Numerical Matrix Analysis

Notes #17 — Systems of Equations Gaussian Elimination & Cholesky Factorization

Peter Blomgren (blomgren@sdsu.edu)

Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego, CA 92182-7720

http://terminus.sdsu.edu/

Spring 2024 (Revised: March 21, 2024)

Outline

- Student Learning Targets, and Objectives
 - SLOs: Gaussian Elimination & Cholesky-Factorization
- 2 Gaussian Elimination
 - Last Time...
 - Stability
 - Backward Stability? Practical Stability?
- Cholesky Factorization
 - Hermitian Positive Definite Matrices
 - R*R-factorization
- 4 Reference

Student Learning Targets, and Objectives

Target Gaussian Elimination

Objective The Growth Factor, ρ as a measurement of (in)stability Objective Worst-case ρ for partial and complete pivoting vs. typical behavior

Target Gaussian Elimination — Special Case

- Hermitian Positive Definite Matrices
- Cholesky Factorization

We quickly reviewed a familiar algorithm — **Gaussian Elimination**.

If we save the multipliers generated by the elimination, we get the **LU-factorization** of A, *i.e.* $\mathbf{A} = \mathbf{LU}$, where L is lower triangular, and U is upper triangular.

In this initial form, GE/LU is completely useless (unstable), we discussed a couple of fixes, some probably familiar, some new...

Rewind: Last Time

In **Partial Pivoting** we rearrange the rows of the matrix A (on the fly) in order to move the largest element in the "active" column to the diagonal entry — this way we can guarantee that the multiplier is bounded by one

$$ilde{l}_{ji} = extstyle a_{ji} \oslash a_{ii} = rac{a_{ji}}{a_{ji}} (1+\epsilon), \,\, |\epsilon| \leq arepsilon_{ extstyle extstyle$$

We get PA = LU

Partial Pivoting is stable "most of the time." We looked at enhancements taking scale into consideration: **Scaled Partial Pivoting**.

The overall work for GE/LU is $\sim \frac{2m^3}{3}$, and partial pivoting adds $\mathcal{O}(m^2)$ operations, which is a small cost.

Sometimes **Complete Pivoting** — rearrangement of both the rows and columns of A is necessary to achieve high accuracy. The cost is significant since the additional work adds $\mathcal{O}(m^3)$ operations.

We get PAQ = LU

Now...

- We look at the stability of Gaussian elimination.
- Gaussian Elimination for Hermitian Positive Definite
 Matrices:
 - Cholesky Factorization The Hermitian (Symmetric) version of LU-factorization.

"Gaussian Elimination with partial pivoting is **explosively** unstable for certain matrices, yet stable in practice. This apparent paradox has a statistical explanation."

[Trefethen-&-Bau, p.163]

The stability analysis of Gaussian Elimination with Partial Pivoting (GEw/PP) is complicated, consider the example A = LU

$$\left[\begin{array}{cc} 10^{-20} & 1 \\ 1 & 1 \end{array}\right] = \left[\begin{array}{cc} 1 & 0 \\ 10^{20} & 1 \end{array}\right] \left[\begin{array}{cc} 10^{-20} & 1 \\ 0 & 1 - 10^{20} \end{array}\right]$$

The likely **naively computed** \tilde{L} and \tilde{U} are

$$\left[\begin{array}{cc} 1 & 0 \\ 10^{20} & 1 \end{array}\right] \left[\begin{array}{cc} 10^{-20} & 1 \\ 0 & -10^{20} \end{array}\right] = \left[\begin{array}{cc} 10^{-20} & 1 \\ 1 & 0 \end{array}\right] \neq A$$

Stability of Gaussian Elimination: Introduction

This behavior is quite generic — instability in Gaussian Elimination (with or without pivoting) can arise if the factors \tilde{L} or \tilde{U} are large compared with A.

