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Quick Recap: Last Time

Rates of convergence for our different optimization strategies.

We showed that for a simple quadratic model
f (x̄) = 1

2 x̄
TQ x̄− b̄T x̄ the steepest descent method is indeed

linearly convergent.

The result generalizes to general nonlinear objective functions for
which ∇f (x̄∗) = 0 and ∇2f (x̄∗) is positive definite.

We stated the result for Newton’s method which says that it is
locally quadratically convergent.
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Quick Recap: Last Time

Further, Quasi-Newton methods, where the search direction is
p̄QN

k = −B−1
k ∇f (x̄k), exhibit super-linear convergence as long as

the matrix sequence {Bk} converges to the Hessian ∇2f (x̄∗) in the
search direction p̄k :

lim
k→∞

‖(Bk −∇2f (x̄∗))p̄k‖
‖p̄k‖

= 0.

Coordinate Descent Methods: Slower than Steepest descent.
Useful of coordinates are decoupled and/or computation of the
gradient is not possible or too expensive. — We can potentially
leverage multi-threaded computations.
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Unconstrained Optimization — In the Line Search “Universe”

Global Optimization Problem

Local Strategies

Line Search Algorithms

Search Direction Step Length

Sufficient Descent Conditions

Convergence: Global

Convergence: Local Rate
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Lookahead: This Time — A Closer Look at Step Length

We look at techniques for

Best: Finding a minimizer to the 1D-function

Φ(α) = f (x̄k + αp̄k)

OK: Finding a step length αk which satisfy a “sufficient decrease
condition” such as the Wolfe conditions.

We already have one such algorithm —

Algorithm: Backtracking Line-search May Not Satisfy 2nd Wolfe Condition

[1] Set α > 0, ρ ∈ (0, 1), c ∈ (0, 1), set α = α
[2] While f (x̄k + αp̄k) > f (x̄k) + cαp̄Tk ∇f (x̄k)
[3] α = ρα
[4] End-While
[5] Set αk = α
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Step Length Selection: Assumptions

We must assume that p̄k is a descent direction, i.e. that Φ′(0) < 0
— thus all our steps will be in the positive direction.

When the objective f is quadratic f (x̄) = 1
2 x̄

TQ x̄+ b̄T x̄+ c , the
optimal step can be found explicitly

αk = −∇f (x̄k)
T p̄k

p̄Tk Qp̄k
.

For general nonlinear f we must use an iterative scheme to
find the step length αk .

How the line search is performed impacts the robustness and
efficiency of the overall optimization method.
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Step Length Selection: Classification

It is natural to classify line search methods based on how many
derivatives they need:

0 Methods based on function values only tend to be inef-
ficient, since they need to narrow the minimizer to a small
interval.

1 Gradient information makes it easier to determine if a
certain step is good — i.e. it satisfies a sufficient reduction
condition.

>1 Methods requiring more than one derivate are quite rare;
in order to compute the second derivative the full Hessian
∇2f (x̄k) is needed, this is usually too high a cost.
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Step Length Selection: Our Focus

The best “bang-for-bucks” line search algorithms use the gradient
information, hence those will be the focus of our discussion.
A line search algorithm roughly breaks down into the following
components:

[1] The initial step length α0 is selected.

[2] An interval [αmin, αmax ] containing acceptable step lengths
is identified — Bracketing phase.

[3] The final step length is selected from the acceptable set —
Selection phase.

Often, [2] and [3] are closely tied together.
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Step Length Selection: Interpolation 1 of 7

First we note that the Armijo condition can be written in terms of Φ as

Φ(αk) ≤ Φ(0) + c1αkΦ
′(0),

where c1 ∼ 10−4 in practice. This is stronger (but not much stronger)
that requiring descent.

⇒ Our new algorithms will be efficient in the sense that the gradient
∇f (x̄k) is computed as few times as possible.

If the initial step length α0 satisfies the Armijo condition, then we
accept α0 as the step length and terminate the search.

— As we get close to the solution this will happen more and more
often (for Newton and quasi-Newton methods with α0 = 1.)

Otherwise, we search for an acceptable step length in [0, α0]...
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Step Length Selection: Interpolation (Quadratic – Cubic) 2 of 7

At this stage we have computed 3 pieces of information:

Φ(0), Φ′(0), and Φ(α0),

we can use this information to build a quadratic model Φq(α):

Φq(α) =

[
Φ(α0)− Φ(0)− α0Φ

′(0)

α2
0

]
α2 +Φ′(0)α+Φ(0).

