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Student Learning Targets, and Objectives SLOs: Gaussian Elimination & Cholesky-Factorization

Student Learning Targets, and Objectives

Target Gaussian Elimination

Objective The Growth Factor, ρ as a measurement of (in)stability
Objective Worst-case ρ for partial and complete pivoting vs. typical

behavior

Target Gaussian Elimination — Special Case

Hermitian Positive Definite Matrices
Cholesky Factorization
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Gaussian Elimination
Cholesky Factorization

Reference

Last Time...
Stability
Backward Stability? Practical Stability?

Rewind: Last Time 1 of 3

We quickly reviewed a familiar algorithm — Gaussian Elimination.

If we save the multipliers generated by the elimination, we get the
LU-factorization of A, i.e. A = LU, where L is lower triangular, and U
is upper triangular.
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In this initial form, GE/LU is completely useless (unstable), we discussed
a couple of fixes, some probably familiar, some new...
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Gaussian Elimination
Cholesky Factorization

Reference

Last Time...
Stability
Backward Stability? Practical Stability?

Rewind: Last Time 2 of 3

In Partial Pivoting we rearrange the rows of the matrix A (on the
fly) in order to move the largest element in the “active” column to
the diagonal entry — this way we can guarantee that the multiplier
is bounded by one

l̃ji = aji ⊘ aii =
aji
aii

(1 + ǫ), |ǫ| ≤ εmach, |δ̃lji| ≤ εmachℓji

We get PA = LU
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Rewind: Last Time 3 of 3

Partial Pivoting is stable “most of the time.” We looked at
enhancements taking scale into consideration: Scaled Partial Pivoting.

The overall work for GE/LU is ∼ 2m3

3 , and partial pivoting adds O(m2)
operations, which is a small cost.

Sometimes Complete Pivoting — rearrangement of both the rows and
columns of A is necessary to achieve high accuracy. The cost is
significant since the additional work adds O(m3) operations.

We get PAQ = LU
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Gaussian Elimination
Cholesky Factorization

Reference

Last Time...
Stability
Backward Stability? Practical Stability?

Now...

— We look at the stability of Gaussian elimination.

— Gaussian Elimination for Hermitian Positive Definite
Matrices:

— Cholesky Factorization — The Hermitian (Symmetric)
version of LU-factorization.
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Gaussian Elimination
Cholesky Factorization

Reference

Last Time...
Stability
Backward Stability? Practical Stability?

Stability of Gaussian Elimination: Introduction 1 of 2

“Gaussian Elimination with partial pivoting is explosively
unstable for certain matrices, yet stable in practice. This apparent

paradox has a statistical explanation.”
[Trefethen-&-Bau, p.163]

The stability analysis of Gaussian Elimination with Partial Pivoting
(GEw/PP) is complicated, consider the example A = LU

[
10−20 1
1 1

]
=

[
1 0

1020 1

] [
10−20 1
0 1− 1020

]

The likely naively computed L̃ and Ũ are

[
1 0

1020 1

] [
10−20 1
0 −1020

]
=

[
10−20 1
1 0

]
6= A
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Gaussian Elimination
Cholesky Factorization

Reference

Last Time...
Stability
Backward Stability? Practical Stability?

Stability of Gaussian Elimination: Introduction 2 of 2

This behavior is quite generic — instability in Gaussian Elimination
(with or without pivoting) can arise if the factors L̃ or Ũ are large
compared with A.

In the previous example we have

‖A‖F = 1.7321, ‖L̃‖F = 1.0000× 1020, ‖Ũ‖F = 1.0000× 1020

i.e. the computed factors are 20 orders of magnitude larger than
the initial matrix — no wonder we run into problems!

The purpose of pivoting — from the point of view of
stability/accuracy — is to make sure that L̃ and Ũ are not too
large.
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Gaussian Elimination
Cholesky Factorization

Reference

Last Time...
Stability
Backward Stability? Practical Stability?

