Numerical Optimization

Lecture Notes \＃3
Convergence；Line Search Methods

Peter Blomgren，

〈blomgren．peter＠gmail．com〉

Department of Mathematics and Statistics Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego，CA 92182－7720
http：／／terminus．sdsu．edu／
Fall 2018
Peter Blomgren，〈blomgren．peter＠gmail．com〉 Convergence；Line Search Methods

```
Introduction
Line Search Methods
```


Recap

```
Fundamentals：Rate of Convergence
```

Quick Recap：Last Time
Some fundamental building blocks of unconstrained optimization：
Theorem（Taylor）
For some $t \in(0,1)$ ，we have

$$
f(\overline{\mathbf{x}}+\overline{\mathbf{p}})=f(\overline{\mathbf{x}})+\overline{\mathbf{p}}^{T} \underbrace{\nabla f(\overline{\mathbf{x}})}_{\text {gradient }}+\frac{1}{2} \overline{\mathbf{p}}^{T} \underbrace{\left[\nabla^{2} f(\overline{\mathbf{x}}+t \overline{\mathbf{p}})\right]}_{\text {Hessian }} \overline{\mathbf{p}} .
$$

4 theorems relating $f(\overline{\mathbf{x}})$ and its derivatives to optimal solutions．
［1］$\quad \overline{\mathbf{x}}^{*}$ optimal $\Rightarrow \nabla f\left(\overline{\mathbf{x}}^{*}\right)=0$ ．
［2］$\quad \overline{\mathbf{x}}^{*}$ optimal $\Rightarrow \nabla f\left(\overline{\mathbf{x}}^{*}\right)=0$ ，and $\nabla^{2} f\left(\overline{\mathbf{x}}^{*}\right)$ positive semi－definite．
［3］$\nabla f\left(\overline{\mathbf{x}}^{*}\right)=0$ ，and $\nabla^{2} f\left(\overline{\mathbf{x}}^{*}\right)$ positive definite $\Rightarrow \overline{\mathrm{x}}^{*}$ optimal．
［4a］f convex，and $\overline{\mathbf{x}}^{*}$ local optimum $\Rightarrow \overline{\mathrm{x}}^{*}$ global optimum．
［4b］f convex，and $\nabla f\left(\overline{\mathbf{x}}^{*}\right)=0 \Rightarrow \overline{\mathrm{x}}^{*}$ global optimum．
Note：The complete statement of the theorems require sufficient smoothness（exis－ tence）of derivatives of f ．
（1）Introduction
－Recap
－Fundamentals：Rate of Convergence
（2）Line Search Methods
－Search Direction：Steepest Descent，Newton，or Other？！？
－Step Length Selection－1D Minimization
－Step Length Selection－The Wolfe Conditions
－Homework \＃1

Peter Blomgren，〈blomgren．peter＠gmail．com〉		
	Convergence；Line Search Methods	－（2／28）
Introduction Line Search Methods	Recap Fundamentals：Rate of Convergence	
Concepts	Rate	ergence

Definition（Rate of Convergence，Sequences）
Suppose the sequence $\underline{\beta}=\left\{\beta_{n}\right\}_{n=1}^{\infty}$ converges to zero，and $\underline{\overline{\mathbf{x}}}=\left\{\overline{\mathbf{x}}_{n}\right\}_{n=1}^{\infty}$ converges to a point $\overline{\mathbf{x}}^{*}$ ．

If $\exists K>0$ ：$\left\|\overline{\mathbf{x}}_{n}-\overline{\mathbf{x}}^{*}\right\|<K \beta_{n}$ ，for $n>N$（i．e．for n large enough）
then we say that $\left\{\overline{\mathbf{x}}_{n}\right\}_{n=1}^{\infty}$ converges to $\overline{\mathbf{x}}^{*}$ with a Rate of
Convergence $\mathcal{O}\left(\beta_{n}\right)$（＂Big Oh of β_{n}＂）．
We write

$$
\overline{\mathbf{x}}_{n}=\overline{\mathbf{x}}^{*}+\mathcal{O}\left(\beta_{n}\right) .
$$

