
Eigenvalue Problems
Detour — Classical Eigenvalue Algorithms

Rayleigh Quotient Iteration

Numerical Matrix Analysis

Notes #19 — Eigenvalues
Hessenberg Form, Rayleigh Quotient

Peter Blomgren
〈blomgren@sdsu.edu〉

Department of Mathematics and Statistics
Dynamical Systems Group

Computational Sciences Research Center

San Diego State University
San Diego, CA 92182-7720

http://terminus.sdsu.edu/

Spring 2024
(Revised:March 28, 2024)

Peter Blomgren 〈blomgren@sdsu.edu〉 19. Hessenberg Form, Rayleigh Quotient — (1/30)

http://terminus.sdsu.edu/

Eigenvalue Problems
Detour — Classical Eigenvalue Algorithms

Rayleigh Quotient Iteration

Outline

1 Eigenvalue Problems
Schur Factorization
Phase#1 – Upper Hessenberg Form

2 Detour — Classical Eigenvalue Algorithms
The Rayleigh Quotient
Power Iteration
Inverse Iteration

3 Rayleigh Quotient Iteration
Algorithm
Convergence
Work

Peter Blomgren 〈blomgren@sdsu.edu〉 19. Hessenberg Form, Rayleigh Quotient — (2/30)

Eigenvalue Problems
Detour — Classical Eigenvalue Algorithms

Rayleigh Quotient Iteration

Schur Factorization
Phase#1 – Upper Hessenberg Form

Last Time: Introduction to Eigenvalue Problems

Three factorizations which expose the eigenvalues of a matrix.

Type Form Restrictions on A Vectors

→
le
ss

re
strictio

n
s

→

Unitary Diagonalization A = QΛQ∗ Normal, A∗A = AA∗ √

Diagonalization A = XΛX−1 Non-defective
√

Schur Triangularization A = QTQ∗ None —

Eigenvalue problems are fundamentally more difficult than solution of
linear systems and/or least squares problems. We cannot guarantee,
even in exact arithmetic, a solution in a finite number of steps.

Therefore —

Fact

Any eigenvalue solver must be iterative.

Peter Blomgren 〈blomgren@sdsu.edu〉 19. Hessenberg Form, Rayleigh Quotient — (3/30)

Eigenvalue Problems
Detour — Classical Eigenvalue Algorithms

Rayleigh Quotient Iteration

Schur Factorization
Phase#1 – Upper Hessenberg Form

Schur Factorization and Diagonalization 1 of 2

Modern general-purpose eigenvalue algorithms tend to be based on
the Schur factorization. We get A = QTQ∗ by finding a sequence
of unitary similarity transformations

Q∗
k · · ·Q∗

3Q
∗
2Q

∗
1

︸ ︷︷ ︸

Q∗

A Q1Q2Q3 · · ·Qk
︸ ︷︷ ︸

Q

= T , k → ∞,

where T is upper triangular.

If A ∈ R
m×m, but not symmetric (AT 6= A), then T may have

complex eigenvalues. — We either must implement complex
arithmetic, or we can allow T to have (2× 2)-blocks along the
diagonal.

















. . .

λr −λi
λi λr

. . .

















, λ = λr ±
√

−1λi

Peter Blomgren 〈blomgren@sdsu.edu〉 19. Hessenberg Form, Rayleigh Quotient — (4/30)

Eigenvalue Problems
Detour — Classical Eigenvalue Algorithms

Rayleigh Quotient Iteration

Schur Factorization
Phase#1 – Upper Hessenberg Form

Schur Factorization and Diagonalization 2 of 2

Allowing (2× 2)-blocks along the diagonal saves the overhead of
complex arithmetic, and is known as the real Schur factorization.

Special Case

When A is Hermitian (A = A∗), then

Q∗
k · · ·Q∗

3Q
∗
2Q

∗
1AQ1Q2Q3 · · ·Qk = T , k → ∞

is also Hermitian, i.e. T = T ∗, and upper triangular T is
diagonal.

The eigenvalue computation is usually split into 2 phases —
(Phase#1) completes in a finite number of steps and transforms
the matrix into upper Hessenberg form; (Phase#2) is iterative
and converges (k → ∞) to upper triangular form.

