

Let $\underline{\bar{x}} = {\{\bar{x}_n\}_{n=1}^{\infty}}$ be a sequence converging to \bar{x}^* , the convergence rate is said to be

Q-linear (quotient-linear) if $\exists r \in (0,1)$ and $K \in \mathbb{Z}$ such that

$$\frac{\|\bar{\mathbf{x}}_{k+1}-\bar{\mathbf{x}}^*\|}{\|\bar{\mathbf{x}}_k-\bar{\mathbf{x}}^*\|} \leq r, \quad \forall k \geq K.$$

Q-superlinear if

$$\lim_{k\to\infty}\frac{\|\bar{\mathbf{x}}_{k+1}-\bar{\mathbf{x}}^*\|}{\|\bar{\mathbf{x}}_k-\bar{\mathbf{x}}^*\|}=0.$$

Q-quadratic if $\exists r \in \mathbb{R}^+$ and $K \in \mathbb{Z}$ such that

$\frac{\ \bar{\mathbf{x}}_{k+1} - \bar{\mathbf{x}}^*\ }{\ \bar{\mathbf{x}}_k - \bar{\mathbf{x}}^*\ ^2} \leq$	$\leq r, \forall k \geq K.$	SAN DIGO STATE UNIVERSITY
Peter Blomgren, $\langle \texttt{blomgren.peter@gmail.com} \rangle$	Convergence; Line Search Methods	— (5/28)
Introduction Line Search Methods	Search Direction: Steepest Descent, Newton, or Step Length Selection — 1D Minimization Step Length Selection — The Wolfe Conditions Homework #1	Other?!?
Steepest Descent Direction		Line Search

The intuitive choice for $\mathbf{\bar{p}}_k$ is to move in the direction of steepest descent, *i.e.* in the negative gradient direction.

Going back to the Taylor expansion

$$f(\mathbf{\bar{x}} + \alpha \mathbf{\bar{p}}) = f(\mathbf{\bar{x}}) + \alpha \mathbf{\bar{p}}^T \nabla f(\mathbf{\bar{x}}),$$

we immediately see that the direction of most rapid decrease gives

$$\min_{\|\bar{\mathbf{p}}\|=1} \bar{\mathbf{p}}^T \nabla f(\bar{\mathbf{x}}) = \min_{\theta \in [0,2\pi]} \cos \theta \, \|\nabla f(\bar{\mathbf{x}})\| = -\|\nabla f(\bar{\mathbf{x}})\|,$$

which is achieved when $\theta = \pi \Leftrightarrow \mathbf{\bar{p}} = -\nabla f(\mathbf{\bar{x}}) / \|\nabla f(\mathbf{\bar{x}})\|.$

Recall: $\mathbf{\bar{v}}^T \mathbf{\bar{w}} = \cos \theta \| \mathbf{\bar{v}} \| \cdot \| \mathbf{\bar{w}} \|$, where θ is the angle between the vectors $\mathbf{\bar{v}}$ and $\mathbf{\bar{w}}$.

Search Direction: Steepest Descent, Newton, or Other?!? Step Length Selection — 1D Minimization Step Length Selection — The Wolfe Conditions Homework #1

Line Search Methods

We now focus on line search methods where we (*i*) pick a **search direction** $\bar{\mathbf{p}}_k$ and, then (*ii*) solve the one-dimensional problem

$$\min_{\alpha>0}f(\mathbf{\bar{x}}_k+\alpha\mathbf{\bar{p}}_k).$$

The solution gives us an optimal value for α_k , so the next point is given by

$$\mathbf{\bar{x}}_{k+1} = \mathbf{\bar{x}}_k + \alpha_k \mathbf{\bar{p}}_k$$

where α_k is known as the **step length**.

In order for a line search method to be work well, we need good choices of the direction $\mathbf{\bar{p}}_k$ and the step length α_k .

