il,:) P([i jrl,:);
B(:, [jc iD) B(:,[1 jcl);
for j=(i+1):m
L(j,i) = -B(j,i) / B(i,i);
B(j,i:(m+1)) = L(j,1)*B(i,i:(m+1)) + B(j,i:(m+1));
end
end

WARNING!!! — When the columns are interchanged, the
unknowns are re-ordered. We have to implement extra book-
keeping in order to keep track! .
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[llustration: Gaussian Elimination with Complete Pivoting GE with Complete Pivoting Book-keeping GE+CP
col_idx = (1:m)’;
for i=1:(m-1)
Bmax = max(max(abs(B(i:m,i:m))));
[Bmax_r,Bmax_c] = find( abs(B(i:m,i:m)) == Bmax );
jor = Bmax.r(1) + (i-1);
j-c = Bmax_c(1) + (i-1);
B([j-r i],i:(m+1)) = B([i jr]l,i:(m+1));
L([jr i],1:(i-1)) = L([i jrl,1:(i-1));
P([jr i1,:) = P([i jrl,:);
B(:,[jc iD) =B(,[1 jcl);
col idx([jc i1) = col_idx(-l[i jl);
for j=(i+1):m
L(j,1i) = -B(j,i) / B(i,i);
B(j,i:(m+*1)) = L(j,1)*B(i,i:(m+1)) + B(j,i:(m+1));
[Left] [llustration of elimination on the kth level. We search for engnd
the largest (in magnitude) pivot element in the sub-matrix
indicated with blue; the pivot is marked with a black dot. After completion, col_idx (i) contains the original index of the
[Center] We interchange the corresponding rows, to move the pivot to variable currently called x(3).
the _ active’ row. _ _ After GE+CP, we solve for X using standard Backward
[Right] \/Z\Ve |n.terd:ange. the columns to move the pivot to the “active” Substitution, then we use the col_idx array to put the solution (
ivot location. .
kk P SAUNDI;W array back in the correct order: %533,3‘.
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GE with Complete Pivoting Reconstitution GE+CP

GE+CP+BS gives us a vector with the order of the x;'s
“scrambled” from the column interchanges. To unscrambile:

I = eye(n);
P2 = I(:,col_idx);
x = P2xx;

and we have solved AX = b in the most stable way! (In the
framework of Gaussian elimination, that is...)

Note: We can handle the row-pivoting in the same way (using an
“index-array” ) row_idx.
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Next Time

A formal look at stability of Gaussian Elimination.

Gaussian Elimination for Hermitian Positive Definite

Matrices:

Cholesky Factorization.
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Homework (Not Explicitly Due...)

Read Trefethen & Bau's take on Gaussian Elimination and
Pivoting, pp. 147-162.

SAN DIEGO STATE
UNIVERSITY
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