Peter Blomgren 〈blomgren@sdsu.edu〉 19. Hessenberg Form, Rayleigh Quotient — (5/30)

Eigenvalue Problems
Detour — Classical Eigenvalue Algorithms

Rayleigh Quotient Iteration

Schur Factorization
Phase#1 – Upper Hessenberg Form

Two-Phase Eigenvalue Computation 1 of 2

When A 6= A∗: A 7→ HA 7→ TA








∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗








Phase#1−→








∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗








︸ ︷︷ ︸

Hessenberg Form

Phase#2−→








∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗

∗








When A = A∗: A 7→ TA 7→ DA








∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗








Phase#1−→








∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗








Phase#2−→








∗
∗

∗
∗

∗








In this case, the Hessenberg From is Tri-Diagonal.

Peter Blomgren 〈blomgren@sdsu.edu〉 19. Hessenberg Form, Rayleigh Quotient — (6/30)

Eigenvalue Problems
Detour — Classical Eigenvalue Algorithms

Rayleigh Quotient Iteration

Schur Factorization
Phase#1 – Upper Hessenberg Form

Two-Phase Eigenvalue Computation 2 of 2

Phase#1 Requires O(m3) operations.

Phase#2 May (in theory) require infinitely many iterations, each of
which requires O(m2) operations. In practice, convergence
to O(εmach) can usually be achieved in O(m) iterations, i.e.
the total work requirement is O(m3).

When A is Hermitian, Phase#2 can be executed with only O(m)
operations/iteration; thus the total work estimate for the second
phase is only O(m2) in this case. Hence, the “infinite” part of the
algorithm is an order of magnitude faster than the “finite” part.

Peter Blomgren 〈blomgren@sdsu.edu〉 19. Hessenberg Form, Rayleigh Quotient — (7/30)

Eigenvalue Problems
Detour — Classical Eigenvalue Algorithms

Rayleigh Quotient Iteration

Schur Factorization
Phase#1 – Upper Hessenberg Form

Why Hessenberg Form? 1 of 2

We are looking to compute the Schur factorization A = QTQ∗.

Why not go straight for T???

Ponder... the first standard Householder reflector Q∗
1








∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗








Q∗

1 A−→








∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗








Q∗

1 AQ1−→








∗ ∗ ∗ ∗ ∗
⊛ ∗ ∗ ∗ ∗
⊛ ∗ ∗ ∗ ∗
⊛ ∗ ∗ ∗ ∗
⊛ ∗ ∗ ∗ ∗








Whoops!!! The multiplication from the right will fill in ⊛ the first
column again... The sub-diagonal elements are typically reduced in
magnitude, but at this point this does not get us closer to the
goal...

Peter Blomgren 〈blomgren@sdsu.edu〉 19. Hessenberg Form, Rayleigh Quotient — (8/30)

Eigenvalue Problems
Detour — Classical Eigenvalue Algorithms

Rayleigh Quotient Iteration

Schur Factorization
Phase#1 – Upper Hessenberg Form

Why Hessenberg Form? 2 of 2

Let’s instead use a Householder reflector Q∗

1 which ignores the first row
(the ⊗s are completely untouched), and introduces zeros as shown below








∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗








Q∗

1 A−→








⊗ ⊗ ⊗ ⊗ ⊗
+ + + + +
0 + + + +
0 + + + +
0 + + + +








Q∗

1 AQ1−→








⊗ + + + +
⊗ + + + +
0 + + + +
0 + + + +
0 + + + +








When we multiply by Q1 from the right, the first column is completely
untouched, and the other columns are replaced by linear combinations of
the columns in Q∗

1A.

Note that when A = A∗, the Q-multiplication from the right leads to the
analogous row combinations, so the that top row turns into [⊗ + 0 0 0]

We now repeat the same strategy...

Peter Blomgren 〈blomgren@sdsu.edu〉 19. Hessenberg Form, Rayleigh Quotient — (9/30)

Eigenvalue Problems
Detour — Classical Eigenvalue Algorithms

Rayleigh Quotient Iteration

Schur Factorization
Phase#1 – Upper Hessenberg Form

To Hessenberg Form








∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗








Q∗

2 []−→








∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 + + + +
0 0 + + +
0 0 + + +








Q∗

2 []Q2−→








∗ ∗ + + +
∗ ∗ + + +
0 ∗ + + +
0 0 + + +
0 0 + + +















∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 ∗ ∗ ∗








Q∗

3 []−→








∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 + + +
0 0 0 + +








Q∗

3 []Q3−→








∗ ∗ ∗ + +
∗ ∗ ∗ + +
0 ∗ ∗ + +
0 0 ∗ + +
0 0 0 + +








Elements marked with ∗ are not changed/touched and elements
marked with + are changed/touched. In the practical code, we can
skip “touching” the known zeros to save some work.