In the previous example we have

$$\|A\|_F = 1.7321, \ \|\tilde{L}\|_F = 1.0000 \times 10^{20}, \ \|\tilde{U}\|_F = 1.0000 \times 10^{20}$$

i.e. the computed factors are 20 orders of magnitude larger than the initial matrix — no wonder we run into problems!

The purpose of pivoting — from the point of view of stability/accuracy — is to make sure that \tilde{L} and \tilde{U} are not too large.

Formal Result

Theorem (LU-Factorization without (explicit) Pivoting)

Let the factorization A=LU of a non-singular matrix $A\in\mathbb{C}^{m\times m}$ be computed by Gaussian Elimination without pivoting in a floating point environment satisfying the floating point axioms. If A has an LU-factorization, then for ε_{mach} small enough, the factorization completes successfully in floating point arithmetic (no zero pivots \tilde{a}_{ii} are encountered), and the computed matrices \tilde{L} , and \tilde{U} satisfy

$$\tilde{L}\tilde{U} = A + \delta A, \quad \frac{\|\delta A\|}{\|L\| \|U\|} = \mathcal{O}(\varepsilon_{mach})$$

for some $\delta A \in \mathbb{C}^{m \times m}$.

Note that we can make the theorem apply to GEw/Pivoting by applying it to the "pre-pivoted matrix:" A := PA[Q].

Formal Result: Comments

If we just flash by the previous slide, the result look just like all the other backward stability results... **BUT!!!** take a closer look... we have

$$\frac{\|\delta A\|}{\|L\| \|U\|} = \mathcal{O}(\varepsilon_{\mathsf{mach}}).$$

Usually, the results contain something like

$$rac{\|\delta A\|}{\|A\|} = \mathcal{O}(arepsilon_{\mathsf{mach}}).$$

There is a **critical difference** here. If $||L|| ||U|| = \mathcal{O}(||A||)$, then the theorem states that GE is backward stable. However (like in our previous example), if $||L|| ||U|| \gg \mathcal{O}(||A||)$, all bets are off!

Quantifying Stability

The Growth Factor

Without pivoting, both ||L|| and ||U|| can be unbounded, and GEw/o Pivoting is unstable by any standard.

Consider GE w/PP. By construction $|\ell_{ii}| \leq 1$, so that $||L|| = \mathcal{O}(1)$ in any norm (this is true for all the pivoting schemes we have discussed). We now focus our attention to U; essentially GE w/PP is backward stable provided $||U|| = \mathcal{O}(||A||)$.

The following quantity turns out to be very useful:

Definition (Growth Factor)

The growth factor of A (and the algorithm) is defined as the ratio

$$\rho = \frac{\max\limits_{i,j} |u_{ij}|}{\max\limits_{i,j} |a_{ij}|}$$

The Growth Factor... and Stability

If $\rho \sim 1$, there is little growth, and the elimination process is stable. When ρ is large, we expect loss of accuracy and/or instability of the algorithm... We make this precise: —

Theorem

Let the factorization PA = LU of a non-singular matrix $A \in \mathbb{C}^{m \times m}$ be computed by GE w/PP in a floating point environment satisfying the floating point axioms. The computed matrices \tilde{P} , \tilde{L} , and \tilde{U} satisfy

$$ilde{L} ilde{U} = ilde{P}A + \delta A, \quad rac{\|\delta A\|}{\|A\|} = \mathcal{O}(
ho arepsilon_{ ext{mach}})$$

for some $\delta A \in \mathbb{C}^{m \times m}$, where ρ is the growth factor of A. If $|\ell_{ij}| < 1$ for i > j, then $P = \tilde{P}$ for ε_{mach} small enough.

Backward Stability for GEw/PP?

If $\rho = \mathcal{O}(1)$ uniformly for all matrices of a given dimension m, then GE w/PP is backward stable; otherwise it is not.

Let the mathematical hair-splitting begin!

Consider the worst-case scenario

Here $\rho = 2^{m-1}$, which is the maximal value ρ can take for GE w/PP.

A growth factor of 2^{m-1} corresponds to a loss of $\sim (m-1)$ bits of information (Recall: we have at most 52 binary digits in IEEE-754-1985 double precision floating point computations).