Note：The sequence $\underline{\beta}=\left\{\beta_{n}\right\}_{n=1}^{\infty}$ is usually chosen to be e．g．

$$
\beta_{n}=\frac{1}{n^{p}}, \quad \text { for some value of } p .
$$

Let $\underline{\bar{x}}=\left\{\overline{\mathbf{x}}_{n}\right\}_{n=1}^{\infty}$ be a sequence converging to $\overline{\mathbf{x}}^{*}$ ，the convergence rate is said to be
Q－linear（quotient－linear）if $\exists r \in(0,1)$ and $K \in \mathbb{Z}$ such that

$$
\frac{\left\|\overline{\mathbf{x}}_{k+1}-\overline{\mathbf{x}}^{*}\right\|}{\left\|\overline{\mathbf{x}}_{k}-\overline{\mathbf{x}}^{*}\right\|} \leq r, \quad \forall k \geq K .
$$

Q－superlinear if

$$
\lim _{k \rightarrow \infty} \frac{\left\|\overline{\mathbf{x}}_{k+1}-\overline{\mathbf{x}}^{*}\right\|}{\left\|\overline{\mathbf{x}}_{k}-\overline{\mathbf{x}}^{*}\right\|}=0 .
$$

Q－quadratic if $\exists r \in \mathbb{R}^{+}$and $K \in \mathbb{Z}$ such that

$$
\begin{aligned}
& \qquad \frac{\left\|\overline{\mathbf{x}}_{k+1}-\overline{\mathbf{x}}^{*}\right\|}{\left\|\overline{\mathbf{x}}_{k}-\overline{\mathbf{x}}^{*}\right\|^{2}} \leq r, \quad \forall k \geq K . \\
& \hline \text { Peter Blomgren, 〈blomgren.peter@gmail.com〉 }
\end{aligned} \quad \text { Convergence; Line Search Methods } \quad \text {-(5/28) }
$$

The intuitive choice for $\overline{\mathbf{p}}_{k}$ is to move in the direction of steepest descent，i．e．in the negative gradient direction．
Going back to the Taylor expansion

$$
f(\overline{\mathbf{x}}+\alpha \overline{\mathbf{p}})=f(\overline{\mathbf{x}})+\alpha \overline{\mathbf{p}}^{T} \nabla f(\overline{\mathbf{x}}),
$$

we immediately see that the direction of most rapid decrease gives

$$
\min _{\|\overline{\mathbf{p}}\|=1} \overline{\mathbf{p}}^{T} \nabla f(\overline{\mathbf{x}})=\min _{\theta \in[0,2 \pi]} \cos \theta\|\nabla f(\overline{\mathbf{x}})\|=-\|\nabla f(\overline{\mathbf{x}})\|,
$$

which is achieved when $\theta=\pi \Leftrightarrow \overline{\mathbf{p}}=-\nabla f(\overline{\mathbf{x}}) /\|\nabla f(\overline{\mathbf{x}})\|$ ．
Recall：$\quad \overline{\mathbf{v}}^{\top} \overline{\mathbf{w}}=\cos \theta\|\overline{\mathbf{v}}\| \cdot\|\overline{\mathbf{w}}\|$ ，where θ is the angle between the vectors $\overline{\mathbf{v}}$ and $\overline{\mathbf{w}}$ ．

Search Direction：Steepest Descent，Newton，or Other？！？ tep Length Selection－1D Minimization Homework \＃1

Line Search Methods

We now focus on line search methods where we（i）pick a search direction $\overline{\mathbf{p}}_{k}$ and，then（ii）solve the one－dimensional problem

$$
\min _{\alpha>0} f\left(\overline{\mathbf{x}}_{k}+\alpha \overline{\mathbf{p}}_{k}\right) .
$$

The solution gives us an optimal value for α_{k} ，so the next point is given by

$$
\overline{\mathbf{x}}_{k+1}=\overline{\mathbf{x}}_{k}+\alpha_{k} \overline{\mathbf{p}}_{k},
$$

where α_{k} is known as the step length．
In order for a line search method to be work well，we need good choices of the direction $\overline{\mathbf{p}}_{k}$ and the step length α_{k} ．