Peter Blomgren 〈blomgren@sdsu.edu〉 19. Hessenberg Form, Rayleigh Quotient — (10/30)

Eigenvalue Problems
Detour — Classical Eigenvalue Algorithms

Rayleigh Quotient Iteration

Schur Factorization
Phase#1 – Upper Hessenberg Form

Householder Reduction to Hessenberg Form

Algorithm (Householder Reduction to Hessenberg Form)

Transform A ∈ R
m×m to Hessenberg Form

for k = 1:(m-2)

~x = A((k+1):m,k)

~vk = sign(x1)‖~x‖~e1 + ~x
~vk = ~vk/‖~vk‖2
A((k+1):m,k:m) = A((k+1):m,k:m)− 2~vk (~v

∗
k
A((k+1):m,k:m)) [*]

A(1:m,(k+1):m) = A(1:m,(k+1):m)− 2(A(1:m,(k+1):m)~vk)~v
∗
k

endfor

[*] Only operates on the non-zero columns.

Just as when we compute the QR-factorization using Householder
reflections, the matrix Q is never formed explicitly. If we save the vectors
~vk , then we can reconstruct Q, or the action of Q as needed.

The work needed for Hessenberg reduction is ∼
(
10

3
m3

)

operations.

Peter Blomgren 〈blomgren@sdsu.edu〉 19. Hessenberg Form, Rayleigh Quotient — (11/30)

Eigenvalue Problems
Detour — Classical Eigenvalue Algorithms

Rayleigh Quotient Iteration

Schur Factorization
Phase#1 – Upper Hessenberg Form

Backward Stability of Hessenberg Reduction 1 of 2

Since Hessenberg reduction contains operations of the forms

“Householder reflection from the left,” and

“Householder reflection from the right,”

it should not come as a big surprise that the stability result looks
very much like the one for QR-factorization (which is built on
“Householder reflection from the left”-operations).

Peter Blomgren 〈blomgren@sdsu.edu〉 19. Hessenberg Form, Rayleigh Quotient — (12/30)

Eigenvalue Problems
Detour — Classical Eigenvalue Algorithms

Rayleigh Quotient Iteration

Schur Factorization
Phase#1 – Upper Hessenberg Form

Backward Stability of Hessenberg Reduction 2 of 2

Theorem (Backward Stability of Hessenberg Reduction)

Let the Hessenberg reduction A = QHQ∗ of a matrix A ∈ C
m×m

be computed by the algorithm described above, in a floating point

environment satisfying the axioms. Let H̃ be computed Hessenberg

matrix and Q̃ be the exactly unitary matrix corresponding to the

computed reflection vectors ṽk , then

Q̃H̃Q̃∗ = A+ δA,
‖δA‖
‖A‖ = O(εmach)

for some δA ∈ C
m×m.

Peter Blomgren 〈blomgren@sdsu.edu〉 19. Hessenberg Form, Rayleigh Quotient — (13/30)

Eigenvalue Problems
Detour — Classical Eigenvalue Algorithms

Rayleigh Quotient Iteration

Schur Factorization
Phase#1 – Upper Hessenberg Form

Phase#1 —
√

Phase#2 — ?

We take a small detour and discuss some classical eigenvalue
algorithms∗; they are useful in their own right under certain
circumstances, and will form the foundation for
“Phase#2-algorithms.”

∗ The Rayleigh quotient, Power iteration, Inverse Iteration, and
Rayleigh quotient iteration.

Peter Blomgren 〈blomgren@sdsu.edu〉 19. Hessenberg Form, Rayleigh Quotient — (14/30)

Eigenvalue Problems
Detour — Classical Eigenvalue Algorithms

Rayleigh Quotient Iteration

The Rayleigh Quotient
Power Iteration
Inverse Iteration

Restriction to A ∈ R
m×m, A = A∗

For simplicity, we briefly restrict our study to real symmetric
matrices, and note that when we are ready to apply these methods
(in Phase#2), A will be real, symmetric, and tri-diagonal.