According the worst-case estimate we cannot safely operate on matrices of dimension larger than (52×52) , and in that case only have one bit of information! This is an intolerable state of affairs for practical computations!!!

On the other hand... We have a uniform bound (2^{m-1}) on the growth factor for $(m \times m)$ -matrices, thus according to our previous definitions of backward stability; **GE** w/**PP** is backward stable.

Clearly, **for practical purposes**, this is an absurd conclusion. In this context, let's put the previous formal definition of backward stability aside; and say that the worst-case scenario indicates that **GE w/PP can be unstable**.

Practical Stability of Gaussian Elimination

Now... If GEw/PP is so unstable, why is it so famous and popular?!?

"Despite worst-case examples, GE w/PP is utterly stable in practice." Large factors U like the one in the worst-case scenario never seem to appear in real applications. In 50 years of computing no matrix problems that excite explosive instability are known to have arisen under natural circumstances."

[Trefethen-&-Bau (1997), p.166]

In "Matrix Computations" by Golub & Van-Loan, the upper bounds for the growth factors for partial and complete pivoting are given as

$$\rho_{\mathsf{PP}} \le 2^{m-1}, \quad \rho_{\mathsf{CP}} \le 1.8 m^{\left(\frac{\ln m}{4}\right)}.$$

Curious...

The number of matrices with large growth factors is very small — if we select a random matrix in $\mathbb{C}^{m\times m}$ it turns out that a practical bound on ρ_{PP} is given by \sqrt{m} . This is illustrated below.

Figure: The growth factors for GE w/PP for 500 random matrices ranging in size from (2×2) to (1448×1448) . The **blue** line (left panel) corresponds to the practical bound \sqrt{m} ; and the **red line** (right panel only) corresponds to the worst-case bound for **complete pivoting**, ρ_{CP} .

Figure: The corresponding values for ρ_{pp} are \geq { 2, 8, 16, 128, 10³, 10⁴, 10⁶, 10⁹, 10¹³, 10¹⁸, 10²⁶, 10³⁸, 10⁵⁴, 10⁷⁶, 10¹⁰⁸, 10¹⁵³, 10²¹⁷, 10³⁰⁷, 10⁴³⁵, 10⁶¹⁶, 10⁸⁷¹, 10¹²³², 10¹⁷⁴³ }, whereas in this $(m \in \{2, \ldots, 5792\})$ range, $\rho_{CP} < 2.6 \cdot 10^8$; and $\sqrt{m} \leq 77$.

GEw/PP Bottom Line

The bottom line is that GEw/PP works well "almost always."

It is almost impossible to prove any useful result in this context.

Vigorous hand-waving and numerical recovery of the probability density functions for the growth-factor vs. the matrix size can be used to get indications that the number of matrices with large growth factors is exponentially small in a probabilistic sense.

See e.g. Trefethen-&-Bau pp.166–170, for some discussion.

Cholesky Factorization

Hermitian Positive Definite Matrices

We now turn our attention to application of Gaussian Elimination / LU-Factorization to a special class of matrices —

Definition (Hermitian Positive Definite)

 $A \in \mathbb{C}^{m \times m}$ is **Hermitian Positive Definite** if $A = A^*$, and

$$\vec{x}^* A \vec{x} > 0, \quad \forall \vec{x} \in \mathbb{C}^m - \{\vec{0}\}.$$

This type of matrices show up **many** applications — due to symmetry (reciprocity) in physical systems.

My favorite application is **optimization** $[MATH\,693A]$, where we constantly build second order models

$$m_k(\vec{p}) = f(\vec{x}_k) + \vec{p}\nabla f(\vec{x}_k) + \frac{1}{2}\vec{p}^*B_k\vec{p}_k$$

where the matrix $B_k \approx \nabla^2 f(\vec{x}_k)$ is symmetric (Hermitian) positive definite.