Peter Blomgren，〈blomgren．peter＠gmail．com〉 Convergence；Line Search Methods

[^0] Homework \＃1

Steepest Descent Direction

Figure：The steepest descent direction $\overline{\mathbf{p}}_{k}$ is perpendicular to the contour lines of the objective．

Figure：$\overline{\mathbf{v}}^{T} \overline{\mathbf{w}}=\cos \theta\|\overline{\mathbf{v}}\| \cdot\|\overline{\mathbf{w}}\|$ ．

Search Direction：Steepest Descent，Newton，or Other？！？ Step Length Selection－The Wolfe Condition Homework \＃1

If f is smooth enough and the Hessian is positive definite，we can select $\overline{\mathbf{p}}_{k}$ to be the＂Newton direction．＂We write down the second order Taylor expansion：

$$
f(\overline{\mathbf{x}}+\overline{\mathbf{p}}) \approx f(\overline{\mathbf{x}})+\overline{\mathbf{p}}^{T} \nabla f(\overline{\mathbf{x}})+\frac{1}{2} \overline{\mathbf{p}}^{T}\left[\nabla^{2} f(\overline{\mathbf{x}})\right] \overline{\mathbf{p}} .
$$

We seek the minimum of the right－hand－side by computing the derivative width respect to $\overline{\mathbf{p}}$ and set the result to zero

$$
\nabla f(\overline{\mathbf{x}})+\left[\nabla^{2} f(\overline{\mathbf{x}})\right] \overline{\mathbf{p}}=0
$$

which gives the Newton direction

$$
\overline{\mathbf{p}}^{N}=-\left[\nabla^{2} f(\overline{\mathbf{x}})\right]^{-1} \nabla f(\overline{\mathbf{x}}) .
$$

Peter Blomgren，〈blomgren．peter＠gmail．com〉 Convergence；Line Search Methods

[^1]Line Search Method

Example：NW ${ }^{1 \mathrm{st}}$－2．2，p 30.
1 of 3
earch Direction：Steepest Descent，Newton，or Other？？ tep Length Selection－1D Minimization Homework \＃1

Newton Direction
As long as the Hessian is positive definite，$\overline{\mathbf{p}}^{N}$ is a descent－direction：

$$
\overline{\mathbf{p}}^{N} \nabla f(\overline{\mathbf{x}})=-\nabla f(\overline{\mathbf{x}})^{T} \underbrace{\left[\nabla^{2} f(\overline{\mathbf{x}})\right]^{-T}}_{\text {Pos. Def. }} \nabla f(\overline{\mathbf{x}})<0
$$

Note：Clearly，the Newton direction is more＂expensive＂than the steepest descent direction－we must compute the Hessian matrix $\nabla^{2} f(\overline{\mathbf{x}})$ ，and invert it（i．e．solve an $n \times n$ linear system）

Note：The convergence rate for steepest descent methods is linear and for Newton methods it is quadratic，hence there is a lot to gain by finding the Newton direction．

Peter Blomgren，〈blomgren．peter＠gmail．com〉 Convergence；Line Search Methods

Introduction

Line Search Methods

Search Direction：Steepest Descent，Newton，or Other？！？ Step Length Selection－1D Minimization

 Homework \＃1Example：NW ${ }^{1 \mathrm{st}}$－2．2，p 30.

Problem：Show that the function $f(x)=8 x+12 y+x^{2}-2 y^{2}$ has only one stationary point，and that it is neither a max－ imum nor a minimum，but a saddle point．Sketch the contours for f ．

Solution：The gradient of f is

$$
\nabla f=\left[\begin{array}{c}
8+2 x \\
12-4 y
\end{array}\right]
$$

which has the stationary point $(x, y)=(-4,3)$ ．Since the Hessian

$$
\nabla^{2} f=\left[\begin{array}{cc}
2 & 0 \\
0 & -4
\end{array}\right]
$$

has both positive and negative eigenvalues，the stationary point must be a saddle point．
 $f(x)$ ．

