

San Diego Stat University

Rates of convergence for our different optimization strategies.

We showed that for a simple quadratic model $f(\bar{\mathbf{x}}) = \frac{1}{2} \bar{\mathbf{x}}^T Q \bar{\mathbf{x}} - \bar{\mathbf{b}}^T \bar{\mathbf{x}}$ the steepest descent method is indeed linearly convergent.

The result generalizes to general nonlinear objective functions for which $\nabla f(\mathbf{\bar{x}}^*) = 0$ and $\nabla^2 f(\mathbf{\bar{x}}^*)$ is positive definite.

We stated the result for **Newton's method** which says that it is locally **quadratically convergent**.

Further, **Quasi-Newton methods**, where the search direction is $\mathbf{\bar{p}}_{k}^{\text{QN}} = -B_{k}^{-1}\nabla f(\mathbf{\bar{x}}_{k})$, exhibit **super-linear convergence** as long as the matrix sequence $\{B_{k}\}$ converges to the Hessian $\nabla^{2}f(\mathbf{\bar{x}}^{*})$ in the search direction $\mathbf{\bar{p}}_{k}$:

$$\lim_{k\to\infty}\frac{\|(B_k-\nabla^2 f(\bar{\mathbf{x}}^*))\bar{\mathbf{p}}_k\|}{\|\bar{\mathbf{p}}_k\|}=0$$

Coordinate Descent Methods: Slower than Steepest descent. Useful of coordinates are decoupled and/or computation of the gradient is not possible or too expensive. — We can potentially leverage multi-threaded computations.

SAN DIEGO ST UNIVERSIT

San Diego Stat University

— (7/30)

$$\alpha_k = -\frac{\nabla f(\mathbf{x}_k)^{\mathsf{T}} \mathbf{p}_k}{\mathbf{\bar{p}}_k^{\mathsf{T}} Q \mathbf{\bar{p}}_k}.$$

For general nonlinear f we must use an **iterative scheme** to find the step length α_k .

How the line search is performed impacts the **robustness** and **efficiency** of the overall optimization method.

1 Gradient information makes it easier to determine if a certain step is good — *i.e.* it satisfies a sufficient reduction condition.

>1 Methods requiring more than one derivate are quite rare; in order to compute the second derivative the full Hessian $\nabla^2 f(\bar{\mathbf{x}}_k)$ is needed, this is usually too high a cost.