Peter Blomgren, (blomgren.peter@gmail.com)

- (7/28)

SAN DIEGO UNIVERS Introduction Line Search Methods Search Direction: Steepest Descent, Newton, or Other?!? Step Length Selection — 1D Minimization Step Length Selection — The Wolfe Conditions Homework #1

Newton Direction

If f is smooth enough and the Hessian is positive definite, we can select $\mathbf{\bar{p}}_k$ to be the "Newton direction." We write down the second order Taylor expansion:

$$f(\mathbf{\bar{x}} + \mathbf{\bar{p}}) \approx f(\mathbf{\bar{x}}) + \mathbf{\bar{p}}^T \nabla f(\mathbf{\bar{x}}) + \frac{1}{2} \mathbf{\bar{p}}^T \left[\nabla^2 f(\mathbf{\bar{x}}) \right] \mathbf{\bar{p}}.$$

We seek the minimum of the right-hand-side by computing the derivative width respect to $\bar{\mathbf{p}}$ and set the result to zero

 $abla f(\mathbf{ar{x}}) + \left[
abla^2 f(\mathbf{ar{x}})
ight] \mathbf{ar{p}} = 0,$

which gives the Newton direction

$$\mathbf{ar{p}}^N = -\left[
abla^2 f(\mathbf{ar{x}})
ight]^{-1}
abla f(\mathbf{ar{x}}).$$

Homework #1

Convergence; Line Search Methods

Search Direction: Steepest Descent, New Step Length Selection — 1D Minimization

Step Length Selection — The Wolfe Cond

Peter Blomgren, blomgren.peter@gmail.com

Introduction Line Search Methods

Example: NW^{1st}-2.2, p 30.

Problem: Show that the function $f(x) = 8x+12y+x^2-2y^2$ has only one stationary point, and that it is neither a maximum nor a minimum, but a saddle point. Sketch the contours for f.

Solution: The gradient of *f* is

$$\nabla f = \left[\begin{array}{c} 8+2x\\ 12-4y \end{array} \right]$$

which has the stationary point (x, y) = (-4, 3). Since the Hessian

$$\nabla^2 f = \begin{bmatrix} 2 & 0 \\ 0 & -4 \end{bmatrix}$$

has both positive and negative eigenvalues, the stationary point must be a saddle point.

Figure: The function f(x) around the stationary point.

San Diego Stat University

- (11/28)

Introduction Line Search Methods

Search Direction: Steepest Descent, Newton, or Other?!? Step Length Selection — 1D Minimization Step Length Selection — The Wolfe Conditions Homework #1

Newton Direction

Line Search

Ê

As long as the Hessian is positive definite, $\mathbf{\bar{p}}^{N}$ is a descent-direction:

$$\mathbf{\bar{o}}^{N} \nabla f(\mathbf{\bar{x}}) = -\nabla f(\mathbf{\bar{x}})^{T} \underbrace{\left[\nabla^{2} f(\mathbf{\bar{x}})\right]^{-T}}_{\text{Pos. Def.}} \nabla f(\mathbf{\bar{x}}) < 0$$

- **Note:** Clearly, the Newton direction is more "expensive" than the steepest descent direction we must compute the Hessian matrix $\nabla^2 f(\bar{\mathbf{x}})$, and invert it (*i.e.* solve an $n \times n$ linear system).
- **Note:** The convergence rate for steepest descent methods is **linear** and for Newton methods it is **quadratic**, hence there is a lot to gain by finding the Newton direction.

If we start an iteration in $(x_0, y_0) = (0, 0)$:

The steepest descent direction is

$$\mathbf{\bar{p}}_{0}^{\text{SD}} = -\nabla f = -\begin{bmatrix} 8+2x\\12-4y\end{bmatrix} = -\begin{bmatrix} 8\\12\end{bmatrix}$$

and the Newton direction is

$$\mathbf{\bar{p}}_{0}^{N} = -[\nabla^{2} f]^{-1} \nabla f = -\begin{bmatrix} 2 & 0 \\ 0 & -4 \end{bmatrix}^{-1} \begin{bmatrix} 8 \\ 12 \end{bmatrix} = \begin{bmatrix} -4 \\ 3 \end{bmatrix}$$

Peter Blomgren, (blomgren.peter@gmail.com)

SAN DIEGO STA UNIVERSITY — (12/28)

Line Search

We will return to the selection of $\mathbf{\bar{p}}_k$, but let's consider the computation of the step length α_k ...

San Diego Sta University In practice we perform an inexact line search — settling for an

 α_k which gives **adequate reduction** in the objective.