The discussion is simplified since

1 we can guarantee that all eigenvalues λk(A) ∈ R are real, and

2 A has a complete set of orthonormal eigenvectors, ~qk .

For real quantities ~x∗ = ~xT , and A∗ = AT .

Peter Blomgren 〈blomgren@sdsu.edu〉 19. Hessenberg Form, Rayleigh Quotient — (15/30)

Eigenvalue Problems
Detour — Classical Eigenvalue Algorithms

Rayleigh Quotient Iteration

The Rayleigh Quotient
Power Iteration
Inverse Iteration

The Rayleigh Quotient

The Rayleigh quotient — after Lord Rayleigh
(John William Strutt), Nobel Prize in Physics
1904, ”for his investigations of the densities of

the most important gases and for his discovery

of argon in connection with these studies.”

Figure: Lord Rayleigh.

— of a vector ~x ∈ R
m — is the scalar quantity

r(~x) =
~x∗A~x
~x∗~x

.

We note that if ~x = ~qk is an eigenvector, then r(~qk) = λk .

(Copyright — Figure of Lord Rayleigh) — This file comes from Wellcome Images, a website operated by Wellcome
Trust, a global charitable foundation based in the United Kingdom. Licensed under the Creative Commons
Attribution 4.0 International license. File Located at https://commons.wikimedia.org/wiki/
File:John William Strutt, 3rd Baron Rayleigh. Photogravure after Wellcome V0006603.jpg

Peter Blomgren 〈blomgren@sdsu.edu〉 19. Hessenberg Form, Rayleigh Quotient — (16/30)

https://commons.wikimedia.org/wiki/File:John_William_Strutt,_3rd_Baron_Rayleigh._Photogravure_after_Wellcome_V0006603.jpg

Eigenvalue Problems
Detour — Classical Eigenvalue Algorithms

Rayleigh Quotient Iteration

The Rayleigh Quotient
Power Iteration
Inverse Iteration

The Rayleigh Quotient Interpretation

For a general ~x , r(~x) is the value which “acts most like an

eigenvalue” in the least squares sense, i.e.

r(~x) = min
r∈R

‖A~x − r~x‖2

The corresponding normal equation

[~x∗~x] r = ~x∗A~x

gives r as the Rayleigh quotient.

Peter Blomgren 〈blomgren@sdsu.edu〉 19. Hessenberg Form, Rayleigh Quotient — (17/30)

Eigenvalue Problems
Detour — Classical Eigenvalue Algorithms

Rayleigh Quotient Iteration

The Rayleigh Quotient
Power Iteration
Inverse Iteration

The Rayleigh Quotient... Quadratic Accuracy 1 of 2

Let’s view the Rayleigh quotient as a function r(~x) : Rm 7→ R.

We are interested in the local behavior of r(~x) when ~x is close to an
eigenvector... We compute the gradient of r(~x)

∂

∂xj
r(~x) =

1

~x∗~x

[
∂

∂xj
(~x∗A~x)

]

− (~x∗A~x)

(~x∗~x)2

[
∂

∂xj
(~x∗~x)

]

=
2(A~x)j
~x∗~x

− (~x∗A~x)2xj
(~x∗~x)2

=
2

~x∗~x

[

A~x − r(~x)~x

]

j

,

i.e.

∇~x r(~x) =
2

~x∗~x

[

A~x − r(~x)~x

]

.

Bottom line: ∇~x r(~x) = 0, ~x 6= 0 if and only if (~x , r(~x)) is an
eigenvector-eigenvalue pair.

Peter Blomgren 〈blomgren@sdsu.edu〉 19. Hessenberg Form, Rayleigh Quotient — (18/30)

Eigenvalue Problems
Detour — Classical Eigenvalue Algorithms

Rayleigh Quotient Iteration

The Rayleigh Quotient
Power Iteration
Inverse Iteration

The Rayleigh Quotient... Quadratic Accuracy 2 of 2

Now, let ~qk be one of the eigenvectors of A, and let ~x = (~qk + ~ǫ),
with ‖~ǫ ‖2 ≪ 1. By Taylor’s theorem

r(~x)− r(~qk) = ~ǫ ∗∇(r(~qk))
︸ ︷︷ ︸

0

+
1

2
~ǫ ∗∇2(r(~qk + t~ǫ))
︸ ︷︷ ︸

The Hessian

~ǫ, t ∈ [0, 1].