Note
Φq(0) = Φ(0), Φq(α0) = Φ(α0), Φ′

q(0) = Φ′(0).

We set Φ′
q(α) = 0 to find the minimum of the model — our next α to

try...

Φ′
q(α) = 2α

[
Φ(α0)− Φ(0)− α0Φ

′(0)

α2
0

]
+Φ′(0) = 0.
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Step Length Selection: Interpolation (Quadratic – Cubic) 3 of 7

Hence

α1 = − α2
0Φ

′(0)
2 [Φ(α0)− Φ(0)− α0Φ′(0)]

.

We now check the Armijo condition

Φ(α1) ≤ Φ(0) + c1α1Φ
′(0).

If it fails, then we create a cubic function

Φc(α) = aα3 + bα2 + αΦ′(0) + Φ(0),

which interpolates

Φ(0), Φ′(0), Φ(α0), and Φ(α1).

[
a
b

]
=

1

α2
0α

2
1(α1 − α0)

[
α2
0 −α2

1

−α3
0 α3

1

] [
Φ(α1)− Φ(0)− α1Φ

′(0)
Φ(α0)− Φ(0)− α0Φ

′(0)

]
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Step Length Selection: Interpolation (Quadratic – Cubic) 4 of 7

The next iterate (α2) is now the minimizer of Φc(α) which lies in [0, α1],
it is given as one of the roots of the quadratic equation

Φ′
c(α) = 3aα2 + 2bα+Φ′(0) = 0,

it is...

α2 =
−b +

√
b2 − 3aΦ′(0)

3a
.

In the extremely rare cases that α2 does not satisfy the Armijo condition

Φ(α2) ≤ Φ(0) + c1α2Φ
′(0),

we create a new cubic model interpolating

Φ(0), Φ′(0), Φ(α1), and Φ(α2)

i.e. Φ(0), Φ′(0) and the two most recent α’s.
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Step Length Selection: Interpolation (Cubic –Hermite Based) 5 of 7

At this point we must introduce to following safeguards to guarantee
that we make sufficient progress:

If |αk+1 − αk | < ǫ1 or |αk+1| < ǫ2

then αk+1 = αk/2.

The algorithm described assumes that computing the derivative is
significantly more expensive than computing function values.

However it is often, but not always, possible to compute the directional
derivative (or a good estimate thereof) with minimal extra cost.

In those cases we build the cubic interpolant so that it interpolates

Φ(αk), Φ′(αk), Φ(αk−1), and Φ′(αk−1)

this is a Hermite Polynomial of degree 3 (see Math 541 [R.I.P.].)
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Step Length Selection: Interpolation 6 of 7

The cubic Hermite polynomial satisfying

H3(αk−1) = Φ(αk−1), H ′
3(αk−1) = Φ′(αk−1)

H3(αk) = Φ(αk), H ′
3(αk) = Φ′(αk).

can be written explicitly as

H3(α) =
[
1 +

α−αk−1

αk−αk−1

] [
αk−α

αk−αk−1

]2
Φ(αk−1)

+
[
1 + 2 αk−α

αk−αk−1

] [
α−αk−1

αk−αk−1

]2
Φ(αk)

+ (α− αk−1)
[

αk−α
αk−αk−1

]2
Φ′(αk−1)

+ (α− αk)
[

α−αk−1

αk−αk−1

]2
Φ′(αk).

(Straight from Math 541 [R.I.P.])...

Charles Hermite,
French mathemati-
cian (1822–1901).
c© Public Domain.
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The minimizer of H3(α) in [αk−1, αk ] is either at one of the end points,
or else in the interior (given by setting H ′

3(α) = 0).
The interior point is

αk+1 = αk − (αk − αk−1)

[
Φ′(αk) + d2 − d1

Φ′(αk)− Φ′(αk−1) + 2d2

]

where

d1 = Φ′(αk−1) + Φ′(αk)− 3

[
Φ(αk−1)− Φ(αk)

αk−1 − αk

]

d2 = sign (αk − αk−1)
√

d2
1 − Φ′(αk−1)Φ′(αk)

Either αk+1 is accepted as the step length, or the search process
continues...
Cubic interpolation gives quadratic convergence in the step length
selection algorithm.
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Step Length Selection: The Initial Step 1 of 2

For Newton and quasi-Newton methods, the search vector p̄k contains an
intrinsic sense of scale (being formed from the local descent, and
curvature information), hence the initial trial step length should always
be α0 = 1, otherwise we break the quadratic respective super-linear
convergence properties.