Formal Result

Theorem (LU-Factorization without (explicit) Pivoting)

Let the factorization A = LU of a non-singular matrix A ∈ Cm×m be
computed by Gaussian Elimination without pivoting in a floating point
environment satisfying the floating point axioms. If A has an
LU-factorization, then for εmach small enough, the factorization completes
successfully in floating point arithmetic (no zero pivots ãii are
encountered), and the computed matrices L̃, and Ũ satisfy

L̃Ũ = A+ δA,
‖δA‖

‖L‖ ‖U‖ = O(εmach)

for some δA ∈ Cm×m.

Note that we can make the theorem apply to GEw/Pivoting by applying
it to the “pre-pivoted matrix:” A := PA[Q].
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Formal Result: Comments

If we just flash by the previous slide, the result look just like all the other
backward stability results... BUT!!! take a closer look... we have

‖δA‖
‖L‖ ‖U‖ = O(εmach).

Usually, the results contain something like

‖δA‖
‖A‖ = O(εmach).

There is a critical difference here. If ‖L‖ ‖U‖ = O(‖A‖), then the
theorem states that GE is backward stable. However (like in our previous
example), if ‖L‖ ‖U‖ ≫ O(‖A‖), all bets are off!
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Gaussian Elimination
Cholesky Factorization

Reference
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Stability
Backward Stability? Practical Stability?

Quantifying Stability The Growth Factor

Without pivoting, both ‖L‖ and ‖U‖ can be unbounded, and
GEw/oPivoting is unstable by any standard.

Consider GEw/PP. By construction |ℓij | ≤ 1, so that ‖L‖ = O(1) in any
norm (this is true for all the pivoting schemes we have discussed). We
now focus our attention to U; essentially GEw/PP is backward stable
provided ‖U‖ = O(‖A‖).
The following quantity turns out to be very useful:

Definition (Growth Factor)

The growth factor of A (and the algorithm) is defined as the ratio

ρ =

max
i,j

|uij |

max
i,j

|aij |
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Gaussian Elimination
Cholesky Factorization
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Last Time...
Stability
Backward Stability? Practical Stability?

The Growth Factor... and Stability

If ρ ∼ 1, there is little growth, and the elimination process is stable.
When ρ is large, we expect loss of accuracy and/or instability of the
algorithm... We make this precise: —

Theorem

Let the factorization PA = LU of a non-singular matrix A ∈ Cm×m be
computed by GEw/PP in a floating point environment satisfying the
floating point axioms. The computed matrices P̃, L̃, and Ũ satisfy

L̃Ũ = P̃A+ δA,
‖δA‖
‖A‖ = O(ρεmach)

for some δA ∈ Cm×m, where ρ is the growth factor of A. If |ℓij | < 1 for

i > j , then P = P̃ for εmach small enough.
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Gaussian Elimination
Cholesky Factorization

Reference

Last Time...
Stability
Backward Stability? Practical Stability?

Backward Stability for GEw/PP? 1 of 3

If ρ = O(1) uniformly for all matrices of a given dimension m, then
GEw/PP is backward stable; otherwise it is not.

Let the mathematical hair-splitting begin!

Consider the worst-case scenario




1 1
−1 1 1
−1 −1 1 1

.

.

.

.

.

.
. . .

. . .
.
.
.

−1 −1 . . . −1 1 1
−1 −1 . . . −1 −1 1




=




1
−1 1
−1 −1 1

.

.

.

.

.

.
. . .

. . .

−1 −1 . . . −1 1
−1 −1 . . . −1 −1 1







1 1
1 2

1 4

. . .
.
.
.

1 2m−2

2m−1




Here ρ = 2m−1, which is the maximal value ρ can take for
GEw/PP.
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Backward Stability for GEw/PP? 2 of 3

A growth factor of 2m−1 corresponds to a loss of ∼ (m− 1) bits of
information (Recall: we have at most 52 binary digits in
IEEE-754-1985 double precision floating point computations).

According the worst-case estimate we cannot safely operate on
matrices of dimension larger than (52× 52), and in that case only
have one bit of information! This is an intolerable state of affairs
for practical computations!!!
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Gaussian Elimination
Cholesky Factorization

Reference

Last Time...
Stability
Backward Stability? Practical Stability?

Backward Stability for GEw/PP? 3 of 3

On the other hand... We have a uniform bound (2m−1) on the
growth factor for (m×m)-matrices, thus according to our previous
definitions of backward stability; GEw/PP is backward stable.

