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Student Learning Targets, and Objectives SLOs: Eigenvalue Problems

Student Learning Targets, and Objectives

Target Eigenvalues — Introduction

Dictionary Diagonalization, Unitary Diagonalization, Unitary
Triangularization, Eigenvalue, Spectrum, Eigenspace, Invariant
Subspace, Algebraic and Geometric Multiplicity, Characteristic
Polynomial

Objective Eigenvalue decomposition as a change of basis
Objective Normality ⇒ Unitary Diagonalizability
Objective Schur Factorization
Objective The Abel-Ruffini Theorem, and consequences
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Eigenvalue Problems: Introduction

We (p)review the language and properties associated with eigenvalue
problems, and describe three examples of matrix factorizations which
reveal the eigenvalues of a matrix A:

• The diagonalization A = XΛX−1 ⇔ X−1AX = Λ, where
Λ = diag(λ1, λ2, . . . , λn), and the columns of X contains the
eigenvectors of A.

• The unitary diagonalization A = QΛQ∗ ⇔ Q∗AQ = Λ.

• The unitary triangularization (a.k.a. Schur factorization)
A = QTQ∗ ⇔ Q∗AQ = T , where T is upper triangular, and the
eigenvalues of A appear on the diagonal of T .

We discuss under what circumstances each of these factorizations exist.

Note: Fundamentals in [Math 254], and deeper theory in [Math 524].
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Eigenvalues and Eigenvectors

Let A ∈ Cm×m be a square matrix. A non-zero vector ~x ∈ Cm is an
eigenvector of A, and λ is the corresponding eigenvalue if

A~x = λ~x .

The set of all eigenvalues of a matrix A is the spectrum of A,
commonly denoted by λ(A), or Λ(A).

The usefulness of eigenvalues and eigenvectors

Algorithmic Eigenvalue analysis can simplify solutions by
reducing a coupled system to a collection of scalar
problems.

Physical Eigenvalue analysis can give insight to the behav-
ior of evolving systems governed by linear equations,
e.g. the study of resonance and stability of physi-
cal systems.
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Eigenvalue Decomposition

The eigenvalue decomposition of a square matrix is the
factorization

A = XΛX−1,

where X is non-singular and Λ diagonal. To make the connection
between eigenvalues and eigenvectors clear, this decomposition can
be rewritten

AX = XΛ.


 A







| | || | |
~x1 ~x2 · · · ~xm
| | || | |


 =




| | || | |
~x1 ~x2 · · · ~xm
| | || | |







λ1
λ2

. . .

λm




Showing that
A~xj = λj~xj , j = 1, . . . ,m.
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Eigenvalue Decomposition: A Change of Basis

The eigenvalue decomposition can be viewed as a change of basis
[Notes#3.4 (Math 254)] to “eigenvector coordinates.”

In solving the linear system A~x = ~b, with A = XΛX−1,

Λ(X−1~x︸ ︷︷ ︸
~y

) = X−1~b︸ ︷︷ ︸
~c

we

expand ~x (implicitly) and ~b (explicitly) in the basis X given by
the columns X ;

apply (solve with the diagonal) Λ; and

interpret the result as a vector of coefficients ~y = [~x ]X of a
linear combination of the columns of X , so that ~x = X~y .
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Eigenvalues: Geometric Multiplicity

The set of eigenvectors corresponding to a single eigenvalue,
together with the zero-vector, form a subspace of Cm known as an
eigenspace.

If λ ∈ Λ(A), we denote the corresponding eigenspace by Eλ.

An eigenspace Eλ is an example of an invariant subspace of A,
i.e. AEλ ⊆ Eλ. — Shorthand for ~x ∈ Eλ ⇒ A~x ∈ Eλ.

The dimension of Eλ can be interpreted as the maximum number
of linearly independent eigenvectors that can be found
corresponding to the eigenvalue λ. This is the geometric
multiplicity [Math 254] of λ, gm(λ).