Figure：The function $f(x)$ around the stationary point．

If we start an iteration in $\left(x_{0}, y_{0}\right)=(0,0)$ ：
The steepest descent direction is

$$
\overline{\mathbf{p}}_{0}^{\mathrm{SD}}=-\nabla f=-\left[\begin{array}{c}
8+2 x \\
12-4 y
\end{array}\right]=-\left[\begin{array}{c}
8 \\
12
\end{array}\right]
$$

and the Newton direction is

$$
\overline{\mathbf{p}}_{0}^{N}=-\left[\nabla^{2} f\right]^{-1} \nabla f=-\left[\begin{array}{cc}
2 & 0 \\
0 & -4
\end{array}\right]^{-1}\left[\begin{array}{c}
8 \\
12
\end{array}\right]=\left[\begin{array}{c}
-4 \\
3
\end{array}\right]
$$

Search Direction：Steepest Descent，Newton，or Other？！？ Step Length Selection－1D Minimization Homework \＃1

Figure：The Newton and Steepest Descent directions starting in $(0,0)$ ．Note that the Newton method is heading to the saddle point，but the Steepest descent method will，in general，not converge to a non－minimum stationary point．

Peter Blomgren，〈blomgren．peter＠gmail．com〉
Convergence；Line Search Methods
－（13／28）
Search Direction：Steepest Descent，Newton，or Other？！？ Step Length Selection－1D Minimization Homework \＃1

Line Search Methods－Directions

Method	Search Direction	Convergence		
Steepest Descent	$p_{k}=-\nabla f\left(\overline{\mathbf{x}}_{k}\right) /\left\\|\nabla f\left(\overline{\mathbf{x}}_{k}\right)\right\\|$	Linear		
Quasi－Newton	$p_{k}=-H_{k}^{-1} \nabla f\left(\overline{\mathbf{x}}_{k}\right)$	Super－Linear		
Newton	$p_{k}=-\left[\nabla^{2} f\left(\overline{\mathbf{x}}_{k}\right)\right]^{-1} \nabla f\left(\overline{\mathbf{x}}_{k}\right)$	Quadratic		

Table：Summary of search directions for different schemes．In Quasi－ Newton schemes we do not explicitly compute the Hessian $\nabla^{2} f\left(\overline{\mathbf{x}}_{k}\right)$ in each iteration，instead we use an approximation $H_{k} \approx \nabla^{2} f\left(\bar{x}_{k}\right)$ which is updated in some clever way［to be explored in great detail later］ （lecture $18 \rightarrow \ldots$ ．．

We will return to the selection of $\overline{\mathbf{p}}_{k}$ ，but let＇s consider the computation of the step length α_{k} ．．

Modified（Convexified）Example

Figure：Convexification of the silly book problem．Same point of interest，$\nabla f=\left[8+2 x, 12-4 y+2 / 3 y^{3}\right]^{T}, \nabla^{2} f=\left[\begin{array}{cc}2 & 0 \\ 0 & -4+2 y^{2}\end{array}\right]$ Now，both the steepest descent and Newton directions are descent directions．

Peter Blomgren，〈blomgren．peter＠gmail．com〉 Convergence；Line Search Methods－（14／28）

> | Introduction | Search Direction: Steepest Descent, Newton, or Other?!? |
| ---: | :--- |
| Step Length Selection - 1D Minimization | |
| ane Search Methods | Step Length Selection - The Wolfe Conditions |
| Homework \#1 | |

Line Search Methods：Step Length Selection

Given a descent direction $\overline{\mathbf{p}}_{k}$ we would like to find the global minimizer α_{k}^{*} of

$$
\min _{\alpha>0} f\left(\overline{\mathbf{x}}_{k}+\alpha \overline{\mathbf{p}}_{k}\right) .
$$

As this is just one of possible many steps in the iteration，it is not wise to expend too much time in finding α_{k} ．We are faced with a trade－off：
－We want an α_{k} so that we get a substantial reduction in the objective f ．
— We want to find α_{k} fast．
In practice we perform an inexact line search－settling for an α_{k} which gives adequate reduction in the objective．

Search Direction：Steepest Descent，Newton，or Other？！？ Step Lengh Setection－The Wolfe Cond Homework \＃1