Clearly, for practical purposes, this is an absurd conclusion. In
this context, let’s put the previous formal definition of backward
stability aside; and say that the worst-case scenario indicates that
GEw/PP can be unstable.

Peter Blomgren 〈blomgren@sdsu.edu〉 17. Gaussian Elim. / Cholesky Factorization — (16/35)



Gaussian Elimination
Cholesky Factorization

Reference

Last Time...
Stability
Backward Stability? Practical Stability?

Practical Stability of Gaussian Elimination

Now... If GEw/PP is so unstable, why is it so famous and popular?!?

“Despite worst-case examples, GEw/PP is utterly stable in practice.
Large factors U like the one in the worst-case scenario never seem to

appear in real applications. In 50 years of computing no matrix problems
that excite explosive instability are known to have arisen under natural

circumstances.”
[Trefethen-&-Bau (1997), p.166]

In “Matrix Computations” by Golub & Van-Loan, the upper bounds for
the growth factors for partial and complete pivoting are given as

ρPP ≤ 2m−1, ρCP ≤ 1.8m( lnm
4 ).
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Gaussian Elimination
Cholesky Factorization

Reference

Last Time...
Stability
Backward Stability? Practical Stability?

Curious...

The number of matrices with large growth factors is very small — if we
select a random matrix in Cm×m it turns out that a practical bound on
ρPP is given by

√
m. This is illustrated below.
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Figure: The growth factors for GEw/PP for 500 random matrices ranging in size
from (2×2) to (1448×1448). The blue line (left panel) corresponds to the practical
bound

√
m; and the red line (right panel only) corresponds to the worst-case bound

for complete pivoting, ρcp .
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Cholesky Factorization
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Last Time...
Stability
Backward Stability? Practical Stability?

Curious... Where is the ρpp line?! Pt. 2

Figure: The corresponding values for ρpp are ≥ { 2, 8, 16, 128, 103, 104, 106, 109, 1013, 1018,
1026, 1038, 1054, 1076, 10108, 10153, 10217, 10307, 10435, 10616, 10871, 101232, 101743 }, whereas
in this (m ∈ {2, . . . , 5792}) range, ρcp < 2.6 · 108; and √

m ≤ 77.
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Gaussian Elimination
Cholesky Factorization

Reference

Last Time...
Stability
Backward Stability? Practical Stability?

GEw/PP Bottom Line

The bottom line is that GEw/PP works well “almost always.”

It is almost impossible to prove any useful result in this context.

Vigorous hand-waving and numerical recovery of the probability
density functions for the growth-factor vs. the matrix size can be
used to get indications that the number of matrices with large
growth factors is exponentially small in a probabilistic sense.

See e.g. Trefethen-&-Bau pp.166–170, for some discussion.
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Hermitian Positive Definite Matrices
R∗R-factorization

Cholesky Factorization Hermitian Positive Definite Matrices

We now turn our attention to application of Gaussian Elimination /
LU-Factorization to a special class of matrices —

Definition (Hermitian Positive Definite)

A ∈ Cm×m is Hermitian Positive Definite if A = A∗, and

~x∗A~x > 0, ∀~x ∈ Cm − {~0}.

This type of matrices show up many applications — due to symmetry
(reciprocity) in physical systems.

My favorite application is optimization [Math 693a], where we constantly build
second order models

mk (~p) = f (~xk) + ~p∇f (~xk) +
1

2
~p∗Bk~pk

where the matrix Bk ≈ ∇2f (~xk) is symmetric (Hermitian) positive definite.
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Hermitian Positive Definite Matrices
R∗R-factorization

Hermitian Positive Definite (HPD) Matrices: Properties

Let A ∈ Cm×m be HPD.

• λ(A) ∈ R+.

• Eigenvectors that correspond to distinct eigenvalues of a
Hermitian matrix are orthogonal (For general matrixes we only get
linear independence).

• ∀X ∈ Cm×n, m ≥ n, rank(X ) = n; X ∗AX is also HPD.