For other search directions, such as steepest descent and conjugate
gradient (to be described later) directions which do not have a sense of
scale, other methods must be used to select a good first trial step:

Strategy #1: Assume that the rate of change in the current iteration
will be the same as in the previous iteration, select α0:

α
[k]
0 = α[k−1] p̄

T
k−1∇f (x̄k−1)

p̄Tk ∇f (x̄k)
.
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Step Length Selection: The Initial Step 2 of 2

Strategy #2: Use the minimizer of the quadratic interpolant to
f (x̄k−1), f (x̄k), and φ′(0) = p̄Tk ∇f (x̄k) as the ini-
tial α:

α
[k]
0 =

2[f (x̄k)− f (x̄k−1)]

p̄Tk ∇f (x̄k)

If this strategy is used with a quadratically or super-linearly
convergent algorithm, the choice of α0 must be modified slightly
to preserve the convergence properties:

α
[k]
0,new = min(1, 1.01α

[k]
0 )

this ensures that the step length α0 = 1 will eventually always be
tried.
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Line Search for the Strong Wolfe Conditions 1 of 6

Algorithm: LS/Strong Wolfe Conditions

01. Set α0 = 0, choose α1 > 0, αmax, c1, and c2, i = 1
02. while( TRUE )
03. Compute Φ(αi )

04. if (Φ(αi ) > Φ(0) + c1αiΦ
′(0)) or (Φ(αi ) ≥ Φ(αi−1) and i > 1)

05. α∗ = zoom(αi−1, αi ), and terminate search
05.5 end::if–04

06. Compute Φ′(αi )

07. if |Φ′(αi )| ≤ −c2Φ′(0)
08. α∗ = αi , and terminate search
08.5 end::if–07

09. if Φ′(αi ) ≥ 0
10. α∗ = zoom(αi , αi−1), and terminate search
10.5 end::if–09
11. Choose αi+1 ∈ [αi , αmax]
12. i = i + 1
13. end::while
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Line Search for the Strong Wolfe Conditions 2 of 6

In the first stage of the algorithm, either an acceptable step length, or a
range [αi , αi+1] containing an acceptable step length is identified — none
of the conditions 04, 07, 09 are satisfied so the step length is increased
11.

If in the first stage we identified a range, the second stage invokes a
function zoom which will identify an acceptable step from the interval.

Note: 04 establishes that αi is too long a step, thus α∗ must be in the
range [αi−1, αi ].

Note: if 07 holds, then both the strong Wolfe conditions hold (since
not(04) must also hold.)

Note: Finally, if 09 holds then the step is too large (since we are going
uphill at this point.)
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Line Search for the Strong Wolfe Conditions 3 of 6

The zoom function takes two arguments: zoom(αlow, αhigh)
satisfying the following:

[1] The interval bounded by αlow, and αhigh contains step lengths
which satisfy the strong Wolfe conditions.

[2] αlow is the α corresponding to the lower function value, i.e.
Φ(αlow) < Φ(αhigh).

[3] αlow and αhigh satisfy: Φ′(αlow)(αhigh − αlow) < 0.

See the figure on slide 23.
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Line Search for the Strong Wolfe Conditions 4 of 6

Algorithm: zoom function

01. while( TRUE )
02. Interpolate to find αj between αlow and αhigh

03. Compute Φ(αj )

04. if (Φ(αj ) > Φ(0) + c1αjΦ
′(0)) or (Φ(αj ) ≥ Φ(αlow))

05. αhigh = αj

06. else

07. Compute Φ′(αj )

08. if |Φ′(αj )| ≤ −c2Φ′(0)
09. α∗ = αj , and return(α∗)
09.5 end::if–08
10. if Φ′(αj )(αhigh − αlow) ≥ 0
11. αhigh = αlow

11.5 end::if–10
12. αlow = αj

12.5 end::if-else–04-06
13. end::while
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Line Search for the Strong Wolfe Conditions 5 of 6

In practical applications (c1 = 10−4 and c2 = 0.9), enforcing strong
Wolfe conditions require a similar amount of work compared with the
Wolfe conditions.

The advantage of the strong conditions is that by decreasing c2 we can
force the accepted step lengths to be closer to the local minima of Φ(·),
this is particularly helpful in applications of steepest descent or conjugate
gradient methods.

Low High

Sufficient Decrease

Figure: A possible scenario for zoom — since αlow < αhigh we must have

negative slope at αlow.
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Line Search for the Strong Wolfe Conditions 6 of 6
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Figure: Illustrating the 04-condition; since we know we can push the objective

down to Φ(αlow), we reject αj even though it satisfies the Armijo condition.