We note that
Eλ = null(A− λIm×m).

gm(λ) = dim(Eλ)
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The Characteristic Polynomial  Eigenvalues

The characteristic polynomial of A ∈ Cm×m, is the polynomial of
degree m defined by

pA(z) = det(A− zIm×m).

The following theorem is (hopefully) well-known

Theorem (Eigenvalues are Roots of Characteristic Polynomial)

λ is an eigenvalue of A if and only if pA(λ) = 0.

We note that even if A is real, the eigenvalues may be complex.

Further, we note that from previous discussion — recall Wilkinson’s
example in [Notes#9] on the ill-conditioning of the root-finding problem.
Looking for roots to the characteristic polynomial is not a stable way to
identify eigenvalues!
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Eigenvalues: Algebraic Multiplicity

By the fundamental theorem of algebra, pA(z) can be factored

pA(z) = c(z − λ1)
m1 (z − λ2)

m2 · · · (z − λr )
mr ,

where
r∑

k=1

mk = m.

The integers mk ≥ 1 indicate the algebraic multiplicity of the
eigenvalue λk ∈ C.

The following is true

Algebraic multiplicity(λk) ≥ Geometric multiplicity(λk)

This result comes from a discussion of similarity transformations.
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Similarity Transformations

If X ∈ Cm×m is non-singular, then the map

A 7→ X−1AX ,

is called a similarity transformation of A. Two matrices A and B
are similar if there exists a non-singular X ∈ Cm×m such that
B = X−1AX .

We care about similarity transformations because:

Theorem

If X ∈ Cm×m is non-singular, then A and X−1AX have the same
characteristic polynomial, eigenvalues, and algebraic and geometric
multiplicities.
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Similarity Transformations...

The proof of the theorem is very straight-forward:

pX−1AX (z) = det(X−1AX − zI ) = det(X−1(A− zI )X )

= det(X−1) det(A− zI ) det(X )

= det(A− zI ) = pA(z).

Since pX−1AX (z) = pA(z) the agreement on eigenvalues, and algebraic
multiplicities follow. The agreement of geometric multipliers follows from
the fact that if Eλ is an eigenspace for A, then X−1Eλ is an eigenspace
for X−1AX , and conversely. �
With this result in our back-pocket we can show

Theorem

The algebraic multiplicity of an eigenvalue λ is at least as great as its
geometric multiplicity.
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Proof: Algebraic multiplicity ≥ Geometric multiplicity

Let n be the geometric multiplicity of λ for the matrix A. Form an
(m × n) matrix V̂ whose n columns constitute an orthonormal basis of
Eλ. Let V be the square unitary matrix whose first n columns are given
by V̂ , and define B by

B = V ∗AV =

[
λIn×n C
0 D

]
, C ∈ Cn×(m−n), D ∈ C(m−n)×(m−n).

By the properties of the determinant,

det(B − zIm×m) = det((λ− z)In×n) det(D − zI(m−n)×(m−n))

= (λ− z)n det(D − zI(m−n)×(m−n)).

Hence, the algebraic multiplicity of λ as an eigenvalue of B is at least n.
Since similarity transformations preserve multiplicities, the same is true
for A. �
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Defective (Non-Diagonalizable) Matrices 1 of 2

When Algebraic multiplicity > Geometric multiplicity, the matrix is
not diagonalizable. Consider

A =




2
2

2


 , B =




2 1
2 1

2


 .

Both A and B have λ = 2 with algebraic multiplicity 3. For A we can
choose 3 linearly independent eigenvectors, but for B there is only one
linearly independent eigenvector

~xA1 =




1
0
0


 , ~xA2 =




0
1
0


 , ~xA3 =




0
0
1


 , ~xB1 =




1
0
0




Geometric multiplicities of λ = 2 are 3 (for A) and 1 (for B).
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Defective (Non-Diagonalizable) Matrices 2 of 2

An eigenvalue whose algebraic multiplicity exceeds its geometric
multiplicity, is a defective eigenvalue. A matrix that has one or
more defective eigenvalues is a defective matrix.

A non-defective matrix is diagonalizable —

Theorem

An (m ×m) matrix A is non-defective if and only if it has an
eigenvalue decomposition A = XΛX−1.