Hermitian Positive Definite (HPD) Matrices: Properties

Let $A \in \mathbb{C}^{m \times m}$ be HPD.

- $\lambda(A) \in \mathbb{R}^+$.
- Eigenvectors that correspond to distinct eigenvalues of a Hermitian matrix are orthogonal (For general matrixes we only get linear independence).
- $\forall X \in \mathbb{C}^{m \times n}$, $m \ge n$, $\operatorname{rank}(X) = n$; X^*AX is also HPD.
- By selecting $X \in \mathbb{C}^{m \times n}$ to be a matrix with a 1 in each column, and zeros everywhere else, we can write any $(n \times n)$ principal sub-matrix of A in the form X^*AX . It follows that every principal sub-matrix of A must be HPD, and in particular $a_{ii} \in \mathbb{R}^+$.

We now turn to the main task at hand — decomposing a HPD matrix into triangular factors, R^*R ...

We assume that A is an HPD matrix, and write it in the form

$$\begin{bmatrix} \alpha & \vec{w}^* \\ \vec{w} & B \end{bmatrix} = \begin{bmatrix} \beta & \vec{0}^* \\ \vec{w}/\beta & I_{\text{(n-1)}} \end{bmatrix} \begin{bmatrix} 1 & \vec{0}^* \\ \vec{0} & B_{-ww'/a} \end{bmatrix} \begin{bmatrix} \beta & \vec{w}^*/\beta \\ \vec{0} & I_{\text{(n-1)}} \end{bmatrix}$$

Where

$$eta=\sqrt{lpha},\quad \vec{0}$$
 is the zero-vector, $\quad \mbox{(B - ww'/a)} \equiv \mbox{(B - } \vec{w}\vec{w}^*/lpha),$ I (n-1) is the $(n-1) imes (n-1)$ -identity matrix

Before moving forward, we check the matrix identity...

Cholesky R^*R -factorization

We have

$$\left[\begin{array}{c|c} \beta & \vec{0}^* \\ \vec{w}/\beta & I_{(n-1)} \end{array} \right] \left[\begin{array}{cc} 1 & \vec{0}^* \\ \vec{0} & B_{-ww'/a} \end{array} \right] \left[\begin{array}{cc} \beta & \vec{w}^*/\beta \\ \vec{0} & I_{(n-1)} \end{array} \right]$$

Multiplying the first two matrices, and then third together gives

$$\begin{bmatrix} \beta & \vec{0}^* \\ \vec{w}/\beta & B_{-ww',a} \end{bmatrix} \begin{bmatrix} \beta & \vec{w}^*/\beta \\ \vec{0} & I_{(n-1)} \end{bmatrix} = \begin{bmatrix} \alpha & \vec{w}^* \\ \vec{w} & B \end{bmatrix}$$

as desired.

Cholesky R^*R -factorization

It can be shown (see slides 31–32) that the sub-matrix $(B - \vec{w}\vec{w}^*/\alpha)$ is also HPD.

We can now define the Cholesky Factorization recursively:

$$R^{(n)} = \begin{bmatrix} \beta & \vec{w}^*/\beta \\ \vec{0} & R_{\text{(n-1)}} \end{bmatrix}$$

Where $R(n-1) = R^{(n-1)}$ is the Cholesky factor R associated with $(B - \vec{w}\vec{w}^*/\alpha)$, i.e. $[R^{(n-1)}]^*[R^{(n-1)}] = (B - \vec{w}\vec{w}^*/\alpha)$.

A note on the implementation (next slide): Since we only need to compute one of the triangular parts (it's Hermitian, remember?!?) of the factorization, the Cholesky factorization uses about 1/2 the operations of a general LU-factorization.