SAN DIEGO ST

Line Search Methods Step Length Selection Homework #2	Line Search Methods Interpolation Step Length Selection The Initial Step Homework #2 Line Search Satisfying the Strong Wolfe Conditions	
Step Length Selection: Our Focus	Step Length Selection: Interpolation 1 of	
 The best "bang-for-bucks" line search algorithms use the gradient information, hence those will be the focus of our discussion. A line search algorithm roughly breaks down into the following components: [1] The initial step length α₀ is selected. [2] An interval [α_{min}, α_{max}] containing acceptable step lengths is identified — Bracketing phase. [3] The final step length is selected from the acceptable set — Selection phase. 	First we note that the Armijo condition can be written in terms of Φ as $\Phi(\alpha_k) \leq \Phi(0) + c_1 \alpha_k \Phi'(0)$, where $c_1 \sim 10^{-4}$ in practice. This is stronger (but not much stronger) that requiring descent. \Rightarrow Our new algorithms will be efficient in the sense that the gradient $\nabla f(\bar{\mathbf{x}}_k)$ is computed as few times as possible. If the initial step length α_0 satisfies the Armijo condition, then we accept α_0 as the step length and terminate the search. - As we get close to the solution this will happen more and more often (for Newton and quasi-Newton methods with $\alpha_0 = 1$.)	
Often, [2] and [3] are closely tied together.	Otherwise, we search for an acceptable step length in $[0, \alpha_0]$	
Peter Blomgren, (blomgren.peter@gmail.com) Line Search Methods: Step Length Selection — (9/30)	Peter Blomgren, {blomgren.peter@gmail.com} Line Search Methods: Step Length Selection — (10/30)	
Line Search Methods Interpolation Step Length Selection The Initial Step Homework #2 Line Search Satisfying the Strong Wolfe Conditions	Line Search Methods Step Length Selection Homework #2 Interpolation The Initial Step Line Search Satisfying the Strong Wolfe Conditions	
Step Length Selection: Interpolation (Quadratic – Cubic) 2 of 7	Step Length Selection: Interpolation (Quadratic – Cubic) 3 of	
At this stage we have computed 3 pieces of information: $\Phi(0), \ \Phi'(0), \ \text{and} \ \Phi(\alpha_0),$ we can use this information to build a quadratic model $\Phi_q(\alpha)$: $\Phi_q(\alpha) = \left[\Phi(\alpha_0) - \Phi(0) - \alpha_0 \Phi'(0) \right] \alpha_q^2 + \Phi'(0) \alpha_q + \Phi(0)$	Hence $\alpha_1 = -\frac{\alpha_0^2 \Phi'(0)}{2 \left[\Phi(\alpha_0) - \Phi(0) - \alpha_0 \Phi'(0) \right]}.$ We now check the Armijo condition $\Phi(\alpha_1) \le \Phi(0) + c_1 \alpha_1 \Phi'(0).$	
$ \Psi_{q}(\alpha) = \left[\frac{\alpha_{0}^{2}}{\alpha_{0}^{2}} \right] \alpha^{2} + \Psi(0)\alpha + \Psi(0). $ Note $ \Phi_{q}(0) = \Phi(0), \Phi_{q}(\alpha_{0}) = \Phi(\alpha_{0}), \Phi_{q}'(0) = \Phi'(0). $ We set $\Phi_{q}'(\alpha) = 0$ to find the minimum of the model — our next α to try $ \Phi_{q}'(\alpha) = 2\alpha \left[\frac{\Phi(\alpha_{0}) - \Phi(0) - \alpha_{0}\Phi'(0)}{\alpha_{0}^{2}} \right] + \Phi'(0) = 0. $	If it fails, then we create a cubic function $\Phi_{c}(\alpha) = \mathbf{a}\alpha^{3} + \mathbf{b}\alpha^{2} + \alpha\Phi'(0) + \Phi(0),$ which interpolates $\Phi(0), \ \Phi'(0), \ \Phi(\alpha_{0}), \ \text{and} \ \Phi(\alpha_{1}).$ $\begin{bmatrix} \mathbf{a} \\ \mathbf{b} \end{bmatrix} = \frac{1}{\alpha_{0}^{2}\alpha_{1}^{2}(\alpha_{1} - \alpha_{0})} \begin{bmatrix} \alpha_{0}^{2} & -\alpha_{1}^{2} \\ -\alpha_{0}^{3} & \alpha_{1}^{3} \end{bmatrix} \begin{bmatrix} \Phi(\alpha_{1}) - \Phi(0) - \alpha_{1}\Phi'(0) \\ \Phi(\alpha_{0}) - \Phi(0) - \alpha_{0}\Phi'(0) \end{bmatrix} \qquad (1)$	
Peter Blomgren, (blomgren.peter@gmail.com) Line Search Methods: Step Length Selection — (11/30)	Peter Blomgren, (blomgren.peter@gmail.com) Line Search Methods: Step Length Selection — (12/30)	