This shows that

|r(~x)− r(~qk)| = O
(
‖~ǫ ‖2

)
, ~x = ~qk + ~ǫ.

Thus,

Theorem

The Rayleigh quotient is a quadratically accurate estimate of an

eigenvalue.

Peter Blomgren 〈blomgren@sdsu.edu〉 19. Hessenberg Form, Rayleigh Quotient — (19/30)

Eigenvalue Problems
Detour — Classical Eigenvalue Algorithms

Rayleigh Quotient Iteration

The Rayleigh Quotient
Power Iteration
Inverse Iteration

Power Iteration

We have already written this idea off once... but it turns out that
it can be made useful.

Algorithm (Power Iteration)

~v(0) = some vector, so that ‖~v(0)‖2 = 1
k = 0

while(termination criteria (details swept under the rug))

k = k + 1

~w = A~v(k−1)

~v(k) = ~w/‖~w‖
λ(k) = ~v∗

(k)A~v(k)
endwhile

This algorithm produces a sequence of approximate
eigenvalue-vector pairs (λ(k), ~v(k)) which converge to (λmax, ~qmax)

Peter Blomgren 〈blomgren@sdsu.edu〉 19. Hessenberg Form, Rayleigh Quotient — (20/30)

Eigenvalue Problems
Detour — Classical Eigenvalue Algorithms

Rayleigh Quotient Iteration

The Rayleigh Quotient
Power Iteration
Inverse Iteration

Power Iteration Convergence

Theorem

Suppose |λ1| > |λ2| ≥ · · · ≥ |λm| ≥ 0 and ~q∗1~v(0) 6= 0. Then the iterates

of the power iteration satisfy

‖~v(k) ∓ ~q1‖ = O
(∣
∣
∣
∣

λ2

λ1

∣
∣
∣
∣

k
)

, |λ(k) − λ1| = O
(∣
∣
∣
∣

λ2

λ1

∣
∣
∣
∣

2k
)

As it stands this is not very useful —
(1) We can only find the eigenvector corresponding to the largest eigen-

value;
(2) convergence for the eigenvector is only linear;
(3) the convergence factor |λ2/λ1| can be very close to 1.

It turns out we can use this basic idea (power iteration) to build scheme
where we can guarantee that |λ2/λ1| is small, and further we can find
any eigenvector...

Peter Blomgren 〈blomgren@sdsu.edu〉 19. Hessenberg Form, Rayleigh Quotient — (21/30)

Eigenvalue Problems
Detour — Classical Eigenvalue Algorithms

Rayleigh Quotient Iteration

The Rayleigh Quotient
Power Iteration
Inverse Iteration

Inverse Iteration

Motivation: For any µ ∈ R that is not an eigenvalue of A, the
eigenvectors of

A and (A− µI)−1,

are the same, and the corresponding eigenvalues are

λj and
1

λj − µ
.

Suppose µ is close to λk for some k , then since lim
µ→λk

1

λk − µ
= ∞, this

suggests that
1

|λk − µ| ≫
1

|λj − µ| , j 6= k .

Thus applying power iteration to (A− µI)−1 should give rapid
convergence to ~qk .

Peter Blomgren 〈blomgren@sdsu.edu〉 19. Hessenberg Form, Rayleigh Quotient — (22/30)

Eigenvalue Problems
Detour — Classical Eigenvalue Algorithms

Rayleigh Quotient Iteration

The Rayleigh Quotient
Power Iteration
Inverse Iteration

Inverse Iteration The Algorithm

Algorithm (Inverse Iteration)

~v(0) = some vector, so that ‖~v(0)‖2 = 1
k = 0

while(termination criteria (details swept under the rug))

k = k + 1

Solve[1] (A− µI)~w = ~v(k−1) for ~w
~v(k) = ~w/‖~w‖
λ(k) = ~v∗

(k)A~v(k)
endwhile

Even though (A− µI) becomes singular as µ → λk , the solution
~w = (A− µI)−1~v(k−1) still gives a good rescaled ~v(k) = ~w/‖~w‖.