This result quantifies for what matrices the diagonalization is
(theoretically) computable. — The matrix X may be highly
ill-conditioned, which may prevent us from numerically performing
the diagonalization.
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Special Cases: Unitary Diagonalization

In rare circumstances, we come across a matrix A ∈ Cm×m whose
m eigenvectors not only are linearly independent, but also
orthogonal.

In this case A is unitarily diagonalizable, i.e. there exists a
unitary matrix Q such that

A = QΛQ∗.

Since ‖Q‖2 = 1, there is no ill-conditioning to worry about.

What kind of matrices are unitarily diagonalizable???

Peter Blomgren 〈blomgren@sdsu.edu〉 18. Eigenvalue Problems, Introduction — (16/28)



Eigenvalue Problems
Eigenvalues...

Introduction
Unitary Diagonalization

Unitarily Diagonalizable Matrices

Theorem (A∗ = A ⇒ Real Diagonalizable)

A Hermitian matrix is unitarily diagonalizable, and its eigenvalues are real.

Other example of unitarily diagonalizable matrices include

• Skew-Hermitian matrices, S∗ = −S .

• Unitary matrices, U∗ = U−1, U∗U = I .

• Circulant matrices, C , whose rows are composed of cyclically
shifted versions of a length-n list ℓ.

• Any of the above plus a multiple of the identity.

These types of matrices are all normal, i.e. M∗M = MM∗.

Theorem (AA∗ = A∗A ⇒ Complex Diagonalizable)

A matrix is unitarily complex diagonalizable if and only if it is normal.

[Complex/Real Spectral Theorem (Math 524 Notes#7.1)].
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The Schur Factorization Eigenvalues Only!

If we are interested in numerically computing the eigenvalues
only, then the Schur factorization is the most useful approach.

The Schur factorization of a matrix A is a unitary factorization

A = QTQ∗,

where Q is unitary, and T is upper triangular. Since this is a
similarity transform, the eigenvalues of A must appear on the
diagonal of T .
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The Schur Factorization Eigenvalues Only!

The following theorem indicates why this is a useful approach —

Theorem

Every square matrix A has a Schur factorization.

Hence it should be possible to compute the eigenvalues for any
matrix, without having to worry about ill-conditioning in the X
(here Q) matrix which defines the similarity transformation.
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The Schur Factorization: Existence Proof 1 of 2

The proof is by induction. The base case m = 1 is trivially true.

Let m ≥ 2 [the inductive hypothesis says that there exists a Schur
factorization of all (m − 1)× (m − 1) matrices], and let (λ, ~x) be any
eigenvalue-eigenvector pair of A. Let ~u1 = ~x/‖~x‖2 be the first column of
a unitary matrix U. Then by construction,

U∗AU =

[
λ B
0 C

]
,

where B ∈ C1×(m−1), and C ∈ C(m−1)×(m−1).

Now, by the induction hypothesis C = VTV ∗ for some unitary
V ∈ C(m−1)×(m−1), and upper-triangular T ∈ C(m−1)×(m−1). Therefore
we can define

Q = U

[
1

V

]
.
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The Schur Factorization: Existence Proof 2 of 2

Q is unitary, and

Q∗AQ =

[
1

V ∗

]
U∗AU

[
1

V

]

=

[
1

V ∗

] [
λ B
0 C

] [
1

V

]

=

[
1

V ∗

] [
λ BV
0 CV

]

=

[
λ BV
0 T

]

which is the Schur factorization we want. �
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Eigenvalue-Revealing Factorizations

We have described three eigenvalue-revealing factorizations

Type Form Restrictions on A Vectors

Diagonalization A = XΛX−1 Non-defective
√

Unitary Diagonalization A = QΛQ∗ Normal, A∗A = AA∗ √

Schur Triangularization A = QTQ∗ None —

Note that the diagonalizations also give the eigenvectors, whereas the
eigenvector information is lost in the Schur triangularization.