Line Search Methods Step Length Selection Homework #2	Interpolation The Initial Step Line Search Satisfying the Strong Wolfe Conditi	ions	Line Search Methods Interpolation Step Length Selection The Initial Step Homework #2 Line Search Satisfying the Strong Wolfe Condit	tions
Step Length Selection: Interpolation	(Quadratic-Cubic)	4 of 7	Step Length Selection: Interpolation (Cubic–Hermite Based)	5 of 7
The next iterate (α_2) is now the minimizer of $\Phi_c(\alpha)$ which lies in $[0, \alpha_1]$, it is given as one of the roots of the quadratic equation		At this point we must introduce to following safeguards to guarantee that we make sufficient progress:		
$\Phi_c^\prime(lpha)=3$ a $lpha^2+$ it is	$2b\alpha+\Phi'(0)=0,$		If $ \alpha_{k+1} - \alpha_k < \epsilon_1$ or $ \alpha_{k+1} < \epsilon_2$ then $\alpha_{k+1} = \alpha_k/2$.	
$\alpha_2 = \frac{-b + \sqrt{b^2 - 3a\Phi'(0)}}{3a}.$		The algorithm described assumes that computing the derivative is significantly more expensive than computing function values.		
In the extremely rare cases that $lpha_2$ does not satisfy the Armijo condition		However it is often, but not always, possible to compute the directional derivative (or a good estimate thereof) with minimal extra cost.		
$\Phi(lpha_2) \leq \Phi(0) + c_1 lpha_2 \Phi'(0),$		In those cases we build the cubic interpolant so that it interpolates		
we create a new cubic model interpo $\Phi(0), \Phi'(0), \Phi(0)$	lating (α_1) , and $\Phi(\alpha_2)$		$\Phi(\alpha_k), \ \Phi'(\alpha_k), \ \Phi(\alpha_{k-1}), \ \text{and} \ \Phi'(\alpha_{k-1})$	
<i>i.e.</i> $\Phi(0)$, $\Phi'(0)$ and the two most recent α 's.		this is a Hermite Polynomial of degree 3 (see Math 541 [R.I.P.].)		
Peter Blomgren, $\langle \texttt{blomgren.peter@gmail.com} \rangle$	Line Search Methods: Step Length Selection	— (13/30)	Peter Blomgren, blomgren.peter@gmail.com Line Search Methods: Step Length Selection	— (14/30)
Line Search Methods Step Length Selection Homework #2	Interpolation The Initial Step Line Search Satisfying the Strong Wolfe Conditi	ions	Line Search Methods Interpolation Step Length Selection The Initial Step Homework #2 Line Search Satisfying the Strong Wolfe Condit	tions
Step Length Selection: Interpolation		6 of 7	Step Length Selection: Interpolation	7 of 7
The cubic Hermite polynomial satisfying $H_{3}(\alpha_{k-1}) = \Phi(\alpha_{k-1}), H'_{3}(\alpha_{k-1}) = \Phi'(\alpha_{k-1})$ $H_{3}(\alpha_{k}) = \Phi(\alpha_{k}), \qquad H'_{3}(\alpha_{k}) = \Phi'(\alpha_{k}).$		The minimizer of $H_3(\alpha)$ in $[\alpha_{k-1}, \alpha_k]$ is either at one of the end point or else in the interior (given by setting $H'_3(\alpha) = 0$). The interior point is $\alpha_{k+1} = \alpha_k - (\alpha_k - \alpha_{k-1}) \left[\frac{\Phi'(\alpha_k) + d_2 - d_1}{\Phi'(\alpha_{k-1}) + 2d_2} \right]$:S,	
can be written explicitly as			where	