What is＂adequate reduction？＂

Figure：Consider the objective $f(x)=\sqrt{x^{2}+10^{-8}}$ ，if we let $x_{k}=$ $\{1,-0.8,0.7,-0.65,0.625,-0.6125,0.60625, \ldots\}$ ，then the descent directions are given by $p_{k}=\{-1,1,-1,1,-1,1,-1, \ldots\}$ ，so this generates a decreasing se－ quence $f\left(x_{k}+\alpha_{k} p_{k}\right)<f\left(x_{k}\right)$ ．However，with the current choice of $\alpha_{k}=$ $\{-1.8,1.5,-1.35,1.275,-1.2375,1.21875, \ldots\}$ the convergence rate is less than spectacular．
Clearly，we need a stronger condition than $f\left(x_{k}+\alpha_{k} p_{k}\right)<f\left(x_{k}\right)$.
Peter Blomgren，〈blomgren．peter＠gmail．com〉
Convergence；Line Search Methods
$-(17 / 28)$

$$
\begin{aligned}
\hline & \text { Search Direction: Steepest Descent, Newton, or Other?!? } \\
\text { Introduction } & \text { Step Length Selection - 1D Minimization } \\
\text { Line Search Methods } & \text { Step Length Selection - The Wolfe Conditions } \\
& \text { Homework \#1 }
\end{aligned}
$$

The Wolfe Conditions

To rule out unacceptably short steps，we additionally enforce

Curvature Coondition
（Wolfe Condition \＃2）
The Curvature Condition

$$
\overline{\mathbf{p}}_{k}^{T} \nabla f\left(\overline{\mathbf{x}}_{k}+\alpha \overline{\mathbf{p}}_{k}\right) \geq c_{2} \overline{\mathbf{p}}_{k}^{T} \nabla f\left(\overline{\mathbf{x}}_{k}\right), \quad c_{2} \in\left(c_{1}, 1\right) .
$$

It prevents us from stopping when more progress can be made by moving further（increasing α ）．

Together these two conditions are known as the Wolfe conditions．

Search Direction：Steepest Descent，Newton，or Other？！？ tep Length Selection－1D Minimization Step Length Selection－The Wolfe Conditions Homework \＃1

There are many ways to enforce reduction in the objective，e．g．

Armijo Condition
（Wolfe Condition \＃1）
The Armijo Condition

$$
f\left(\overline{\mathbf{x}}_{k}+\alpha \overline{\mathbf{p}}_{k}\right) \leq f\left(\overline{\mathbf{x}}_{k}\right)+c_{1} \alpha \overline{\mathbf{p}}_{k}^{T} \nabla f(\overline{\mathbf{x}}), \quad c_{1} \in(0,1),
$$

requires the reduction to be proportional to the step length α ，as well as the directional derivative $\overline{\mathbf{p}}_{k}^{T} \nabla f(\overline{\mathbf{x}})$ ．In practice c_{1} is usually set to be quite small，e．g．$\sim 10^{-4}$ ．

Peter Blomgren，〈blomgren．peter＠gmail．com〉 Convergence；Line Search Methods

Introduction
Line Search Methods

Search Direction：Steepest Descent，Newton，or Other？！ Step Length Selection－1D Minimization p Lework 1 Homework \＃1

The Wolfe Conditions：Part I－The Armijo Condition

The Armijo Condition

$$
f\left(\overline{\mathbf{x}}_{k}+\alpha \overline{\mathbf{p}}_{k}\right) \leq f\left(\overline{\mathbf{x}}_{k}\right)+c_{1} \alpha \overline{\mathbf{p}}_{k}^{T} \nabla f(\overline{\mathbf{x}}), \quad c_{1} \in(0,1)
$$

requires the reduction to be proportional to the step length α ，as well as the directional derivative．In practice c_{1} is usually set to be quite small， e．g．$\sim 10^{-4}$

Armijo OK

Search Direction：Steepest Descent，Newton，or Other？！？ Step Length Selection－The Wolfe Condition Homework \＃1

To rule out unacceptable short steps，the curvature condition

$$
\overline{\mathbf{p}}_{k}^{T} \nabla f\left(\overline{\mathbf{x}}_{k}+\alpha \overline{\mathbf{p}}_{k}\right) \geq c_{2} \overline{\mathbf{p}}_{k}^{T} \nabla f\left(\overline{\mathbf{x}}_{k}\right), \quad c_{2} \in\left(c_{1}, 1\right)
$$