• By selecting X ∈ Cm×n to be a matrix with a 1 in each
column, and zeros everywhere else, we can write any (n × n)
principal sub-matrix of A in the form X ∗AX . It follows
that every principal sub-matrix of A must be HPD, and in
particular aii ∈ R+.
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Hermitian Positive Definite Matrices
R∗R-factorization

Cholesky R∗R-factorization 1 of 4

We now turn to the main task at hand — decomposing a HPD
matrix into triangular factors, R∗R ...

We assume that A is an HPD matrix, and write it in the form




α ~w∗

~w B


 =




β ~0∗

~w/β I(n−1)







1 ~0∗

~0 B − ww’ / a







β ~w∗/β

~0 I(n−1)




Where

β =
√
α, ~0 is the zero-vector, (B - ww’/a) ≡ (B − ~w ~w∗/α),

I(n-1) is the (n − 1)× (n − 1)-identity matrix

Before moving forward, we check the matrix identity...
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Cholesky R∗R-factorization 2 of 4

We have




β ~0∗

~w/β I(n−1)







1 ~0∗

~0 B − ww’ / a







β ~w∗/β

~0 I(n−1)




Multiplying the first two matrices, and then third together gives




β ~0∗

~w/β B − ww’ / a







β ~w∗/β

~0 I(n−1)


 =




α ~w∗

~w B




as desired.
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Cholesky R∗R-factorization 3 of 4

It can be shown (see slides 31–32) that the sub-matrix (B − ~w ~w∗/α) is
also HPD.

We can now define the Cholesky Factorization recursively:

R(n) =




β ~w∗/β

~0 R(n−1)




Where R(n-1) = R(n−1) is the Cholesky factor R associated with
(B − ~w ~w∗/α), i.e. [R(n−1)]∗[R(n−1)] = (B − ~w ~w∗/α).

A note on the implementation (next slide): Since we only need to
compute one of the triangular parts (it’s Hermitian, remember?!?) of the
factorization, the Cholesky factorization uses about 1/2 the operations of
a general LU-factorization.
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Cholesky R∗R-factorization 4 of 4

% Cholesky Factorization of an m-by-m matrix A
for i = 1:m
%
% compute ~w∗/β
%
A(i, i) = sqrt(A(i, i));
A(i, (i+1):m) = A(i, (i+1):m) / A(i, i);
%
% compute the upper triangular part of B − ~w ~w∗/α
%
for j = (i+1):m
A(j, j:m) = A(j, j:m) - A(i, j:m) * A(i, j)’;

end
%
% We zero out the sub-diagonal elements, since
% the answer is an upper triangular matrix.
%
A((i+1):m, i) = zeros(m-i, 1);

end
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Cholesky Factorization: Existence, Uniqueness, and Work

Theorem

Every HPD matrix A ∈ Cm×m has a unique Cholesky factorization.

The existence follows from the argument on slides 31–32, and
uniqueness from the algorithm. �
Compared with standard Gaussian elimination / LU-factorization
we are saving about half the operations since we only form the
upper triangular part R

Cholesky R∗R Factorization m3

3

LU-Factorization 2m3

3

QR: Householder 4m3

3

QR: Gram-Schmidt 2m3

SVD 13m3
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Cholesky Factorization: Stability 1 of 2

Usually when we see this table

Cholesky R∗R Factorization m3

3

LU-Factorization 2m3

3

QR: Householder 4m3

3

QR: Gram-Schmidt 2m3

SVD 13m3

we note that with increased cost comes increased stability. The
Cholesky factorization is the one pleasant exception!

All the subtle things that can go wrong in general LU-factorization
(Gaussian elimination) are safe in the Cholesky factorization
context!

Cholesky factorization is always backward stable!
(For HPD matrices, that is.)
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Cholesky Factorization: Stability 2 of 2

In the 2-norm we have ‖R‖ = ‖R∗‖ =
√
‖A‖, thus the growth

factor cannot be large. We also note that we can safely compute
the Cholesky factorization without pivoting.