$H_3(\alpha) = \left[1 + \frac{\alpha - \alpha_{k-1}}{\alpha_k - \alpha_{k-1}}\right]$	$\frac{1}{1} \left[\frac{\alpha_k - \alpha}{\alpha_k - \alpha_{k-1}} \right]^2 \Phi(\alpha_{k-1}) \stackrel{\text{Charles II}}{\underset{\text{clan (1822)}}{\text{French matrix}}} \left[\frac{\alpha_k - \alpha_{k-1}}{\alpha_k - \alpha_{k-1}} \right]^2 \Phi(\alpha_{k-1}) \stackrel{\text{Charles II}}{\underset{\text{clan (1822)}}{\text{French matrix}}} \left[\frac{\alpha_k - \alpha_{k-1}}{\alpha_k - \alpha_{k-1}} \right]^2 \Phi(\alpha_{k-1}) \stackrel{\text{Charles II}}{\underset{\text{clan (1822)}}{\text{French matrix}}} \left[\frac{\alpha_k - \alpha_{k-1}}{\alpha_k - \alpha_{k-1}} \right]^2 \Phi(\alpha_{k-1}) \stackrel{\text{Charles II}}{\underset{\text{clan (1822)}}{\text{French matrix}}} \left[\frac{\alpha_k - \alpha_{k-1}}{\alpha_k - \alpha_{k-1}} \right]^2 \Phi(\alpha_{k-1}) \stackrel{\text{Charles II}}{\underset{\text{clan (1822)}}{\text{French matrix}}} \left[\frac{\alpha_k - \alpha_{k-1}}{\alpha_k - \alpha_{k-1}} \right]^2 \Phi(\alpha_{k-1}) \stackrel{\text{Charles II}}{\underset{\text{clan (1822)}}{\text{French matrix}}} \left[\frac{\alpha_k - \alpha_{k-1}}{\alpha_k - \alpha_{k-1}} \right]^2 \Phi(\alpha_{k-1}) \stackrel{\text{Charles II}}{\underset{\text{clan (1822)}}{\text{French matrix}}} \left[\frac{\alpha_k - \alpha_{k-1}}{\alpha_k - \alpha_{k-1}} \right]^2 \Phi(\alpha_k - \alpha_{k-1}) \stackrel{\text{Charles II}}{\underset{\text{clan (1822)}}{\text{French matrix}}} \left[\frac{\alpha_k - \alpha_{k-1}}{\alpha_k - \alpha_{k-1}} \right]^2 \Phi(\alpha_k - \alpha_{k-1}) \stackrel{\text{Charles II}}{\underset{\text{clan (1822)}}{\text{French matrix}}} \left[\frac{\alpha_k - \alpha_{k-1}}{\alpha_k - \alpha_{k-1}} \right]^2 \Phi(\alpha_k - \alpha_{k-1}) \stackrel{\text{Charles II}}{\underset{\text{clan (1822)}}{\text{French matrix}}} \left[\frac{\alpha_k - \alpha_{k-1}}{\alpha_k - \alpha_{k-1}} \right]^2 \Phi(\alpha_k - \alpha_{k-1}) \stackrel{\text{Charles II}}{\underset{\text{clan (1822)}}{\text{French matrix}}} \left[\frac{\alpha_k - \alpha_{k-1}}{\alpha_k - \alpha_{k-1}} \right]^2 \Phi(\alpha_k - \alpha_{k-1}) \stackrel{\text{Charles II}}{\underset{\text{clan (1822)}}{\underset{\text{clan (1822)}}{\text{French matrix}}} \left[\alpha_k - \alpha_k$	Hermite, ithemati- 1901). Domain.	$d_1 = \Phi'(\alpha_{k-1}) + \Phi'(\alpha_k) - 3\left[\frac{\Phi(\alpha_{k-1}) - \Phi(\alpha_k)}{\Phi(\alpha_{k-1})}\right]$	
+ $\left[1+2\frac{\alpha_k-\alpha_k}{\alpha_k-\alpha_k}\right]$	$\begin{bmatrix} \frac{\alpha}{\alpha_{k-1}} \end{bmatrix} \begin{bmatrix} \frac{\alpha - \alpha_{k-1}}{\alpha_{k} - \alpha_{k-1}} \end{bmatrix} \Phi(\alpha_{k})$		$\begin{bmatrix} \alpha_{k-1} - \alpha_k \end{bmatrix}$	
+ $(\alpha - \alpha_{k-1})$	$\left[\frac{\alpha_k - \alpha}{\alpha_k - \alpha_{k-1}}\right]^2 \Phi'(\alpha_{k-1})$		$d_2 = \operatorname{sign} \left(\alpha_k - \alpha_{k-1} \right) \sqrt{d_1^2 - \Phi'(\alpha_{k-1}) \Phi'(\alpha_k)}$	
+ $(\alpha - \alpha_k) \left[\frac{\alpha}{\alpha_k} \right]$	$\left[\frac{-\alpha_{k-1}}{\alpha_{k-1}}\right]^2 \Phi'(\alpha_k).$		Either α_{k+1} is accepted as the step length, or the search process continues	_
(Straight from Math 541 $_{[R.I.P.]}$)		SAN DIEGO STATE UNIVERSITY	Cubic interpolation gives quadratic convergence in the step length selection algorithm.	SAN DIEGO STATE UNIVERSITY