Convergence; Line Search Methods

— (16/28)

SAN DIEGO STA UNIVERSITY

- (23/28)

Peter Blomgren, (blomgren.peter@gmail.com)

Convergence; Line Search Methods

Peter Blomgren, (blomgren.peter@gmail.com) Convergence; Line Search Methods

- (24/28)

Introduction Line Search Methods	Search Direction: Steepest Descent, Newton, or Other?!? Step Length Selection — 1D Minimization Step Length Selection — The Wolfe Conditions Homework $\#1$	Introduction Line Search Methods	Search Direction: Steepest Descent, Newton, or Other?!? Step Length Selection — 1D Minimization Step Length Selection — The Wolfe Conditions Homework #1
Are the Wolfe Conditions too Restrictive?		Algorithm: Backtracking Linesearch	
It can be shown (see NW ^{2nd} pp.35–36) that there exist step lengths α which satisfy the Wolfe Conditions (and the Strong Wolfe Conditions) for every function f which is smooth and bounded below. Formally — Theorem (Existence of Acceptable α) Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is continuously differentiable. Let $\mathbf{\bar{p}}_k$ be a descent direction at $\mathbf{\bar{x}}_k$, and assume that f is bounded below along the line $\{\mathbf{\bar{x}}_k + \alpha \mathbf{\bar{p}}_k : \alpha > 0\}$. Then if $0 < c_1 < c_2 < 1$, there exist intervals of step lengths satisfying the Wolfe conditions and the strong Wolfe conditions. See also "Goldstein Conditions" (NW ^{2nd} p.36.)		Algorithm: Backtracking Linesearch [0] Find a descent direction $\bar{\mathbf{p}}_k$ [1] Set $\bar{\alpha} > 0$, $\rho \in (0,1)$, $c \in (0,1)$, set $\alpha = \bar{\alpha}$ [2] While $f(\bar{\mathbf{x}}_k + \alpha \bar{\mathbf{p}}_k) > f(\bar{\mathbf{x}}_k) + c\alpha \bar{\mathbf{p}}_k^T \nabla f(\bar{\mathbf{x}}_k)$ [3] $\alpha = \rho \alpha$ [4] End-While [5] Set $\alpha_k = \alpha$ If an algorithm selects the step lengths appropriately (<i>e.g.</i> backtracking), we do not have to check the second inequality of the Wolfe conditions. The algorithm above is especially well suited for use with Newton method ($\bar{\mathbf{p}}_k = \bar{\mathbf{p}}_k^N$), where $\bar{\alpha} = 1$. It is less successful for quasi-Newton and CG-based approaches. The value of the contraction factor ρ can be allowed to vary at each iteration of the line search. (To be revisited)	
Peter Blomgren, $\langle \texttt{blomgren.peter@gmail.com} \rangle$	Convergence; Line Search Methods — (25/28)	Peter Blomgren, (blomgren.peter@gmail.com)	Convergence; Line Search Methods — (26/28)
Line Search Methods Homework $\#1$ — Due at 12:00pm, Friday	Search Direction: Steepest Descent, Newton, or Other?!? Step Length Selection — 1D Minimization Step Length Selection — The Wolfe Conditions Homework #1 v September 21, 2018	Introduction Line Search Methods	Search Direction: Steepest Descent, Newton, or Other?!? Step Length Selection — 1D Minimization Step Length Selection — The Wolfe Conditions Homework #1
NW ^{2nd} -3.1: Program the steepest using the backtracking line search Rosenbrock function $f(\bar{\mathbf{x}}) = 100(x_2 - $ Set the initial step length $\alpha_0 = 1$ by each method at each iteration $\bar{\mathbf{x}}_0^T = [1.2, 1.2]$ and then the more Suggested values: $\bar{\alpha} = 1$, $\rho = \frac{1}{2}$, Stop when: $ f(\bar{x}_k) < 10^{-8}$, or $ \nabla$ Note: The homework is due in F office GMCS-587 (slide und	a descent and Newton algorithms b. Use them to minimize the $x_1^2)^2 + (1 - x_1)^2$ and report the step length used c. First try the initial point e difficult point $\mathbf{\bar{x}}_0^T = [-1.2, 1]$. $c = 10^{-4}$. $\nabla f(\vec{x}_k) \parallel < 10^{-8}$. Peter's mailbox in GMCS-411 or, der the door if I'm not there).	Armijo condition, 18 backtracking linesearch, 26 convergence rate of, 4 linear, 5 quadratic, 5 superlinear, 5 curvature condition, 19 Newton direction, 9 steepest descent direction, 7 Wolfe conditions, 19 strong, 24	
	San Direo S Universit	ATE	SAN DIEGO STATE UNIVESTY

— (27/28)

— (28/28)