－it prevents us from stopping when more progress can be made by moving further（increasing α ）．Typical values：$c_{2}^{N, Q N}=0.9, c_{2}^{C G}=0.1$ ．

Peter Blomgren，〈blomgren．peter＠gmail．com〉 Convergence；Line Search Methods
Search Direction：Steepest Descent，Newton，or Other？！？
ntroduction
Line Search Methods
Step Length Selection
Homework \#1

The Wolfe Conditions：Part I＋II — Acceptable Step

Together，the Armijo and Curvature conditions constitute the Wolfe Conditions．

Search Direction：Steepest Descent，Newton，or Other？！？ sep Length Selection－ 1 Minimizatio tep Length Selection－The Wolfe Conditions Homework \＃1

The Wolfe Conditions：Part I＋II — Acceptable Step

Together，the Armijo and Curvature conditions constitute the Wolfe Conditions．

Peter Blomgren，〈blomgren．peter＠gmail．com〉 Convergence；Line Search Methods

Introduction
Line Search Methods
Search Direction：Steepest Descent，Newton，or Other？！？ tep Length Selection 1 M解 Homework \＃1

The Strong Wolfe Conditions
A step length α may satisfy the Wolfe Conditions

$$
\begin{array}{rlrl}
f\left(\overline{\mathbf{x}}_{k}+\alpha \overline{\mathbf{p}}_{k}\right) & \leq f\left(\overline{\mathbf{x}}_{k}\right)+c_{1} \alpha \overline{\mathbf{p}}_{k}^{T} \nabla f(\overline{\mathbf{x}}), & & c_{1} \in(0,1) \\
\overline{\mathbf{p}}_{k}^{T} \nabla f\left(\overline{\mathbf{x}}_{k}+\alpha \overline{\mathbf{p}}_{k}\right) & & c_{2} \in\left(c_{2}, \overline{\mathbf{p}}_{k}^{T} \nabla f\left(\overline{\mathbf{x}}_{k}\right),\right.
\end{array}
$$

even though it is far from a minimizer of $f\left(\overline{\mathbf{x}}_{k}+\alpha \overline{\mathbf{p}}_{k}\right)$ ，the Strong

Wolfe Conditions

$$
\begin{aligned}
f\left(\overline{\mathbf{x}}_{k}+\alpha \overline{\mathbf{p}}_{k}\right) & \leq f\left(\overline{\mathbf{x}}_{k}\right)+c_{1} \alpha \overline{\mathbf{p}}_{k}^{T} \nabla f(\overline{\mathbf{x}}), & & c_{1} \in(0,1) \\
\left|\overline{\mathbf{p}}_{k}^{T} \nabla f\left(\overline{\mathbf{x}}_{k}+\alpha \overline{\mathbf{p}}_{k}\right)\right| & \leq c_{2}\left|\overline{\mathbf{p}}_{k}^{T} \nabla f\left(\overline{\mathbf{x}}_{k}\right)\right|, & & c_{2} \in\left(c_{1}, 1\right)
\end{aligned}
$$

further disallows values of

$$
\left[\overline{\mathbf{p}}_{k}^{T} \nabla f\left(\overline{\mathbf{x}}_{k}+\alpha \overline{\mathbf{p}}_{k}\right)\right]
$$

which are＂too positive，＂thus excluding point that are far from the stationary points of $\overline{\mathbf{p}}_{k}^{T} \nabla f\left(\overline{\mathbf{x}}_{k}+\alpha \overline{\mathbf{p}}_{k}\right)$ ．

Peter Blomgren，〈blomgren．peter＠gmail．com〉 Convergence；Line Search Methods

Search Direction：Steepest Descent，Newton，or Other？！？ Step Length Selection－The Wolfe Condition Homework \＃1

Are the Wolfe Conditions too Restrictive？

It can be shown（see $\mathrm{NW}^{2 n d} \mathrm{pp} .35-36$ ）that there exist step lengths α which satisfy the Wolfe Conditions（and the Strong Wolfe Conditions）for every function f which is smooth and bounded below．