Line Search Methods: Step Length Selection — (15/30)

Peter Blomgren, {blomgren.peter@gmail.com}

-

Peter Blomgren, {blomgren.peter@gmail.com} Line Search Methods: St

Line Search Methods: Step Length Selection — (16/30)

Line Search Methods Interpolation Step Length Selection The Initial Step Homework #2 Line Search Satisfying the Strong Wolfe Conditions	Line Search Methods Interpolation Step Length Selection The Initial Step Homework #2 Line Search Satisfying the Strong Wolfe Conditions
Step Length Selection: The Initial Step1 of 2	Step Length Selection: The Initial Step2 of 2
For Newton and quasi-Newton methods, the search vector $\mathbf{\bar{p}}_k$ contains an intrinsic sense of scale (being formed from the local descent, and curvature information), hence the initial trial step length should always be $\alpha_0 = 1$, otherwise we break the quadratic respective super-linear convergence properties.	Strategy #2: Use the minimizer of the quadratic interpolant to $f(\bar{\mathbf{x}}_{k-1}), f(\bar{\mathbf{x}}_k)$, and $\phi'(0) = \bar{\mathbf{p}}_k^T \nabla f(\bar{\mathbf{x}}_k)$ as the initial α : $\alpha_0^{[k]} = \frac{2[f(\bar{\mathbf{x}}_k) - f(\bar{\mathbf{x}}_{k-1})]}{\bar{\mathbf{p}}_k^T \nabla f(\bar{\mathbf{x}}_k)}$
For other search directions, such as steepest descent and conjugate gradient (to be described later) directions which do not have a sense of scale, other methods must be used to select a good first trial step: Strategy #1: Assume that the rate of change in the current iteration will be the same as in the previous iteration, select α_0 : $\alpha_0^{[k]} = \alpha^{[k-1]} \frac{\mathbf{\bar{p}}_{k-1}^T \nabla f(\mathbf{\bar{x}}_{k-1})}{\mathbf{\bar{p}}_k^T \nabla f(\mathbf{\bar{x}}_k)}.$	If this strategy is used with a quadratically or super-linearly convergent algorithm, the choice of α_0 must be modified slightly to preserve the convergence properties: $\alpha_{0,\text{new}}^{[k]} = \min(1, 1.01\alpha_0^{[k]})$ this ensures that the step length $\alpha_0 = 1$ will eventually always be tried.
Peter Blomgren, <pre> blomgren.peter@gmail.com Line Search Methods: Step Length Selection — (17/30) </pre>	Peter Blomgren, blomgren.peter@gmail.com Line Search Methods: Step Length Selection (18/30)
Line Search MethodsInterpolationStep Length SelectionThe Initial StepHomework #2Line Search Satisfying the Strong Wolfe Conditions	Line Search Methods Step Length Selection Homework #2 Line Search Methods Interpolation The Initial Step Line Search Satisfying the Strong Wolfe Conditions
Line Search for the Strong Wolfe Conditions 1 of 6	Line Search for the Strong Wolfe Conditions2 of 6
Algorithm: LS/Strong Wolfe Conditions 01. Set $\alpha_0 = 0$, choose $\alpha_1 > 0$, α_{\max} , c_1 , and c_2 , $i = 1$ 02. while(TRUE) 03. Compute $\Phi(\alpha_i)$ 04. if $(\Phi(\alpha_i) > \Phi(0) + c_1\alpha_i\Phi'(0))$ or $(\Phi(\alpha_i) \ge \Phi(\alpha_{i-1})$ and $i > 1$) 05. $\alpha_* = \mathbf{zoom}(\alpha_{i-1}, \alpha_i)$, and terminate search 05.5 end::if-04 06. Compute $\Phi'(\alpha_i)$ 07. if $ \Phi'(\alpha_i) \le -c_2\Phi'(0)$ 08. $\alpha_* = \alpha_i$, and terminate search 08.5 end::if-07 09. if $\Phi'(\alpha_i) \ge 0$ 10. $\alpha_* = \mathbf{zoom}(\alpha_i, \alpha_{i-1})$, and terminate search 10.5 end::if-09 11. Choose $\alpha_{i+1} \in [\alpha_i, \alpha_{\max}]$	 In the first stage of the algorithm, either an acceptable step length, or a range [α_i, α_{i+1}] containing an acceptable step length is identified — none of the conditions 04, 07, 09 are satisfied so the step length is increased 11. If in the first stage we identified a range, the second stage invokes a function zoom which will identify an acceptable step from the interval. Note: 04 establishes that α_i is too long a step, thus α_* must be in the range [α_{i-1}, α_i]. Note: if 07 holds, then both the strong Wolfe conditions hold (since not(04) must also hold.) Note: Finally, if 09 holds then the step is too large (since we are going
12. <i>i</i> = <i>i</i> + 1 13. end::while	uphill at this point.)