[1] Solve by QR-, or Cholesky-factorization.

Peter Blomgren 〈blomgren@sdsu.edu〉 19. Hessenberg Form, Rayleigh Quotient — (23/30)

Eigenvalue Problems
Detour — Classical Eigenvalue Algorithms

Rayleigh Quotient Iteration

The Rayleigh Quotient
Power Iteration
Inverse Iteration

Inverse Iteration Discussion

Like power iteration, inverse iteration only exhibits linear
convergence.

However, the positive features are

• We can choose what eigenvector to compute by supplying
and estimate µ of the corresponding eigenvalue.

• We can control the rate of linear convergence since for µ ≈ λk

∣
∣
∣
∣

λ2([A− µI]−1)

λ1([A− µI]−1)

∣
∣
∣
∣
= max

j 6=k

∣
∣
∣
∣

λk − µ

λj − µ

∣
∣
∣
∣
≪ 1.

We make this precise in a theorem...

Peter Blomgren 〈blomgren@sdsu.edu〉 19. Hessenberg Form, Rayleigh Quotient — (24/30)

Eigenvalue Problems
Detour — Classical Eigenvalue Algorithms

Rayleigh Quotient Iteration

The Rayleigh Quotient
Power Iteration
Inverse Iteration

Inverse Iteration Convergence Theorem

Theorem

Suppose that λJ is the closest eigenvalue to µ, and λK is the

second closest, i.e. |µ− λJ | < |µ− λK | ≤ |µ− λj |, ∀j 6∈ {J,K}.
Furthermore, assume ~q∗J~v(0) 6= 0. Then the iterates of the inverse

iteration satisfy

‖~v(k) ∓ ~qJ‖ = O
(∣
∣
∣
∣

µ− λJ

µ− λK

∣
∣
∣
∣

k
)

, |λ(k) − λJ | = O
(∣
∣
∣
∣

µ− λJ

µ− λK

∣
∣
∣
∣

2k
)

Inverse iteration is the standard method for calculating the
eigenvectors of a matrix if the eigenvalues are already known. In
this setting, the algorithm is applied as described, but the
calculation of the Rayleigh quotient λ(k) = ~v∗(k)A~v(k) is skipped.

Peter Blomgren 〈blomgren@sdsu.edu〉 19. Hessenberg Form, Rayleigh Quotient — (25/30)

Eigenvalue Problems
Detour — Classical Eigenvalue Algorithms

Rayleigh Quotient Iteration

Algorithm
Convergence
Work

Rayleigh Quotient + Inverse Iteration = Rayleigh Quotient Iteration

Rayleigh Quotient Get an eigenvalue estimate
from a eigenvector estimate.

Inverse Iteration Get an eigenvector estimate
from an eigenvalue estimate.

Mix them together, and BAM!!!

Algorithm (Rayleigh Quotient Iteration)

~v(0) = some vector, so that ‖~v(0)‖2 = 1
λ(0) = ~v∗

(0)A~v(0), k = 0

while(termination criteria (details swept under the rug))
k = k + 1
Solve (A− λ(k−1)I)~w = ~v(k−1) for ~w
~v(k) = ~w/‖~w‖
λ(k) = ~v∗

(k)A~v(k)
endwhile

Peter Blomgren 〈blomgren@sdsu.edu〉 19. Hessenberg Form, Rayleigh Quotient — (26/30)

Eigenvalue Problems
Detour — Classical Eigenvalue Algorithms

Rayleigh Quotient Iteration

Algorithm
Convergence
Work

Rayleigh Quotient Iteration Cubic Convergence

Theorem (Convergence of the Rayleigh Quotient Iteration)

Rayleigh Quotient Iteration converges to an eigenvalue-eigenvector

pair for all, except a set of measure zero, starting vectors ~v(0).
When it converges, the convergence is ultimately cubic in the

sense that if λJ is an eigenvalue of A and ~v(0) is sufficiently close

to the eigenvector ~qJ , then

‖~v(k+1) ∓ ~qJ‖ = O
(∥
∥~v(k) ∓ ~qJ

∥
∥3
)

and

|λ(k+1) − λJ | = O
(∣
∣λ(k) − λJ

∣
∣3
)

as k → ∞. The ∓ signs are not necessarily the same on the two

sides of the equalities.