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Line Search Methods: Step Length Selection — (24/30)



Line Search Methods
Step Length Selection

Homework #2
Homework #2 — Help & Hints

Homework #2 — Due at 12:00pm, Friday October 5, 2018

Re-do Homework #1, replacing the backtracking line search with
the algorithm discussed in this lecture.

Do not forget the safe-guards.

Note that (some of) the interpolation formulas are anchored at 0
on the left; but neither αlow nor αhigh is guaranteed to be 0.

Compare the performance for both the Newton and Steepest
Descent algorithms; is there a significant difference?

Help and hints on the next slide...
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Homework #2 — Help & Hints

Modularize your code — Have separate zoom, and
interpolate functions, and a “driver” which directs
“traffic.”

Implement zoom first. Debug using a simple version of
interpolate(alow,ahigh) = (alow+ahigh)/2.

Once zoom works, replace the interpolation step by either

[easier] Hermite-based cubic interpolation
[harder] Quadratic-Cubic interpolation

In order to debug the interpolation, it is useful to plot the
interpolation function in the (alow,ahigh) interval, and verify
that the value selected for the next alpha indeed corresponds
to the minimum.
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Functions :: symbolic, “anonymous”

1 %(Rosenbrock Function) :: usage f(1.2 ,1.3)

2 f = @(x,y) 100*(y-x.^2) .^2+(1 -x).^2;

3
4 %(Use symbolic toolbox to compute derivatives)

5 syms x y

6 df_dx = diff(f(x,y),x)

7 df_dy = diff(f(x,y),y)

8 df_dxx = diff(f(x,y),x,x)

9 df_dxy = diff(f(x,y),x,y)

10 df_dyy = diff(f(x,y),y,y)

11
12 %(Make "callable" non -symbolic functions)

13 f_dx = matlabFunction(df_dx , ’Vars’,[x y])

14 f_dy = matlabFunction(df_dy , ’Vars’,[x y])

15 f_dxx = matlabFunction(df_dxx ,’Vars’,[x y])

16 f_dxy = matlabFunction(df_dxy ,’Vars’,[x y])

17 f_dyy = matlabFunction(df_dyy ,’Vars’,[x y])

18
19 %(Gradient and Hessian functions)

20 f_grad = @(x,y) [f_dx(x,y) ; f_dy(x,y)]

21 f_hess = @(x,y) [f_dxx(x,y) f_dxy(x,y) ; f_dxy(x,y) f_dyy(x,y)]

22
23 %(Function , gradient , and hessian with vector arguments)

24 vf = @(x) f(x(1),x(2))

25 vf_grad = @(x) f_grad(x(1),x(2))

26 vf_hess = @(x) f_hess(x(1),x(2))
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Functions :: symbolic, “anonymous”

28 %(Steepest descent , and Newton directions)

29 sd = @(x) -vf_grad(x)/norm(vf_grad(x))

30 nd = @(x) -vf_hess(x)\vf_grad(x)

31
32 %Linear model --- Notice :: functions as arguments!

33 lmod = @(a,pk ,xk,vf ,vf_grad) vf(xk) + a*pk ’* vf_grad(xk)

34
35 %Quadradic model

36 qmod = @(a,pk ,xk,vf ,vf_grad ,vf_hess) ...

37 vf(xk) + a*pk ’* vf_grad(xk) + 1/2*a^2*pk ’* vf_hess(xk)*pk

38
39 %(Armijo condition check)

40 armijo = @(a,c1 ,xk ,pk,f,vf_grad) ...

41 (f(xk+a*pk) <= f(xk) + c1*a*pk ’* vf_grad(xk))

42
43 c1 = 10^( -4)

44 x0 = [1.2 ; 1.2]

45 sd0 = sd(x0)

46 nd0 = nd(x0)

47 alpha = 1
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Functions :: symbolic, “anonymous”

49 if armijo(alpha ,c1 ,x0,sd0 ,vf,vf_grad)

50 fprintf(’SD can take full step from x0 = [%g,%g]\n’ ,...

51 x0(1),x0(2))

52 else

53 fprintf(’SD can NOT take full step from x0 = [%g,%g]\n’ ,...

54 x0(1),x0(2))

55 end

56
57 if armijo(alpha ,c1 ,x0,nd0 ,vf,vf_grad)

58 fprintf(’Newton can take full step from x0 = [%g,%g]\n’ ,...

59 x0(1),x0(2))

60 else

61 fprintf(’Newton can NOT take full step from x0 = [%g,%g]\n’ ,...

62 x0(1),x0(2))

63 end
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