Line Search Methods Step Length Selection Homework #2 — Help & Hints	Line Search Methods Step Length Selection Homework #2 — Help & Hints
Homework $\#2$ — Due at 12:00pm, Friday October 5, 2018	Homework $\#2$ — Help & Hints
Re-do Homework #1, replacing the backtracking line search with the algorithm discussed in this lecture. Do not forget the safe-guards. Note that (some of) the interpolation formulas are anchored at 0 on the left; but neither α_{low} nor α_{high} is guaranteed to be 0. Compare the performance for both the Newton and Steepest Descent algorithms; is there a significant difference? Help and hints on the next slide	 Modularize your code — Have separate zoom, and interpolate functions, and a "driver" which directs "traffic." Implement zoom first. Debug using a simple version of interpolate(alow, ahigh) = (alow+ahigh)/2. Once zoom works, replace the interpolation step by <i>either</i> [easier] Hermite-based cubic interpolation [harder] Quadratic-Cubic interpolation In order to debug the interpolation, it is useful to plot the interpolation function in the (alow, ahigh) interval, and verify that the value selected for the next alpha indeed corresponds to the minimum.
Peter Blomgren, (blomgren.peter@gmail.com) Line Search Methods: Step Length Selection — (25/30)	Sun Duro S Sun Duro S Durverson Peter Blomgren, (blomgren.peter@gmail.com) Line Search Methods: Step Length Selection — (26/30)
Line Search Methods Step Length Selection Homework #2 — Help & Hints	Line Search Methods Step Length Selection Homework #2 — Help & Hints
Functions :: symbolic, "anonymous"	Functions :: symbolic, "anonymous"
<pre>1 %(Rosenbrock Function) :: usage f(1.2,1.3) 2 f = $@(x,y) 100*(y-x.^2).^{2}+(1-x).^{2};$ 3 4 %(Use symbolic toolbox to compute derivatives) 5 syms x y 6 df_dx = diff(f(x,y),x) 7 df_dy = diff(f(x,y),x,y) 9 df_dxy = diff(f(x,y),x,y) 10 df_dyy = diff(f(x,y),x,y) 10 df_dyy = diff(f(x,y),y,y) 11 12 %(Make "callable" non-symbolic functions) 13 f_dx = matlabFunction(df_dx, 'Vars', [x y]) 14 f_dy = matlabFunction(df_dx, 'Vars', [x y]) 15 f_dxx = matlabFunction(df_dx, 'Vars', [x y]) 16 f_dxy = matlabFunction(df_dxy, 'Vars', [x y]) 17 f_dyy = matlabFunction(df_dxy, 'Vars', [x y]) 18 9 %(Gradient and Hessian functions) 20 f_grad = $@(x,y) [f_dx(x,y) f_dy(x,y)]$ 21 f_hess = $@(x,y) [f_dx(x,y) f_dy(x,y)]$ 22 %(Function, gradient, and hessian with vector arguments) 24 vf = $@(x) f(x(1),x(2))$ 25 vf_grad = $@(x) f_{\pm}nets(x(1),x(2))$ 26 vf_hess = $@(x) f_{\pm}nets(x(1),x(2))$ 27 with the first of the total for the first of total for total for the first of total for total for the first of total for total for total for total for first of total for total for total for total for first of total for total for total for total for total for total for first of to</pre>	<pre>28 %(Steepest descent, and Newton directions) 29 sd = @(x) -vf_grad(x)/norm(vf_grad(x)) 30 nd = @(x) -vf_hess(x)\vf_grad(x) 31 32 %Linear model Notice :: functions as arguments! 33 lmod = @(a,pk,xk,vf,vf_grad) vf(xk) + a*pk**vf_grad(xk) 34 35 %Quadradic model 36 qmod = @(a,pk,xk,vf,vf_grad,vf_hess) 37 vf(xk) + a*pk**vf_grad(xk) + 1/2*a^2*pk**vf_hess(xk)*pk 38 39 %(Armijo condition check) 40 armijo = @(a,c1,xk,pk,f,vf_grad) 41 (f(xk+a*pk) <= f(xk) + c1*a*pk**vf_grad(xk)) 42 43 c1 = 10^(-4) 44 x0 = [1.2; 1.2] 45 sd0 = sd(x0) 40 and(x0) 47 alpha = 1</pre>
Peter Blomgren, (blomgren.peter@gmail.com) Line Search Methods: Step Length Selection — (27/30)	Peter Blomgren, <pre>{blomgren.peter@gmail.com</pre> Line Search Methods: Step Length Selection (28/30)