Formally－

Theorem（Existence of Acceptable α ）

Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuously differentiable．Let $\overline{\mathbf{p}}_{k}$ be a descent direction at $\overline{\mathbf{x}}_{k}$ ，and assume that f is bounded below along the line $\left\{\overline{\mathbf{x}}_{k}+\alpha \overline{\mathbf{p}}_{k}: \alpha>0\right\}$ ．Then if $0<c_{1}<c_{2}<1$ ，there exist intervals of step lengths satisfying the Wolfe conditions and the strong Wolfe conditions．

See also＂Goldstein Conditions＂（NW ${ }^{2 n d}$ p．36．）

Peter Blomgren，〈blomgren．peter＠gmail．com〉 Convergence；Line Search Methods

Line Search Method

，
 Search Direction：Steepest Descent，Newton，or Other？！？

 Step Length Selection－1D Minimization Homework \＃1Homework \＃1 — Due at 12：00pm，Friday September 21， 2018
$N W^{2 n d}-3.1$ ：Program the steepest descent and Newton algorithms using the backtracking line search．Use them to minimize the Rosenbrock function

$$
f(\overline{\mathbf{x}})=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2}
$$

Set the initial step length $\alpha_{0}=1$ and report the step length used by each method at each iteration．First try the initial point $\overline{\mathbf{x}}_{0}^{T}=[1.2,1.2]$ and then the more difficult point $\overline{\mathbf{x}}_{0}^{T}=[-1.2,1]$ ．
Suggested values： $\bar{\alpha}=1, \rho=\frac{1}{2}, c=10^{-4}$ ．
Stop when：$\left|f\left(\vec{x}_{k}\right)\right|<10^{-8}$ ，or $\left\|\nabla f\left(\vec{x}_{k}\right)\right\|<10^{-8}$ ．
Note：The homework is due in Peter＇s mailbox in GMCS－411 or， office GMCS－587（slide under the door if I＇m not there）．

Search Direction：Steepest Descent，Newton，or Other？！？ tep Length Selection－1D Minimization Se Wolfe Conditions Homework \＃1

Algorithm：Backtracking Linesearch

Algorithm：Backtracking Linesearch
［0］Find a descent direction $\overline{\mathbf{p}}_{k}$
［1］Set $\bar{\alpha}>0, \rho \in(0,1), c \in(0,1)$ ，set $\alpha=\bar{\alpha}$
［2］While $f\left(\overline{\mathbf{x}}_{k}+\alpha \overline{\mathbf{p}}_{k}\right)>f\left(\overline{\mathbf{x}}_{k}\right)+c \alpha \overline{\mathbf{p}}_{k}^{T} \nabla f\left(\overline{\mathbf{x}}_{k}\right)$
［3］$\alpha=\rho \alpha$
［4］End－While
［5］Set $\alpha_{k}=\alpha$

If an algorithm selects the step lengths appropriately（e．g．backtracking）， we do not have to check the second inequality of the Wolfe conditions．
The algorithm above is especially well suited for use with Newton method （ $\overline{\mathbf{p}}_{k}=\overline{\mathbf{p}}_{k}^{N}$ ），where $\bar{\alpha}=1$ ．It is less successful for quasi－Newton and CG－based approaches．
The value of the contraction factor ρ can be allowed to vary at each iteration of the line search．（To be revisited）

Peter Blomgren，〈blomgren．peter＠gmail．com〉
Convergence；Line Search Methods
－（26／28）

Introduction
Line Search Methods
Search Direction：Steepest Descent，Newton，or Other？！？ tep Length Selection－1D Minimization Homework \＃1

Index

Armijo condition， 18
backtracking linesearch， 26
convergence
rate of， 4
linear， 5
quadratic， 5
superlinear， 5
curvature condition， 19
Newton direction， 9
steepest descent direction， 7
Wolfe conditions， 19
strong， 24

[^0]: Search Direction：Steepest Descent，Newton，or Other？！？ tep Length Selection－1D Minimization

[^1]: Search Direction：Steepest Descent，Newton，or Other？！？ Step Length Selection－1D Minimization Homework \＃1