Cholesky R^*R -factorization

```
% Cholesky Factorization of an m-by-m matrix A
for i = 1:m
  % compute \vec{w}^*/\beta
  A(i, i) = sqrt(A(i, i));
  A(i, (i+1):m) = A(i, (i+1):m) / A(i, i);
  % compute the upper triangular part of B - \vec{w}\vec{w}^*/\alpha
  for j = (i+1):m
    A(j, j:m) = A(j, j:m) - A(i, j:m) * A(i, j)';
  end
  % We zero out the sub-diagonal elements, since
  \% the answer is an upper triangular matrix.
  A((i+1):m, i) = zeros(m-i, 1);
end
```


Cholesky Factorization: Existence, Uniqueness, and Work

Theorem

Every HPD matrix $A \in \mathbb{C}^{m \times m}$ has a unique Cholesky factorization.

The existence follows from the argument on slides 31–32, and uniqueness from the algorithm. \Box

Compared with standard Gaussian elimination / LU-factorization we are saving about half the operations since we only form the upper triangular part R

Cholesky R*R Factorization	$\frac{m^3}{3}$
LU-Factorization	$\frac{2m^{3}}{3}$
QR: Householder	$\frac{4m^{3}}{3}$
QR: Gram-Schmidt	2 <i>m</i> ³
SVD	13 <i>m</i> ³

Cholesky Factorization: Stability

Usually when we see this table

Cholesky R*R Factorization	$\frac{m^3}{3}$
LU-Factorization	$\frac{2m^{3}}{3}$
QR: Householder	$\frac{4m^{3}}{3}$
QR: Gram-Schmidt	2 <i>m</i> ³
SVD	13 <i>m</i> ³

we note that with increased cost comes increased stability. The Cholesky factorization is the one pleasant exception!

All the subtle things that can go wrong in general LU-factorization (Gaussian elimination) are safe in the Cholesky factorization context!

Cholesky factorization is always backward stable! (For HPD matrices, that is.)

Cholesky Factorization: Stability

In the 2-norm we have $||R|| = ||R^*|| = \sqrt{||A||}$, thus the growth factor cannot be large. We also note that we can safely compute the Cholesky factorization **without pivoting**.

Theorem

Let $A \in \mathbb{C}^{m \times m}$ be HPD, and let $R^*R = A$ be computed using the Cholesky factorization algorithm in a floating point environment satisfying the floating point axioms. For sufficiently small ε_{mach} , this process is guaranteed to run to completion (no zero or negative entries r_{kk} will arise), generating a computed factor \tilde{R} that satisfies

$$ilde{R}^* ilde{R} = A + \delta A, \quad rac{\|\delta A\|}{\|A\|} = \mathcal{O}(arepsilon_{ ext{mach}})$$

for some $\delta A \in \mathbb{C}^{m \times m}$.

If A is HPD, the standard (best) way to solve $A\vec{x} = \vec{b}$ is by Cholesky decomposition.

Once we have $R^*R\vec{x}=\vec{b}$, we get the solution by solving $R^*\vec{y}=\vec{b}$ (by forward substitution), followed by $R\vec{x}=\vec{y}$ (by backward substitution). Each triangular solve requires $\sim m^2$ operations, so the total work is $\sim \frac{1}{3}m^3$.

Solving $A\vec{x} = \vec{b}$ using Cholesky Factorization

We have the following important result

$\mathsf{Theorem}$

The solution of an HPD system $A\vec{x} = \vec{b}$ via Cholesky factorization is backward stable, generating a computed solution \tilde{x} that satisfies

$$(A + \Delta A)\tilde{x} = \vec{b}, \quad \frac{\|\Delta A\|}{\|A\|} = \mathcal{O}(\varepsilon_{\scriptscriptstyle mach})$$

for some $\Delta A \in \mathbb{C}^{m \times m}$.

One More Comment

If we have a Hermitian matrix $A \in \mathbb{C}^{m \times m}$ the best way to **check** if it is also Positive Definite is to try to compute the Cholesky factorization.

If A is not HPD, then the Cholesky factorization will break down in the sense that

$$\sqrt{r_{kk}}$$
 or, if you want $sqrt(A(i, i))$

will fail (if $r_{kk} < 0$) or the subsequent division by $\sqrt{r_{kk}}$ will fail (if $r_{kk} = 0$).