Line Search Methods Step Length Selection Homework #2 — Help & Hints		Line Search Methods Step Length Selection Homework #2	Homework #2 — Help & Hints
Functions :: symbolic, "anonymous"		Index	
<pre>49 if armijo(alpha,c1,x0,sd0,vf,vf_grad) 50 fprintf('SD can take full step from x0 = [%g,%g]\n', 51 x0(1),x0(2)) 52 else 53 fprintf('SD can NOT take full step from x0 = [%g,%g]\n', 54 x0(1),x0(2)) 55 end 56 57 if armijo(alpha,c1,x0,nd0,vf,vf_grad) 58 fprintf('Newton can take full step from x0 = [%g,%g]\n', 59 x0(1),x0(2)) 60 else 61 fprintf('Newton can NOT take full step from x0 = [%g,%g]\n', 63 end 64 65 65 66 66 67 67 67 68 69 60 60 60 60 60 60 60 60 60 60 60 60 60</pre>	SAN DIGO STATE UNIVERSITY	algorithm line search "zoom" function, 22 strong Wolfe conditions, 19 roadmap unconstrained optimization, 5 step length interpolation safeguards, 14 strategies, 10 selection classification, 8 cubic model, 12 quadratic model, 11 unconstrained optimization roadmap, 5	Successford
Peter Blomgren, {blomgren.peter@gmail.com} Line Search Methods: Step Length Selection	— (29/30)	Peter Blomgren, {blomgren.peter@gmail.com}	Line Search Methods: Step Length Selection — (30/30)