Theorem

Let A ∈ Cm×m be HPD, and let R∗R = A be computed using the
Cholesky factorization algorithm in a floating point environment
satisfying the floating point axioms. For sufficiently small εmach, this
process is guaranteed to run to completion (no zero or negative
entries rkk will arise), generating a computed factor R̃ that satisfies

R̃∗R̃ = A+ δA,
‖δA‖
‖A‖ = O(εmach)

for some δA ∈ Cm×m.
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Solving A~x = ~b using Cholesky Factorization 1 of 2

If A is HPD, the standard (best) way to solve A~x = ~b is by
Cholesky decomposition.

Once we have R∗R~x = ~b, we get the solution by solving R∗~y = ~b
(by forward substitution), followed by R~x = ~y (by backward
substitution). Each triangular solve requires ∼ m2 operations, so
the total work is ∼ 1

3m
3.
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Solving A~x = ~b using Cholesky Factorization 2 of 2

We have the following important result

Theorem

The solution of an HPD system A~x = ~b via Cholesky factorization
is backward stable, generating a computed solution x̃ that satisfies

(A+∆A)x̃ = ~b,
‖∆A‖
‖A‖ = O(εmach)

for some ∆A ∈ Cm×m.
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One More Comment

If we have a Hermitian matrix A ∈ Cm×m the best way to check if it is
also Positive Definite is to try to compute the Cholesky factorization.

If A is not HPD, then the Cholesky factorization will break down in the
sense that

√
rkk or, if you want sqrt(A(i, i))

will fail (if rkk < 0) or the subsequent division by
√
rkk will fail (if

rkk = 0).

Usually, in applications (such as optimization) we require A to be
sufficiently HPD, meaning that we must have rkk ≥ δ > 0 for some δ.
Quite possibly δ ∈ {√εmach, 3

√
εmach}.
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Reference

Hermitian Positive Definite Matrices
R∗R-factorization

Homework #6.5 Due Date in Canvas/Gradescope

Use Gaussian Elimination with Partial Pivoting, create plots like TB-Figure-22.1, and TB-
Figure-22.2

For matrices with random, normally distributed N(0, 1) entries:

6.5.1 Growth factor ρ for GE w/PP. (TB-Figure-22.1) — Use at least 1,024
matrices with varying sizes (up to at least 2,048×2,048 matrices)

6.5.2 Probability density of ρ. (TB-Figure-22.2) — Use at least 1,048,576 matrices
of each (m ×m) size, m ∈ {8, 16, 32, 64}.

For matrices with random, uniformly distributed in [0, 1] entries:

6.5.3 Growth factor ρ for GE w/PP. (variant of TB-Figure-22.1) — Use at least
1,024 matrices with varying size (up to at least 2,048×2,048 matrices)

6.5.4 Probability density of ρ. (variant of TB-Figure-22.2) — Use at least
1,048,576 matrices of each (m ×m) size, m ∈ {8, 16, 32, 64}.

6.5.5 Comment on similarities / differences of normally vs. uniformly distributed
matrix entries.

Hint: For computational efficiency, use built-in/library LU-factorizations with partial
pivoting — lu() or scipy.linalg.lu() — read the fine documentation.
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Reference

Reference: Proof that B − ~w ~w∗/α is HPD 1 of 2

If A is HPD, and X is a non-singular matrix, then B = X ∗AX is
also HPD: since X is non-singular ~x 6= 0 ⇒ X~x 6= 0, hence

∀~x 6= 0, ~x∗B~x = ~x∗X ∗AX~x = (X~x)∗A(X~x) > 0

Now, with the representation

A =




β2 ~w∗

~w B




We select

X =




1/β −~w∗/β2

~0 I(n−1)


 , X ∗ =




1/β ~0∗

−~w/β2 I(n−1)



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Reference

Reference: Proof that B − ~w ~w∗/α is HPD 2 of 2

Now,

X ∗AX =




1/β ~0∗

−~w/β2 I(n−1)







β2 ~w∗

~w B







1/β −~w∗/β2

~0 I(n−1)




=




β ~w∗/β

~0 B − ww’ / a







1/β −~w∗/β2

~0 I(n−1)


 =




1 ~0

~0 B − ww’ / a




It now follows from the definition (use ~x 6= 0 such that x1 = 0)
that B − ~w ~w∗/β2 is also HPD.
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