Peter Blomgren 〈blomgren@sdsu.edu〉 19. Hessenberg Form, Rayleigh Quotient — (27/30)

Eigenvalue Problems
Detour — Classical Eigenvalue Algorithms

Rayleigh Quotient Iteration

Algorithm
Convergence
Work

Rayleigh Quotient Iteration Convergence Informal Pattern

‖~v(k) ∓ ~qJ‖ |λ(k) − λJ |

O(ǫ) → O(ǫ2)

↓ ւ
O(ǫ3) → O(ǫ6)

↓ ւ
O(ǫ9) → O(ǫ18)

...
...

O(ǫk) → O(ǫ2k) comes from quadratic accuracy of the Rayleigh
quotient. {O(ǫk),O(ǫ2k)} → O(ǫ3k), since for the inverse iteration

‖~v(k) ∓ ~qJ‖ = O
(∣
∣
∣
∣
∣

λ(k) − λJ

λ(k) − λK

∣
∣
∣
∣
∣
· ‖~v(k−1) ∓ ~qJ‖

)

= O(ǫ2k) · O(ǫk) = O(ǫ3k)

Peter Blomgren 〈blomgren@sdsu.edu〉 19. Hessenberg Form, Rayleigh Quotient — (28/30)

Eigenvalue Problems
Detour — Classical Eigenvalue Algorithms

Rayleigh Quotient Iteration

Algorithm
Convergence
Work

Work per Iteration...

A ∈ R
m×m, Full, A∗ = A

Power Iteration O(m2)
Inverse Iteration O(m2) LU, QR, or Cholesky
Inverse Iteration O(m3) Unfactored

Rayleigh Quotient Iteration O(m3) (A− λ(k)I) changes
[1]

A ∈ R
m×m, Tri-Diagonal, A∗ = A Hessenberg, A∗ 6= A

Power Iteration O(m) O(m2)
Inverse Iteration O(m) O(m2)
Rayleigh Quotient Iteration O(m) O(m2)

[1] Unless we can find an update formula for the factorization of (A − λ(k)I), beating

O(m3) operations per iteration is hard...

Peter Blomgren 〈blomgren@sdsu.edu〉 19. Hessenberg Form, Rayleigh Quotient — (29/30)

Eigenvalue Problems
Detour — Classical Eigenvalue Algorithms

Rayleigh Quotient Iteration

Algorithm
Convergence
Work

Homework #7 Due Date in Canvas/Gradescope

[Submit] Trefethen-&-Bau 24.3
Hints: 1: Use expm or scipy.linalg.expm (not the exp versions) for matrix ex-
ponentiation etA. 2: Make sure you have many points in the interval of interest,
e.g. use linspace/np.linspace with at least 100 points. 3: It is useful to (addi-
tionally) plot ‖etA‖2/etα(A).

[Submit] Implement-and-Test — Householder Reduction to Hessenberg form.

Submit: Code + Validation, show working (5× 5) and (7× 7) examples.

Compare with a library call (e.g. hess/scipy.linalg.hessenberg) — for
validation use a (9× 9) example. Comment on similarities and differences.

[Submit] Implement-and-Test — Rayleigh Quotient Iteration.

Submit: Code + Validation

Minimum Validation: (11× 11) matrix; (explicitly) show that at least one
eigenvalue–eigenvector pair matches library (matlab/python) call.

Trefethen-&-Bau 26.1, 26.3, 27.3 — Read and think.

[Optional] Trefethen-&-Bau 26.2 (bonus fun) —
Use eigtool (http://http://www.cs.ox.ac.uk/projects/pseudospectra/eigtool/)
or pseudopy (https://github.com/andrenarchy/pseudopy) to compute the
pseudospectra

Peter Blomgren 〈blomgren@sdsu.edu〉 19. Hessenberg Form, Rayleigh Quotient — (30/30)

http://http://www.cs.ox.ac.uk/projects/pseudospectra/eigtool/
https://github.com/andrenarchy/pseudopy

	
	Eigenvalue Problems
	Schur Factorization
	
	Phase#1 – Upper Hessenberg Form

	Detour — Classical Eigenvalue Algorithms
	The Rayleigh Quotient
	Power Iteration
	Inverse Iteration

	Rayleigh Quotient Iteration
	Algorithm
	Convergence
	Work