Factorizations based on unitary transformations tend to lead to algorithms
that are numerically stable.

If A is normal, then the Schur form comes out diagonal; and if we know
that A is Hermitian we can take advantage of the symmetry in order to
save (approximately) half the work.
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Computing Eigenvalues: Algorithms 1 of 2

Even though eigenvalues and eigenvectors have straight-forward
definitions and clean characterizations, the best ways to compute
them are not obvious.

Some of the most “obvious” ways of approaching the problem —
e.g. by extracting the roots of the characteristic polynomial — are
not stable.

The power iteration which generates the sequence

~x

‖~x‖ ,
A~x

‖A~x‖ ,
A2~x

‖A2~x‖ ,
A3~x

‖A3~x‖ , . . .

will, under some weak conditions, converge to the eigenvector
corresponding to the largest (in absolute value) eigenvalue. This
approach is slow in general — and it only gives one eigenvector.
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Computing Eigenvalues: Algorithms 2 of 2

General purpose eigenvalue algorithms are based on computing
eigenvalue-revealing factorizations of A.

Depending on the properties of the matrix A, we can base our
algorithms on diagonalization, unitary diagonalization, or unitary
triangularization.

Clearly, we are going to pull out the tools we have already
developed for generating algorithms that “put zeros into matrices.”

Although, the flavor is related, eigenvalue computations are
distinctly different (and fundamentally more difficult) than
solutions of linear systems, or least squares problems.
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The Difficulty of Eigenvalue Computations 1 of 3

We have seen that we can cast the eigenvalue problem as a
root-finding problem (subject to potentially catastrophic
ill-conditioning).

Conversely, any polynomial root-finding problem can be stated as
an eigenvalue problem, e.g. given the polynomial

p(z) = zm + am−1z
m−1 + · · ·+ a1z + a0,

we can write p(z) = (−1)m · det(A− zI ), where

A − zI =




−z −a0
1 −z −a1

1 −z −a2

1
. . .

.

.

.

. . . −z −am−2
1 −(z + am−1)




.

Peter Blomgren 〈blomgren@sdsu.edu〉 18. Eigenvalue Problems, Introduction — (25/28)

Eigenvalue Problems
Eigenvalues...

Schur Factorization
Algorithms

The Difficulty of Eigenvalue Computations 2 of 3

Therefore the roots of p(z) are the eigenvalues of the matrix

A =




0 −a0
1 0 −a1

1 0 −a2

1
. . .

.

.

.

. . . 0 −am−2
1 −am−1




We are in quite a predicament! — It is well known that there is no
formula for expressing the roots of an arbitrary polynomial given its
coefficients.
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The Difficulty of Eigenvalue Computations 3 of 3

Theorem (Abel-Ruffini Theorem)

For any m ≥ 5, there is a polynomial p(z) of degree m with rational
coefficients that has a real root p(r) = 0 with the property that r cannot
be written using any expression involving rational numbers, addition,
subtraction, multiplication, division, and kth roots.

This theorem seems to spell out a lot of gloom-and-doom: even in exact
arithmetic, there can be no computer program that produces the exact
roots of an arbitrary polynomial in a finite number of steps.

The theorem is named after Paolo Ruffini, who provided an incomplete proof in 1799,

and Niels Henrik Abel, who provided a proof in 1824. (Galois later proved more general

statements, and provided a construction of a polynomial of degree 5 whose roots cannot

be expressed in radicals from its coefficients.)
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A Different Angle of Attack

The preceding discussion does not mean that we cannot generate a good
eigenvalue solver. It does, however, indicate that we have to think
“outside the box” (where the box is our present toolbox of algorithms).

Gaussian elimination and Householder reflections would solve linear
systems of equations exactly in a finite number of steps if they could be
implemented in exact arithmetic. However:

Fact

Any eigenvalue solver must be iterative.

We are going to generate sequences of numbers converging rapidly toward
the eigenvalues. — The need for iterations may seem discouraging;
however, in most cases we can define schemes that converge very rapidly
— doubling or tripling the number of digits of accuracy in each iteration.
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