Usually, in applications (such as optimization) we require A to be **sufficiently HPD**, meaning that we must have $r_{kk} \geq \delta > 0$ for some δ . Quite possibly $\delta \in \{\sqrt{\varepsilon_{\text{mach}}}, \sqrt[3]{\varepsilon_{\text{mach}}}\}$.

Homework #6.5

Due Date in Canvas/Gradescope

Use Gaussian Elimination with Partial Pivoting, create plots like TB-Figure-22.1, and TB-Figure-22.2

- For matrices with random, normally distributed N(0,1) entries:
 - 6.5.1 Growth factor ρ for GE w/PP. (TB-Figure-22.1) Use at least 1,024 matrices with varying sizes (up to at least 2,048×2,048 matrices)
 - 6.5.2 Probability density of ρ . (TB-Figure-22.2) Use at least 1,048,576 matrices of each $(m \times m)$ size, $m \in \{8, 16, 32, 64\}$.
- For matrices with random, uniformly distributed in [0,1] entries:
 - 6.5.3 Growth factor ρ for GE w/PP. (variant of TB-Figure-22.1) Use at least 1,024 matrices with varying size (up to at least 2,048×2,048 matrices)
 - 6.5.4 Probability density of ρ . (variant of TB-Figure-22.2) Use at least 1,048,576 matrices of each $(m \times m)$ size, $m \in \{8, 16, 32, 64\}$.
- 6.5.5 Comment on similarities / differences of normally vs. uniformly distributed matrix entries.

Hint: For computational efficiency, use built-in/library LU-factorizations with partial pivoting — lu() or scipy.linalg.lu() — read the fine documentation.

Reference: Proof that $B - \vec{w}\vec{w}^*/\alpha$ is HPD

If A is HPD, and X is a non-singular matrix, then $B = X^*AX$ is also HPD: since X is non-singular $\vec{x} \neq 0 \Rightarrow X\vec{x} \neq 0$, hence

$$\forall \vec{x} \neq 0, \quad \vec{x}^* B \vec{x} = \vec{x}^* X^* A X \vec{x} = (X \vec{x})^* A (X \vec{x}) > 0$$

Now, with the representation

$$A = \left[\begin{array}{cc} \beta^2 & \vec{w}^* \\ \vec{w} & B \end{array}\right]$$

We select

$$X = \left[egin{array}{cc} 1/eta & -ec{w}^*/eta^2 \ ec{\mathsf{0}} & \left[egin{array}{cc} \mathbf{I}_{^{(\mathbf{n}-\mathbf{l})}} \end{array}
ight], \qquad X^* = \left[egin{array}{cc} 1/eta & ec{\mathsf{0}}^* \ -ec{w}/eta^2 \end{array}
ight]$$

Reference: Proof that $B - \vec{w}\vec{w}^*/\alpha$ is HPD

Now,

$$X^*AX = \begin{bmatrix} 1/\beta & \vec{0}^* \\ -\vec{w}/\beta^2 & I_{\text{(n-1)}} \end{bmatrix} \begin{bmatrix} \beta^2 & \vec{w}^* \\ \vec{w} & B \end{bmatrix} \begin{bmatrix} 1/\beta & -\vec{w}^*/\beta^2 \\ \vec{0} & I_{\text{(n-1)}} \end{bmatrix}$$
$$= \begin{bmatrix} \beta & \vec{w}^*/\beta \\ \vec{0} & B_{\text{-ww'/a}} \end{bmatrix} \begin{bmatrix} 1/\beta & -\vec{w}^*/\beta^2 \\ \vec{0} & I_{\text{(n-1)}} \end{bmatrix} = \begin{bmatrix} 1 & \vec{0} \\ \vec{0} & B_{\text{-ww'/a}} \end{bmatrix}$$

It now follows from the definition (use $\vec{x} \neq 0$ such that $x_1 = 0$) that $B - \vec{w}\vec{w}^*/\beta^2$ is also HPD.

